

Supplementary figure 1. Predicted interaction structures between MoHTR1 and importin αs . (A) Predicted interaction models of MoHTR1 NLS (MoHTR1_NLS) and importin αs of rice and rice blast fungus. (B) Predicted interaction models of signal peptide and NLS removed MoHTR1 (MoHTR1^{$\Delta SP,NLS$}) and importin αs of rice and rice blast fungus. Magenta color structures indicate MoHTR1_NLS and MoHTR1^{$\Delta SP,NLS$} and cyan color structures indicate importin αs .

Supplementary figure 2. Cytoplasm-to-nuclear translocation role of native NLS of MoHTR1 in fungal cells. Subcellular localization of eGFP with native MoHTR1 NLS (HTR1 NLS) in the fungal conidia cells. SV NLS, well known cytoplasm to nuclear translocation associated NLS, was used to positive control. Nuclei was stained using Hoechst 33342. Scale bar; 20 µm. Representative data are shown from independently experiments and source data are provided as a Source Data file.

Supplementary figure 3. Rice importin α (Os01g14950.1, OsImp α 1a) gene structure and insertion site of T-DNA. Green boxes indicate exon regions and black line indicates intron regions of OsImp α 1a.

Supplementary figure 4. Cytoplasm-to-nuclear translocation role of native NLS of MoHTR1. (A) Subcellular localization of eGFP with Simian virus NLS (SV NLS), native MoHTR1 NLS (HTR1 NLS), and MoHTR1 in the rice protoplasts. SV NLS, well known cytoplasm to nuclear translocation associated NLS, was used to positive control. ABF1:mRFP was used for rice nuclei marker. Scale bar; 10 µm. (B) Subcellular localization proportion of SV NLS, MoHTR1 NLS, and MoHTR1 in the rice protoplasts. Mean \pm SD, n = 3 independently transfected protoplasts, significance was determined by an unpaired two-tailed Student's t-test ((*p < 0.05 and ***p < 0.001). Representative data are shown from independently experiments and source data are provided as a Source Data file.

Supplementary figure 5. The nuclear localization proportion of the two cytoplasmic effectors by tagging MoHTR1 NLS and key sequence of MoHTR1 NLS. Intracellular localization of Avr-Pita and PWL2, two cytoplasmic effectors of M. oryzae, in the rice protoplast. Each cytoplasmic effectors were fused with MoHTR1 NLS (PGRSKKE) and key sequence of MoHTR1 NLS (RSKK), respectively and cloned into eGFP expressing plasmid under CaMV 35S promoter. The nuclear localization proportion of these cytoplasmic effectors were observed under fluorescence microscope. Mean \pm SD, n = 3 independently transfected protoplasts, significance was determined by an unpaired two-tailed Student's t-test (*p < 0.05, **p < 0.01, and ***p < 0.001). Representative data are shown from independently experiments and source data are provided as a Source Data file.

Supplementary figure 6. Predicted NLS in the three nuclear effector candidates. Black bar indicates location of predicted NLSs in each three nuclear effector candidates.

Supplementary figure 7. Localization of RxKK sequences containing rice proteins in the rice protoplast. Subcellular localization of eGFP with RxKK sequences containing rice proteins in the rice protoplasts. ABF1:mRFP was used for rice nuclei marker. Scale bar; 10 μ m. Representative data are shown from independently experiments and source data are provided as a Source Data file.

Supplementary figure 8. BIC localization of SUMOylation defected MoHTR1. The BIC localization proportion of SUMOylation site point mutants of MoHTR1 in the rice sheath cells. Significance was determined by *t*-test (***p < 0.001). Mean ± SD, n = 3 independently infected sheath cells, significance was determined by an unpaired two-tailed Student's t-test (*p < 0.05, **p < 0.01, and ***p < 0.001). Representative data are shown from independently experiments and source data are provided as a Source Data file.

Supplementary figure 9. in vivo interaction between SUMOylation site-mutated variants and two rice importin αs. BiFC assay in the rice protoplasts. Three SUMOylation site-mutated variants (SKKE_K-R, VKLD_K-R, and Double_K-R) were interacted with OsImpα1a and OsImpα1b. ABF1:mRFP was used for rice nuclei marker. Scale bar; 10 µm. Representative data are shown from independently experiments and source data are provided as a Source Data file.

Protein A	Protein B	PAE ^a	pLDDT ^b	pTM ^c	ipTM ^d
		average	average		
MoHTR1_NLS	MoImpa	24.07	80.03	0.768	0.596
	OsImpa	26.51	78.40	0.744	0.507
	OsImpαla	25.01	84.24	0.818	0.486
	OsImpalb	25.03	82.07	0.793	0.491
MoHTR1 ^{anls}	MoImpa	29.86	65.93	0.637	0.231
	OsImpα	30.10	65.04	0.620	0.218
	OsImpαla	29.86	68.68	0.657	0.285
	OsImpa1b	29.96	68.06	0.643	0.230

Supplement Table 1. Summ	ary of AlphaFold analysis.
--------------------------	----------------------------

^a PAE (predicted aligned error) is the expected positional error. Scaled from 0.75 to 31.75, low score indicating low predicted error.

^b pLDDT (predicted local distance difference test) is a per-residue measure of local confidence. Scaled from 0 to 100, high score indicating accurate prediction.

^c pTM (predicted template modelling) means well predicated the overall structure.

^d ipTM (interface predicted template modelling) means the accuracy of the predicted positions of the protein-protein complex.

Supplement Table 2. Primer sequence used in this study.

Name	Sequence 5'→3'					
Primers for site-directed mutage	unesis					
MoHTR1 NIS mut K/R-A						
MoHTR1 NIS mut K-R	AAGCCCGGTAGGTCAAGGAGGGAGGAGATTGCCCAGAGG					
MoHTR1 SUMO VKLD mut K-R	TACGGAGCCGCGGTGAGACTCGATAAACCCACG					
MoHTR1 SUMO SKKE mut K-R	AAGCCCGGTAGGTCAAGGAAGGAGATTGCCCAG					
05518 NLS mut K,R-A	GCCGAGGCGCAGGCCGCGCGCCTTTCCAGTGT					
13742_NLS_mut_K,R-A	GCAGGTCCGTCGGCTCCCGCAGCGTCGTCATCAGGA					
14093_NLS_mut_K,R-A	GATTCTCGGCGGGCGACAGCGGCGAAGAGCAGGGAG					
Primers for generation of MoHTR1 NLS deletion mutant						
HTR1_NLS_del_5'flnk_F	CACCATGGCCCCCATGCCTTCCGG					
HTR1_NLS_del_5'flnk_R	CTTCACATGCCCCTGTTCCTG					
HTR1_NLS_del_3'flnk_F	CAGGAACAGGGGCATGTGAAGATTGCCCAGAGGATCAGGAAC					
HTR1_NLS_del_3'flnk_R	TTAGAGCTGGACCGGGTCGCCTTG					
Primers for Luciferase assay						
MYB4pro HindIII F	AAGCTTAAATTTATTTGGTATATTATATAGT					
MYB4pro BamHI R	GGATCCAAGGTTGGAACGGGGA					
HIR1_R Drimoro for local chaomistion of						
Primers for local observation of						
PVVL2_promoter_F_allb						
FVVLZ_UKF_K_YGKSKKE_allD						
DW12 OPE P SVNIS atth						
FVVLZ_OKF_K_SVINLS_allb	CG					
Pita promoter E atth						
Pita ORF R atth						
Pita_ORF_R_PGRSKKE_ attb	TG					
	AGAAAGCTGGGTAGACCTTCCTCTTCTTCTGGGACAATATTTATAACGTGCACAT					
Pita_ORF_R_SVNLS_ attb	TG					
PWL2 CDS F cacc	CACCATGGGTGGCGGGTGGACTAACAAAC					
PWL2 CDS F PGRSKKE cacc	CACCATGCCCGGTAGGTCAAAGAAGGAGGGTGGCGGGTGGACTAACAAAC					
PWL2 CDS F SV cacc	CACCATGCCCAAGAAGAAGAGGAAGGTCGGTGGCGGGTGGACTAACAAAC					
PWL2 CDS R	CATAATATTGCAGCCCTCTTCTCG					
Pita CDS F cacc	CACCATGTTCACCAACATTGGCACCTTTTC					
Pita CDS F PGRSKKE cacc	CACCATGCCCGGTAGGTCAAAGAAGGAGTTCACCAACATTGGCACCTTTTC					
Pita CDS F SV cacc	CACCATGCCCAAGAAGAAGAGGAAGGTCTTCACCAACATTGGCACCTTTTC					
Pita ORF R	ACAATATTTATAACGTGCACATTG					
MoHTR1 NLS_F_CACC	CACCATGCCCGGTAGGTCAAAGAAGGAG					
MoHTR1 NLS_R	CTCCTTCTTTGACCTACCGGGCAT					
SVNLS_F_CACC	CACCATGCCCAAGAAGAAGAGGAAGGTC					
SVNLS_R	GACCTTCCTCTTCTTGGGCAT					
Primers for observation of nucle	ear effector candidates					
MGG_05518_qRT_F	GCTTGGAAAGCGGAATTTGCAG					
MGG_05518_qRT_R	CTCCGTGGAATGCTTTGACATG					
MGG_13742_qRT_F	GAAGGAGTCCGACCACGTTAATG					
MGG_13742_qRT_R	GAAGGTGCCGTAGGTGCCTTAG					
MGG_14093_qRT_F	CGTACGGTCAAGAGCGAGTAC					
MGG 14093 gRT R	CGAGAATCGCCAAAGCCCTTA C					
MGG 14093 CACC F	CACCATGGCCCCTGTGTCGGAATCTGT					
MGG 14093 R	GTTCCAGACTTCATGCTCTGTG					
MGG_05518_CACC_F						
MGG_05518_R	GCTATCGAATCTACGTTCATC					
MGG_13742_CACC_F						
MGG_13/42_K						
Primers for observation of RXKr	Containing rice proteins					
RXRK_03g12550_CD5_CACC_F						
RXRR_USU12000_CDS_R						
RXRR_U09U93UU_CDS_CAUC_F						
NANN_UOYUYJUU_UUJ_K RYKK 03454070 CDS CACC E						
RVKK 0345/070 CDS_CAUC_F						
NANN_UUUU4970_UUUUAK						
RVKK 05a10070 CDS_CAUC_F						
RYKK 04053700 CDS_K						
RyKK 04053700 CDS_CACC_F	TAGACTITICTICACAGO					
Primers for gRT-PCR plant defense related genes						

	0007004044407777044000
Acun_F	GCGTGGACAAAGTTTTCAACCG
Actin_R	TCTGGTACCCTCATCAGGCATC
PR1a_RT_F	GGCACGAGTCGATCTCCA
PR1a RT R	ACCAGCAAGCAGGAT
PR1b_RT_F	GGCAACTTCGTCGGACAGA
PR16 RT R	
PR3_RI_F	GCGTTCTGGTTCTGGATGAC
PR3_RT_R	CGCCGTTGATGATGTTGGTC
PR4_RT_F	TGGGACCTGAACAAAGTGAGC
PR4 RT R	TGGATACACTTGCCACGAG
PR10a RT F	ACACTCGACGGAGACGAAGC
	CCCTGCCAATCTGCTGAACTA
PAL_RT_R	GCCGCTATGCAACGAAGAAT
NPR1 RT F	CACGCCTAAGCCTCGGATTA
NPR1 RT R	TCAGTGAGCAGCATCCTGACTAG
LOX1 BT F	CGATGGCCGGAACAAGGATA
ACS1_RT_F	TCGGCCAAGACCCTCGACG
ACS1_RT_R	CGAAAGGAATCTGCTACTGCTGC
EBP89 RT F	TGACGATCTTGCTGAACTGAA
FBP89 RT R	CAATCCCACAAACTTTACACA
Drimors for aPT DCD of MoUTE	
SRZ1_qRT_F	CTTTGATGGTGGGGGACATGTC
SRZ1_qRT_R	GTGCTCATTGCATCCAGACC
OsABIL2 gRT F	CCTGAGGTCACAGTTGTCG
	CGCATTCTTCTTGTGCCATAG
	GIATACIACIGCCACICGGIG
OsbZIP39_qR1_F	CAATGAAGCGATTCCACTCAC
OsbZIP39_qRT_R	GATCGGCTAGCACCGAGACAAC
OsCCT11 gRT F	CAGCAGCCATCCATTGAGCGAG
OsCCT11_gRT_R	GAGCAGTACTAGGTCCTCTTTG
OsHKT2 dRT F	GIGCAGAACTIGGCATTICAC
OsJAZ13_qR1_F	GCAGATGACCATCTTCTAC
OsJAZ13_qRT_R	CTTCCTCTTCTCCATGAAC
OsLH2 qRT F	GGATCTTTCACCACCTGGTC
	GAAATCGAGCCATGATCTTG
Oeleu1 gRT E	CCAACCAAATGCACCAACTAC
	CITICETICATAGICITICACG
CRK10_qRT_F	CATCGAGTTGATCGATCCATC
CRK10_qRT_R	CCAGTACTACTAAGCATGGC
OsAOS2 aRT F	GTTACATGGGAGCACTGGACTAG
OsAOS2 gRT R	CTGACATCAATGGCCTATCAG
	CUTTICIAGCIGGCAGATGG
Myb4_qRT_F	TCTGAATTCTGTGCTACGCAG
Myb4_qRT_R	TTCTTGATCTCGTTGTCCGTC
OsWRKY53 aRT F	GTGATCACCACCTACGAGG
OsWRKY53 dRT R	GAGCATCTCGAGGGTGTAG
Pi21 dRT F	
OsiSAP7_qRT_F	GAAGAAGGTGGGGCTGAC
OsiSAP7_qRT_R	CGCTCTTGTAGTCGAAGC
OsRacB gRT F	GTGCTGTTCCTATCACCACTG
OsRacB_dRT_R	GCTGCAGCACCACCTTATTG
Primore for voset two bybrid as	
MOHIRI_CDS_F_CACC	
MoHTR1_CDS_R	TCAGAGCTGGACCGGGTCGCCTT
MGG_15072_CDS_F_CACC	CACC ATG GCCGAGCGCTACATCCCCGA
MGG 15072 CDS R	TTACATGTCCATCGACTCGCCAC
Os01g14950 CDS F CACC	CACCATGTCGCTGCGCCCGAGCGA
Oc01a1/050 CDS P	TTATTTGAATTGAGCAGCACCAC
0-04-04000 0D0 F 0400	
USUIG24060_CDS_F_CACC	
Os01g24060_CDS_R	CTACGGTGCATTTCCATCCAAATCG
Os05g06350 CDS F CACC	CACCATGTCGCTGCGGCCGAGCGA
Os05q06350 CDS R	TCAGCCAAAGTTGAATCCACC
Primers for protein purification	'n
HIR1_HindIII_R	AAGCTTTTAGAGCTGGACCGGGTCGCCT

Supplement Table 3. Summary of RNA sequencing quality and read counts for 9 libraries.

	Raw reads (bp)	Clean reads (bp)	Raw reads	Clean reads	Mapped reads
Wild type_rep1	10,718,392,532	9,409,940,107	70,982,732	62,471,990	53,461,781
Wild type_rep2	9,764,181,554	9,140,221,219	64,663,454	60,655,976	52,839,261
Wild type_rep3	10,573,746,612	9,082,276,147	70,024,812	60,338,330	49,384,131
∆ <i>Mohtr1</i> _rep1	10,222,059,760	9,172,390,147	67,695,760	60,915,964	51,154,663
∆ <i>Mohtr1</i> _rep2	10,531,879,446	9,227,505,722	69,747,546	61,292,176	51,107,624
∆ <i>Mohtr1</i> _rep3	10,798,865,868	9,574,995,126	71,515,668	63,563,966	53,839,948
Δ <i>Mohtr1</i> ::MoHTR1 ^{ΔNLS} _rep1	8,860,998,006	7,795,955,877	58,682,106	51,746,322	44,792,616
Δ <i>Mohtr1</i> ::MoHTR1 ^{ΔNLS} _rep2	10,423,620,600	8,984,551,955	69,030,600	59,793,262	46,083,871
Δ <i>Mohtr1</i> ::MoHTR1 ^{ΔNLS} _rep3	10,668,830,406	9,207,919,792	70,654,506	61,163,400	50,945,397

Supplementary References

- 1 Singh, S. K. *et al.* The nuclear effector ArPEC25 from the necrotrophic fungus *Ascochyta rabiei* targets the chickpea transcription factor CaβLIM1a and negatively modulates lignin biosynthesis for host susceptibility. *Plant Cell* **35**, 1134-1159 (2023).
- 2 Vargas, W. A. *et al*. A fungal effector with host nuclear localization and DNA-binding properties is required for maize anthracnose development. *MPMI*. **29**, 83-95 (2016).
- 3 Xu, Z., Xiong, D., Han, Z. & Tian, C. A putative effector CcSp84 of *Cytospora chrysosperma* localizes to the plant nucleus to trigger plant immunity. *Int. J. Mol. Sci.* **23**, 1614 (2022).
- 4 Li, T. *et al*. Secretome profiling reveals virulence-associated proteins of *Fusarium proliferatum* during interaction with banana fruit. *Biomolecules* **9**, 246 (2019).
- 5 Kloppholz, S., Kuhn, H., & Requena, N. A secreted fungal effector of *Glomus intraradices* promotes symbiotic biotrophy. *Curr. Biol.* **21**, 1204-1209 (2011).
- 6 Plett, J. M. *et al*. A secreted effector protein of *Laccaria bicolor* is required for symbiosis development. *Curr. Biol.* **21**, 1197-1203 (2011).
- 7 Plett, J. M. *et al.* Effector MiSSP7 of the mutualistic fungus *Laccaria bicolor* stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. *PNAS.* **111**, 8299-8304 (2014).
- 8 Kim, S. *et al.* Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. *Nat. Commun.* **11**, 5845 (2020).
- 9 Ahmed, M. B. *et al.* A rust fungal effector binds plant DNA and modulates transcription. *Sci. Rep.* **8**, 14718 (2018).
- 10 Zhang, X. *et al*. Crystal structure of the *Melampsora lini* effector AvrP reveals insights into a possible nuclear function and recognition by the flax disease resistance protein P. *Mol. Plant Pathol.* **19**, 1196-1209 (2018).
- 11 Tang, C. *et al*. A rust fungus effector directly binds plant pre-mRNA splice site to reprogram alternative splicing and suppress host immunity. *Plant Biotechnol. J.* **20**, 1167-1181 (2022).
- 12 Petre, B. *et al*. Heterologous expression screens in *Nicotiana benthamiana* identify a candidate effector of the wheat yellow rust pathogen that associates with processing bodies. *PloS One* **11**, e0149035 (2016).
- 13 Qin, J. *et al*. The plant-specific transcription factors CBP60g and SARD1 are targeted by a *Verticillium* secretory protein VdSCP41 to modulate immunity. *eLife* **7**, e34902 (2018).
- 14 Zhang, Y. *et al. Verticillium dahliae* secretory effector PevD1 induces leaf senescence by promoting ORE1-mediated ethylene biosynthesis. *Mol. Plant* **14**, 1901-1917 (2021).
- 15 Zhang, L. *et al.* The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections. *New Phytol.* **215**, 368-381 (2017).
- 16 Yin, C. M. *et al*. A secreted ribonuclease effector from *Verticillium dahliae* localizes in the plant nucleus to modulate host immunity. *Mol. Plant Pathol.* **23**, 1122-1140 (2022).
- 17 Liu, L. *et al.* Verticillium dahliae secreted protein Vd424Y is required for full virulence, targets the nucleus of plant cells, and induces cell death. *Mol. Plant Pathol.* **22**, 1109-1120 (2021).
- 18 Rafiei, V., Vélëz, H., Piombo, E., Dubey, M., & Tzelepis, G. *Verticillium longisporum* phospholipase VIsPLA2 is a virulence factor that targets host nuclei and modulates plant immunity. *Mol. Plant Pathol.* **24**, 1078-1092 (2023).
- 19 Hoang, C. V., Bhaskar, C. K., & Ma, L. S. A novel core effector Vp1 promotes fungal colonization and virulence of *Ustilago maydis*. *J. Fungi* **7**, 589 (2021).