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1. SAMPLE
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Supplementary Figure 1: The quantum dot sample. (a) Sample’s layer structure. (b) Pho-

toluminescence spectrum under above-band excitation. Sharp exciton, X, and negatively charged

exciton, X−, peaks are labelled.

The device used in this report was grown using Metalorganic Vapour Phase Epitaxy

(MOVPE). The structure of the sample is shown in Supplementary Figure 1(a). Self-

assembled Indium Arsenide (InAs) quantum dots were embedded in bulk Indium Phosphide

(InP) for operation in the telecom C-band. Droplet epitaxy was used to produce symmetric

dots on the (001) surface. An asymmetric Bragg cavity is also built to enhance emission

efficiency from the top of the device. The DBR consists of 20 AlGaInAs/InP bottom layer

pairs and 3 AlGaInAs/InP top layer pairs, where each layer has an optical thickness of λ/4.

The intrinsic region consists of 3λ/4 below and above the QD layer for a total cavity length

of 3λ/2. Finally, a zirconia solid immersion lens is added to enhance the extraction effi-

ciency. The photoluminescence spectrum of our QD under above-band excitation is shown

in Supplementary Figure 1(b).
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2. EXPERIMENTAL SETUP
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Supplementary Figure 2: Detailed schematic of the experimental setup. The setup is used

to excite the QD with above-band and/or resonant laser excitation, and couple the scattered light

of the quantum dot into a single mode fibre. The output is then detected either with the means of

a spectrometer or SNSPDs. EOM, electro-optic modulator; DVA, digital variable attenuator; BS,

beam splitter, LP, linear polariser; QWP, quarter-wave plate; NPBS, non-polarising beam splitter;

SPCM, single-photon counting module; SNSPD, superconducting nanowire single-photon detector.

Above-band excitation of the QD is performed using a pulsed PicoQuant’s LDH 850 nm

laser and 40-MHz repetition rate. Resonant excitation is achieved using Toptica’s CTL1550

in conjunction with an EOM that is driven by Tektronix’s arbitrary wavefunction generator

(AWG70000). The pulsed electronic waveforms are generated at 40-MHz repetition rate.

Toptica’s FemtoFiber Ultra (FFUltra) is used to generate ultra-fast detuned pulses for co-

herent spin manipulation. The FFUltra pulses are shaped spectrally using a custom-built
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free-space grating-based filter. The linewidth of the filtered pulses is ∼ 0.7 nm (4 ps) with

an average power of 1 mW. For Ramsey interference experiments the pulses go through

a Ramsey interferometer where the time delay between the optical pulses is controlled by

means of a variable optical delay line. Resonant and non-resonant light is coupled into the

excitation arm of the confocal microscope using a dichroic mirror.

The sample is kept in an attoDry1000 closed-cycle magneto-cryostat at a temperature of

∼ 4 K. A superconducting magnet surrounding the sample applies a magnetic field up to 9

T perpendicular to the growth direction (Voigt configuration). Attocube piezoelectric stages

are used to control the sample’s position. The laser pulses are focused onto the sample using

an objective lens (NA = 0.68) placed inside the cryostat. The fluorescence light is filtered by

a confocal microscope setup to remove the resonant laser contribution via cross-polarisation

filtering. Such a cross-polarisation setup can offer excitation resonant light suppression of >4

orders of magnitude. Additionally, an optional quarter-wave plate is added to compensate

for any deviations from linear to elliptical polarisation states. These deviations could arise

from a birefrigence of the sample, solid immersion lens (SIL), the cryostat window, or the

confocal microscope components.

A free-space grating-based filter (∆λ ∼ 0.5 nm or ∆λ ∼ 0.12 nm) is used to spatially

separate and couple individual emission lines. The output is either directed to Princeston

Instrument’s HRS-750-S spectrometer or to IDQ’s ID281 SNSPDs with time-tagging elec-

tronics. Finally, any remaining background resonant laser contributions are subtracted from

the data by recording equivalent data sets without the above band excitation.

To calculate the overall detection efficiency of the device in our setup, we first simulate

the first-lens brightness using a 1D-transfer matrix approach [1]. For the NA = 0.68 used

here, we estimate a first-lens brightness of 0.15. This, together with further losses in our

setup as detailed in Supplementary Table 1, results in a total collection efficiency of about

1%. However, collection efficiency is not the only factor reducing the count rates. From our

spectra under non-resonant excitation we expect the X- to be created less than 40% of the

time. In addition, excitation efficiency and quantum efficiency will both affect the measured

count rate, but are harder to quantify.
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Efficiency Origin

0.15 First-lens brightness from simulations

0.5 Polarisation rejection

0.5 Fibre coupling efficiency

0.4 Grating filter transmission

0.5 Additional losses in detection setup, incl. detector efficiency

0.0075 Total collection efficiency

Supplementary Table 1: Efficiencies of setup components
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3. QD STATE SPLITTING AND G-FACTOR
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Supplementary Figure 3: QD state splitting and g-factors under Voigt magnetic fields.

(a) Emission spectra of the QD under above-band, resonant and combined excitation. Inset: Trion

level structure with radiative transition selection rules. Transition |↓⟩ − |↓↑⇓⟩ is resonantly driven.

(b) and (c) illustrate the two distinct cases where the large energy gap in the emission spectrum

corresponds to ground or excited level splitting, respectively. (d) Zeeman splitting between H- and

V-polarised transitions as a function of applied magnetic field resulting in excited and ground state

g-factors of 0.223 and 0.122, respectively. Insets: Resonant absorption spectra recorded at 5 T and

9 T.

Supplementary Figure 3(a) illustrates the emission spectra under above-band excitation,

resonant excitation and combined excitation as recorded by the spectrometer. Under the

influence of an external magnetic field, in Voigt geometry, the degeneracy of the eigenstates

is lifted and a double Λ−system is formed. The transitions are labelled 1-4 and correspond

to the optical selection rules as illustrated in the inset of Supplementary Figure 3(a). Due

to the spectrometer’s limited resolution, the two higher-energy transitions and lower-energy

transitions are lumped into one peak each, with the latter being slightly discernible. The

two pairs can be distinguished, around 1532 nm.
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The goal is to differentiate between the excited and ground state splittings. The ground

state splitting, δe, is reflected in the difference between transitions 1-2 and 3-4, the excited

state splitting, δh, between transitions 1-3 and 2-4. To identify whether δh or δe correspond

to the larger splitting, we resonantly drive the lowest energy transition of the QD and

direct the emission to the spectrometer to see which frequencies are emitted. The two

possible scenarios are pictorially illustrated in Supplementary Figure 3 (b) and (c). Under

above-band + resonant excitation, frequencies 4 and 3 should light up. Thus, if the large

splitting is in the ground state, both lumped peaks counts should increase. If the large

splitting is in the excited state, only the rightmost lumped peak should increase in counts.

From Supplementary Figure 3(a) we can clearly see that the additional intensity due to the

resonant excitation is only in one lumped peak. Thus the excited state splitting is larger

than the ground state splitting, δh > δe.

To determine the g-factor, resonant absorption spectra are recorded as a function of

the applied magnetic field. The four distinct transitions are then fitted using Lorentzian

functions to determine the energy shifts with respect to zero magnetic field. The energy

splitting, ∆Ez , of H and V polarised transitions is plotted in Supplementary Figure 3(d).

The g-factors are then given by, g =
∆Ez

mjµBBext
, where mj is the z-component of the total

angular momentum, µB is the Bohr magneton and Bext is the applied magnetic field. By

performing a linear fit, we extract g-factors gH = 0.345 and gV = 0.101. In turn the excited

and ground state g-factors are given by, gh = gH+gV
2

= 0.223 and ge = gH−gV
2

= 0.122,

respectively.
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4. SPIN INITIALISATION THEORETICAL MODEL

To extract the state preparation fidelity, a theoretical rate equation model is developed

following Ref. [2]. It is worth noting that the development was an iterative process where at

each cycle experimental data and theoretical simulations informed the choice of parameters

to be included. The time evolution of all four state populations is modelled with the following

rate equations,

d

dt
n|↑↓⇑⟩(t) = −2n|↑↓⇑⟩(t)Γ + n|↑↓⇓⟩(t)γh − n|↑↓⇑⟩(t)γh+n|↑⟩(t)Rp (1)

d

dt
n|↑↓⇓⟩(t) = −2n|↑↓⇓⟩(t)Γ + n|↑↓⇑⟩(t)γh − n|↑↓⇓⟩(t)γh+n|↓⟩(t)Rcc (2)

d

dt
n|↑⟩(t) = n|↑↓⇑⟩(t)Γ + n|↑↓⇓⟩(t)Γ + n|↓⟩(t)γe − n|↑⟩(t)γe−n|↑⟩(t)Rp (3)

d

dt
n|↓⟩(t) = n|↑↓⇑⟩(t)Γ + n|↑↓⇓⟩(t)Γ + n|↑⟩(t)γe − n|↓⟩(t)γe−n|↓⟩(t)Rcc (4)

where Γ is the trion spontaneous recombination rate, γh and γe are the trion-hole and

electron spin-flip rates respectively, Rp is the spin pumping rate proportional to the duration

of the pump pulse and Rcc is the diagonal transitions’ cross-coupling rate proportional to

Rp. The doubly-underlined terms are only included when the Pump or Probe pulse is ON.

The rate equation model is evaluated within four time frames. The 1st (2nd) time frame

corresponds to the pump laser being ON (OFF) and similarly the 3rd (4th) time frame cor-

responds to the probe pulse being ON (OFF). This produces the pump, free evolution, probe

and free evolution windows shown in Figure 2(a) of the main text, after charge initialisation

has taken place. In this model the Gaussian probe pulse is approximated by a square wave.

To start with, it is assumed that after the non-resonant pulse the charge is injected into

a random trion state such that the initial conditions are: n|↑↓⇑⟩(0) = 0.5 , n|↑↓⇓⟩(0) = 0.5,

n|↑⟩(0) = 0 and n|↓⟩(0) = 0. The spontaneous emission rate is obtained from the non-

resonant pulse’s decay, Γ = 1.32 ns. To fit the experimental data the integrated emission

intensity is calculated from the theoretical model. A good fit is observed for Rp = 7.0 GHz,

Rcc = 0.01% Rp and 1/γe = 150 ns as illustrated in Figure 2(c) of the main text. It is also

found that the γh does not significantly influence the |↑⟩ state evolution and its fixed to 1

ns−1.

Finally, using the level populations extracted from the best-fit model, the spin-initialisation
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fidelity can be calculated as a function of spin-pumping time. The fidelity is defined in terms

of states populations at the end of the protocol’s cycle,

Finit =
n|↑⟩

n|↓↑⇑⟩ + n|↓↑⇓⟩ + n|↓⟩ + n|↑⟩
(5)

A spin preparation fidelity of 90 % and 95 % is achieved after only 2.2 ns and 8.8 ns of

spin-pumping time,respectively, as indicated in Figure 2(c) of the main text.
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5. RAMSEY INTERFEROMETRY - ROTATION PULSE FIDELITY

For coherent control of the spin-qubit we employ detuned circularly polarised ps-pulses

and make use of the Larmor precession to achieve rotation by θ and ϕ, respectively. For

single spin rotations, a broadband high-intensity laser pulse can induce a Stimulated Raman

adiabatic Passage (STIRAP). The effective field experience by the QD can be much larger

than the applied magnetic field, resulting in an effective Rabi frequency, Ωeff [3].

Ωeff =

√
∆2|ΩH |2|ΩV |2
(4∆2 + Γ2)2

+ δ2 ≈ |ΩH ||ΩV |/2∆ (6)

where Ωj is the Rabi frequency of the j-polarised transition, δ is the Larmor frequency of

the ground state and ∆ is the detuning of the rotation pulse. The spin state is probed

following a excitation by two θ-pulses and separated by a time-delay ∆τ set by the Ramsey

interferometer. The pulse sequence is illustrated in Figure 3(a) of the main text. After

charge injection and spin initialisation, a π/2-pulse rotates the spin from the north pole to

the equator of the Bloch sphere, where it is allowed to precess around the Voigt magnetic

field. The Larmor period is defined by the |↑⟩−|↓⟩ splitting, δe. A second π/2-pulse delayed

by ∆τ will rotate the spin to either |↑⟩ or |↓⟩. The evolution of the spin-state trajectory is

pictorially shown in Figure 3(b). Ramsey fringes are observed in the integrated counts of

the readout pulse. The fringe data are fitted with:

y(τ, θ) = A(θ) exp

(
− τ

T ∗2 (θ)

)
cos

(
2πτ

δe
+ ϕ(θ)

)
+B(θ) (7)

where A(θ) and B(θ) are the initial amplitude and offset of the Ramsey fringe, T ∗2 (θ) is

the inhomogeneous dephasing time, δe the Larmor period and ϕ(θ) is the fringe’s phase. Note

that for long time delays in our Michelson interferometer, there is an increase in noise and

a total collapse of Ramsey oscillations, which does not align with an expected decoherence

decay, Figure 3(e). While this collapse might be due to technical limitations in our setup,

we suspect that dynamic nuclear spin polarisation significantly affects this, complicating the

extraction of the T2* coherence time for long delays. To ensure accuracy and reliability, we

have excluded long delay data from the fit.

To calculate the fidelity of the π/2 pulse we follow a similar technique as in [4]. It is

assumed that the Bloch vector begins with length A0 and that with every π/2 rotation

it shrinks by Dπ/2. Thus after two π/2 rotations the population in |↓⟩ oscillates between
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(A0+A0D
2
π/2)/2 and (A0−A0D

2
π/2)/2. In turn the measured photon counts oscillate between

S(A0+A0D
2
π/2)/2 and S(A0−A0D

2
π/2)/2, where S is a scale factor to convert the population

into the measured counts. These two expressions are then equated to the maximum and

minimum of the first Ramsey fringe fit. For a π/2 rotation we determine that SA0 = 1.15

and Dπ/2 = 0.86±0.01. Thus the π/2-pulse fidelity is estimated to be Fπ/2 = (1+Dπ/2)/2 =

93± 0.7%.
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Supplementary Figure 4: Energy level diagram for a negatively charged exciton in a Voigt magnetic

field with relevant transitions of the spin rotation scheme.
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6. MAGNETIC FIELD OPTIMISATION

a

c d

b

Supplementary Figure 5: Influence of line splitting on entanglement fidelity. (a) Measured

transmission profile of the double-pass grating filter. (b) Transmission ratio of red vs blue transition,

plotted as a function of absolute transmission through the grating (i.e. varying the filter detuning).

(c) F1 and F2 as a function of line separation. (d) Total expected entanglement fidelity as a function

of line separation.

For the spin-photon entanglement experiment, the magnetic field resulting in optimal

fidelity given our experimental constraints needs to be determined. For measurements in

the computational basis (Figure 4 in the main text), a large splitting is advantageous as

it makes filtering the red and blue transitions easier. We use a diffraction grating, which

we double-pass, for frequency filtering, and the measured resulting transmission profile is

given in Supplementary Figure 5(a). The linewidth of this filter setup is ∼ 0.12 nm. The
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achievable ratio between red and blue photon transmission depends on the line separation,

as well as on the detuning of the filter to take advantage of the steep slopes of the profile.

Supplementary Figure 5(b) shows the achievable ratio as a function of transmission of the

stronger line through the grating. For efficiency in the experiment, we set the transmission to

0.6. We can then plot the resulting fidelity in the computational basis, F1, in Supplementary

Figure 5(c). As expected, F1 increases for larger line splittings.

For measurements in the superposition basis (Figure 4 in the main text), where we record

interference fringes between the red and blue photons, the detector timing jitter (40-ps

FWHM according to the manufacturer) becomes the crucial experimental constraint. The

larger the splitting, the faster the beating pattern between the two frequencies, hence a small

splitting is preferable for these measurements. To quantify this, we plot in Supplementary

Figure 5(c) the predicted beating amplitude after convolution with a 40-ps Gaussian detector

response (i.e. F2) as a function of the line splittings. As expected, the amplitude drops for

larger splittings.

These simple estimates for F1 and F2 allow us to determine the optimal splitting for the

overall entanglement fidelity, which is shown Supplementary Figure 5(d). A broad maximum

can be observed for line separations between 0.06 and 0.08 nm. In our experiments, we

therefore pick a magnetic field of 5 T (corresponding to a line splitting of 0.065 nm) to

maximise the entanglement fidelity without any deconvolution of the measurement in the

superposition basis. We further performed the same measurements at a magnetic field of

9 T, to confirm the expected overall behaviour and show that the measurement in the

computational basis is mainly limited by the filter resolution.
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7. QUANTUM CORRELATIONS AND ENTANGLEMENT FIDELITY
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Supplementary Figure 6: Analysing T3 mode coincidences. (a) A 2D histogram of photon

coincidences, obtained using the HydrHarp in T3 mode, between the two detector channels. The

three rectangles along the main diagonal correspond to coincidences amongst the non-resonant

and resonant pulses. The green and red rectangles correspond to the region of interest where

entanglement correlations are measured. The absence of any coincidences along the main diagonal

corresponds to the zero delay line and demonstrates the single photon nature of our source. (b)

and (c) show the resulting 1D histograms of arrival times of photons from the entanglement pulse

conditioned on the detection of a photon in the readout pulse. (d) Sum of coincidences (b) and (c)

in time.

T3 mode

Demonstrating spin-photon correlations requires measuring correlations between the elec-
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tron’s spin and photon frequency, |ωred, ↓⟩ and |ωblue, ↑⟩.Thus we need to measure coinci-

dences from the entanglement pulse conditioned on the detection of a photon during the

subsequent readout pulse. We are only interested in the data where there was an event in

the second readout pulse. Due to the dead time of our SNSPDs (∼ 70ns) two seprate detec-

tion channels will be needed. If a photon emitted from the entanglement pulse is detected,

a photon emitted from the readout pulse just a few ns later cannot be detected by the same

channel due to the dead time. To get around this problem we split the incoming signal to

two detection channels with a 50:50 beamsplitter. Unfortunately, this means that 50% of

the coincidences will be lost when photons from the entanglement and readout pulses arrive

at the same channel. However, if the photons arrive at different channels a coincidence will

be recorded.

To record events with respect with a periodic sync signal we set-up our time-tagger to

record events in T3 mode. In brief, T3 mode records the time of an event occurring at each

channel w.r.t. to a sync signal and additionally keeps track of the total number of sync

signals that have passed. In this way we are able to gain accurate time-domain information

for every pulse in our spin-photon entanglement protocol.

Supplementary Figure 6 contains the coincidence data for a quantum correlations. We

combine equivalent time-bins from different clock cycles to increase statistics. Note that

only cycles along the main diagonal, the zero-delay line, are combined. Also, here we down-

sample the resulting coincidences from 1 ps to 16 ps to make the figures more readable.

Then the coincidences of the entanglement pulse are summed conditioned on the detection

of a photon during the subsequent readout pulse. Therefore, there are two regions of interest

highlighted by a green/red dashed box in Supplementary Figure 6(a). The coincidences in

the green box are summed along the columns and those in the red box along the rows as

illustrated in Supplementary Figure 6(b) and Supplementary Figure 6(c), respectively. The

histogrammed data are then combined and downsampled to larger time-bins from 1 ps to 8

ps, Supplementary Figure 6(d).

Entanglement fidelity

We calculate the entanglement fidelity, F = ⟨ψ| ρ |ψ⟩, using methods developed in [5, 6].

We measure the diagonal elements of the densty matrix in two orthogonal basis and use

them to calculate the fidelity in the computational, Equation 8, and superposition basis,
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Equation 9.

F1 = ρωblue↑,ωblue↑ + ρωred↓,ωred↓ − 2
√
ρωred↑,ωred↑ρωblue↓,ωblue↓ (8)

F2 = ρ+→,+→ + ρ−←,−← − ρ+←,+← − ρ−→,−→ (9)

where ρab,ab = ⟨a, b| ρ |a, b⟩ are the diagonal matrix elements and |±⟩ = 1/
√
2(|ωred⟩ ∓

|ωblue⟩) and |→⟩ = 1/
√
2(|↓⟩ − i |↑⟩) and |←⟩ = 1/

√
2(|↓⟩+ i |↑⟩).

To extract the entanglement fidelity in the computational basis we make use of the

coincidences, Cf,s, measured in Figure 4 (d,e) of the main text in the time window [1.15 ns,

1.7 ns]. We obtain the density matrix elements ρfs,fs of Equation 8 by evaluating conditional

probabilities P (f |s), as given in Equation 10 and Equation 11, respectively. We summarise

the measurements in Supplementary Table 2 and Supplementary Table 3 for 5 T and 9 T,

respectively. From the above measurements the fidelities in the computational basis are

F 9T
1 = 92.87± 1.2% and F 5T

1 = 84.13± 1.1%.

ρfs,fs =
1

2
P (f |, s) (10)

P (f |, s) = Cf,s

Cωred,s + Cωblue,s

(11)

5 T

f = ωred f = ωblue

s =↑ P (ωred| ↑) = 3.37± 1.24)% P (ωblue| ↑) = 96.63± 0.20%

s =↓ P (ωred| ↓) = 87.62± 0.39% P (ωblue| ↓) = 12.38± 0.70%

Supplementary Table 2: Conditional probability values P (f |s) at 5 T.

16



9 T

f = ωred f = ωblue

s =↑ P (ωred| ↑) = 1.10± 1.89% P (ωblue| ↑) = 98.90± 0.12%

s =↓ P (ωred| ↓) = 94.01± 0.30% P (ωblue| ↓) = 6.00± 0.83%

Supplementary Table 3: Conditional probability values P (f |s) at 9 T.

In the rotated basis the application of a π/2 pulse at time trot will transform |↓⟩ ↔

1/
√
2(|↓⟩ + i |↑⟩) and |↑⟩ ↔ 1/

√
2(|↓⟩ − i |↑⟩). Equation 1 of the main text can now be

written as:

1

2

[
(|ωred, ↓⟩ e−iωz(trot−tphot) − i |ωblue, ↑⟩) + i |↑⟩ (|ωred, ↓⟩ e−iωz(trot−tphot) − i |ωblue, ↑⟩)

]
(12)

Detection of a photon during the readout pulse will project the electron into |↓⟩. Ad-

ditionally the small timing jitter of our SSPD’s 40 ps compared to 1/ωz allows us to de-

termine the photon generation time tphot well enough to resolve the time dependence of

Equation 12. Therefore the probability of a photon detection is expected to oscillate with

P ∼ [0.5 + 0.5 sin (ωz(trot − tphot))].

The conditional probabilities in the rotated basis are given by Pa(+| →) = 1
2
(1 +

a→ sin (a)) and Pa(+| ←) = 1
2
(1− a← sin (a)) where a = ωz(trot − tphot). To obtain Pa(+|s)

and Pa(−|s), the coincidences in the rotated basis are normalised using the average number

of coincidence events by fitting an exponentially decaying pulse. Then the density matrix

elements can be computed using,

ρ+→,+→ − ρ−→,−→ = P (→)

(
Pa=π/2(+| →)− Pa=3π/2(+| →)

)
=

1

2
a→ (13)

ρ−←,−← − ρ+←,+← = P (←)

(
Pa=π/2 = (−| ←)− Pa=3π/2(−| ←)

)
=

1

2
a← (14)

Values a→ and a← correspond to the visibility of the oscillations shown in Figure 5 of

the main text. To obtain these values we fit the normalised experimental data with bs
2
(1±

as sin (ωz,sst+ ϕ). We find a→ = 0.78(0.06) and a← = 0.74±0.07 for 5 T and a→ = 0.44±0.09

and a← = 0.74± 0.12 for 9 T. The overall measured entanglement fidelity is then,
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F ≥ (F1 + F2)/2 (15)
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