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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

 

The authors assessed the relationship between antibody levels post-vaccination and the 
risk and protection against severe-critical COVID-19 (correlates of protection, CoP). The 
study utilises data from the ENSEMBLE trial, focusing on binding and neutralizing antibody 
markers as correlates of risk (CoR) and CoP against severe-critical COVID-19. To my 
knowledge, there was no previous publication on CoP against severe outcomes using 
clinical trial data, and therefore this study provides a valuable assessment on severe-
critical COVID-19 CoP. 

 

This team has published a few studies on COVID vaccine CoP on different vaccine 
platforms. The statistical methodologies in this paper, following previous studies by the 
same team, are comprehensive and robust, incorporating a range of methods such as CoR, 
CoP on VE modification and mediation analysis. These analyses provide consistent 
findings. The paper's conclusion, suggesting not too much antibody levels may suffice for 
protection against severe COVID-19 outcomes and highlighting the potential role of other 
immune markers such as T cells, aligns with findings from other studies using varied 
designs. However, a more extensive discussion comparing these results with existing 
literature would provide a richer context. Additionally, incorporating discussion on 
biological mechanisms to support the findings would benefit wider readers, such as 
researchers in immunology. 

 

Minor comments: 

1. Line 108. The authors mentioned Reference as a variant type. I searched in supp and 
found it refers to the index strain (GenBank accession number: MN908947.3) harboring the 
D614G point mutation. Would be helpful this can be added to the main for clearer 
understanding. 

2. Lines 133-139 – Titer Selection: Clarification is needed on how specific nAR-ID50 titer 
values (e.g., 5.3, 12.3, 5.7 IU/ml) were determined for risk estimation. Are these based on 
antibody level tertiles or another criteria? 



3. Considering the multiple statistical methods applied, sharing the code (possibly on 
GitHub) would enhance understanding and transparency and allow for replication and 
further analysis on vaccine CoP. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

In this paper, Carpp et al analyze the level of seroneutralization at week 4 in the Ensemble 
vaccine trial (Ad26.COV2.S). They discuss the value of neutralization as a CoP against both 
severe and moderate disease. The study adds to the initial evaluation of the same data by 
Fong et al (ref 5) with data analyzed up to 6 months after injection (as compared to 3 
months in the initial study). However using long term data also would probably require 
different methodologies, taking into account the time dependent effects: waning immunity 
to adjust the level of antibodies at the time of exposure, change in circulating strains that 
may affect neutralization, not to mention other CoP (see, among many other studies 
Seekircher et al, Lancet Microbe 2023 ; Hertz et al, Nature Comm 2023). The finding that 
lower nAbs are sufficient to protect against severe disease than against symptomatic covid 
(the main endpoint used in studies) is also not new: see discussion in Cromer et al, Lancet 
Microbe 2022; or simply the fact that first generation vaccine continued to be effective 
against severe disease while they barely neutralize Omicron variants. 

So overall, the finding and the methodology that neutralizing antibody are associated with 
symptomatic or even severe disease is not new, and the specific finding of this study are 
relatively outdated (vaccine no longer used, entirely pre-omicron, in a fully naïve 
population), making it difficult to be used for operational purposes. 

 

 



Response to reviewer comments:  

Reviewer #1 (Remarks to the Author): 

 

The authors assessed the relationship between antibody levels post-vaccination and the risk 

and protection against severe-critical COVID-19 (correlates of protection, CoP). The study 

utilises data from the ENSEMBLE trial, focusing on binding and neutralizing antibody markers 

as correlates of risk (CoR) and CoP against severe-critical COVID-19. To my knowledge, there 

was no previous publication on CoP against severe outcomes using clinical trial data, and 

therefore this study provides a valuable assessment on severe-critical COVID-19 CoP.  

Response: Thank you for the positive comments.  

 

This team has published a few studies on COVID vaccine CoP on different vaccine platforms. 

The statistical methodologies in this paper, following previous studies by the same team, are 

comprehensive and robust, incorporating a range of methods such as CoR, CoP on VE 

modification and mediation analysis. These analyses provide consistent findings. The paper's 

conclusion, suggesting not too much antibody levels may suffice for protection against severe 

COVID-19 outcomes and highlighting the potential role of other immune markers such as T 

cells, aligns with findings from other studies using varied designs. However, a more extensive 

discussion comparing these results with existing literature would provide a richer context.  

Response: We have expanded our Discussion to include a comparison of our work with 

the present literature on correlates of severe COVID-19:  

“Our findings based on individual-level correlates of protection analysis are consistent 
with those of previous studies using complementary approaches to investigate 
correlates of protection against severe COVID-19 disease outcomes. Khoury et al. took a 
population-level modeling approach including data from seven phase 3 COVID-19 
vaccine efficacy trials and one convalescent cohort and reported that a given nAb level 
(expressed as fold of convalescent, due to assay differences across the studies) predicts 
higher VE against severe vs. symptomatic COVID-19, with this difference greatest at 
lowest nAb levels (Fig. 3a in ref.1). For example, the nAb level associated with 50% VE 
against severe COVID-19 was approximately six-fold lower than that associated with 50% 
VE against symptomatic COVID-19. Subsequently, Cromer et al. applied the model 
developed by Khoury et al. to show that the prediction for a given nAb level of higher VE 
against severe vs. symptomatic COVID-19 was most apparent for Ancestral COVID-19, 
but also held for Alpha, Delta, and Beta COVID-19 (Fig. 3b vs. 3a in ref.2). Cromer et al. 
also validated the model of Khoury et al. with vaccine efficacy/effectiveness estimates 
from one phase 3 randomized, controlled COVID-19 vaccine trial, seven test-negative 
design studies, and six retrospective cohort studies, showing significant correlation 
between the predicted vs. reported vaccine efficacy/effectiveness estimates against 
severe (Fig. 3B) and against symptomatic (Fig. 3A) COVID-19.3  A limitation of the model 
used in refs.1-3 is its assumption that nAbs alone are responsible for protection against 
severe disease, and thus potential contributions of T-cell responses or other non-
neutralizing functions are not considered.” (pp. 11-12)  

Additionally, incorporating discussion on biological mechanisms to support the findings would 

benefit wider readers, such as researchers in immunology.  



 

Response: We have added the following text to the Discussion: 

“In support of this hypothesis, CD8+ T-cell count was shown to associate with survival in 
patients with both COVID-19 and hematologic cancer (and hence impaired humoral 
immunity).4 Other studies have also provided evidence that T cells may play a role in 
preventing severe COVID-19: both the magnitude and frequency of Spike-specific CD4+ 
T-cell responses measured in the acute phase of COVID-19 were shown to correlate 
inversely with disease severity, as did CD4+ T-cell response polyantigenicity.5 Moreover, 
SARS-CoV-2-specific CD4+ T-cell response magnitude and SARS-CoV-2-specific CD8+ T-
cell response magnitude were each inversely associated with peak disease severity in a 
cohort of consisting of patients with acute COVID-19 and convalescent donors.6 
Mechanistic insight into the beneficial role of CD8+ T cells against severe disease was 
provided by Peng et al., who reported that NP105–113-B*07:02-specific CD8+ T cell 
response magnitude associated inversely with disease severity and that NP105–113-
B*07:02-specific CD8+ T cells showed a highly diverse TCR repertoire, high functional 
avidity, and antiviral activity as measured by suppression of SARS-CoV-2 replication.7   

It is also possible that non-neutralizing Fc effector functions contribute to protection 
against severe COVID-19.8 Although relatively little data are currently available to support 
this hypothesis, passively administered non-neutralizing antibodies were shown to 
confer protection against severe disease in a mouse model of SARS-CoV-2 infection, and 
this protection was linked to their Fc effector functions.9” (pp. 10-11)  

 

Minor comments: 

1. Line 108. The authors mentioned Reference as a variant type. I searched in supp and found it 

refers to the index strain (GenBank accession number: MN908947.3) harboring the D614G 

point mutation. Would be helpful this can be added to the main for clearer understanding.  

 

Response: We have added this in the paragraph starting “The SARS-CoV-2 variants 

causing the severe-critical cases varied over time…” (p. 5) 

 

2. Lines 133-139 – Titer Selection: Clarification is needed on how specific nAR-ID50 titer values 

(e.g., 5.3, 12.3, 5.7 IU/ml) were determined for risk estimation. Are these based on antibody 

level tertiles or another criteria? 

 

Response: Risk is not estimated only for subgroups of vaccine recipients defined by 

having marker levels at the quoted values in the text, but rather it was estimated across a 

range of subgroups of vaccine recipients, defined by having a given marker value, for all 

values ranging from negative response (for the binding antibody markers) or 

unquantifiable response (for the neutralizing antibody marker) out to the 90th percentile 

(for the nonparametrically estimated curve). The choice of the first two specific nAb-ID50 

titers at which estimated risk was quoted in the text (unquantifiable, 5.2 IU50/ml) are 

selected because undetectable is of distinct interest on its own (lowest possible titer 

value representing a ‘negative response’ subgroup and because 5.2 IU50/ml represents a 

value just above the LLOQ of 4.8975 AU/ml.  We did not have a solid rationale for the 



third selected value, so to make the choice more objective, in the revision we have 

selected the 90th percentile value, because that value had been pre-defined as the highest 

titer at which estimates would be calculated.  

We have made the following revisions (underlined) to the manuscript: 

“Cumulative incidence of severe-critical COVID-19 through 170 days post-D29 decreased 

across the analyzed ranges of vaccine recipient subgroups defined by D29 antibody 

levels at a specific value. For nAb-ID50, the cumulative incidence of severe-critical 

COVID-19 was estimated by a nonparametric method over values ranging from 

unquantifiable titer to the 90th percentile (30.2 IU50/ml).” (p. 6) 

We also note that the ranges of marker values over which risk is estimated is included in 

the captions of Supplementary Figs. 17-24. For the threshold correlate of risk figures 

(Supplementary Figs. 25-32), the rightmost point of the curve is determined by the 

number of cases satisfying the threshold condition, which has to be at least 5. 

We have also applied a similar philosophy when quoting point estimates of controlled 

vaccine efficacy (VE) at specific marker values, where VE point estimates at the same 

nAb-ID50 titers (unquantifiable, just-quantifiable of 5.2 IU50/ml, and 90th percentile 30.2 

IU50/ml) are now quoted for severe-critical and for moderate COVID-19 (bottom of p. 7). 

Likewise, for Spike IgG bAb, VE point estimates at the same Spike IgG concentrations 

(negative response, just-positive concentration of 11.1 BAU/ml, and 90th percentile 

concentration 125 BAU/ml) are now quoted for severe-critical and for moderate COVID-19 

(bottom of p. 7). 

Also, information on the ranges of marker values over which VE is estimated is included 

in the captions of Figure 4, Supplementary Figs. 33-48, 51-56, and 58.  

3. Considering the multiple statistical methods applied, sharing the code (possibly on GitHub) 

would enhance understanding and transparency and allow for replication and further analysis on 

vaccine CoP. 

 

Response: We fully agree, and have added the following Code Availability statement to 

the revised manuscript: 

“Immune correlates analyses were done reproducibly based on publicly available R 

scripts hosted on the GitHub collaborative programming platform 

(https://github.com/CoVPN/correlates_reporting2, https://github.com/Avi-

Kenny/VaxCurve, and https://github.com/yinghuang124/Exposure-Proximal).  The code 

used for the stochastic interventional vaccine efficacy analysis is available in the 

Supplementary Software file. Methodological components of the “VaxCurve” code are 

publicly available at https://CRAN.R-project.org/package=vaccine.” 

 

 

Reviewer #2 (Remarks to the Author): 

 

In this paper, Carpp et al analyze the level of seroneutralization at week 4 in the Ensemble 

vaccine trial (Ad26.COV2.S). They discuss the value of neutralization as a CoP against both 



severe and moderate disease. The study adds to the initial evaluation of the same data by Fong 

et al (ref 5) with data analyzed up to 6 months after injection (as compared to 3 months in the 

initial study). However using long term data also would probably require different 

methodologies, taking into account the time dependent effects: waning immunity to adjust the 

level of antibodies at the time of exposure, change in circulating strains that may affect 

neutralization, not to mention other CoP (see, among many other studies Seekircher et al, 

Lancet Microbe 2023 ; Hertz et al, Nature Comm 2023).  

Response: Thank you for raising the issue that the use of long-term follow up data may 

require different statistical methodologies for immune correlates assessment. To 

address this issue, we have added to the revision the results of an “exposure-proximal” 

immune correlates of protection analysis. In this exposure-proximal analysis, inferences 

were made for an antibody marker level that is hypothetically available from a serum 

sample on every single day of follow-up as a correlate of the probability of COVID-19 

occurrence over the next day.   

In the revision we now state (pp. 9-10): “Given that this analysis assesses immune 

correlates through ~7 months post-vaccination, whereas our previous correlates analysis 

of ENSEMBLE5 assessed through ~2.5 months post-vaccination, waning of antibody 

levels over time is important to consider. Using a measurement error statistical method, 

we performed an exposure-proximal correlates analysis for a hypothetical scenario 

where the antibody marker under study was repeatedly measured from serum samples 

collected on every day of follow-up, and the analysis assesses how the current value of 

this daily measured marker correlates with the hazard of COVID-19 (i.e., the probability of 

COVID-19 occurrence over the next day) (see Methods for details). From these current-

marker conditional hazard curves, we generated current-marker conditional VE curves 

(exposure-proximal VE) by dividing the conditional hazard curve by the hazard of COVID-

19 for the whole placebo arm.”  

Note that by “current” we refer to the true underlying antibody marker level not subject 

to technical measurement error, in a hypothetical scenario in which the value was 

available from serum samples collected every day over the follow-up period. Figure 5 

presents a side-by-side comparison of curves showing estimated exposure-proximal 

vaccine efficacy against severe-critical COVID-19 and against moderate COVID-19 by 

current nAb-ID50 level. Analogous panels for current Spike IgG are also shown in Figure 

5, with corresponding RBD IgG results provided in Supplementary Figs. 51 and 52.  

We state in the revision (p. 10): 

“Figure 5a shows that exposure-proximal VE against severe-critical COVID-19 rose as 

current nAb-ID50 titer increased across the range of analyzed values (unquantifiable titer 

up to the 97.5th percentile). Similar results were obtained for current Spike IgG 

concentration, albeit with a less steep increase and with wider 95% CIs, especially at the 

ends of the curve (Figure 5c). Similarly, exposure-proximal VE against moderate COVID-

19 increased with current nAb-ID50 titer (Figure 5b) as well as with current Spike IgG 

concentration (Figure 5d). Latin America-specific exposure-proximal VE curves against 

severe-critical COVID-19 are shown in Supplementary Fig. 54 and against moderate 

COVID-19 in Supplementary Fig. 55; these results, which were similar to those in the 

pooled analysis, are discussed in the Supplementary Text.” 



For completeness, curves showing estimated exposure-proximal vaccine efficacy 

against moderate to severe-critical COVID-19 by current levels of each of the three 

markers are shown in Supplementary Fig. 53. Geographic region-specific results were 

also assessed, where possible. Supplementary Figs. 54 and 55 show curves for 

estimated exposure-proximal vaccine efficacy against severe-critical COVID-19 or 

moderate COVID-19, respectively, by current marker level (all three markers) for the Latin 

America cohort; Supplementary Fig. 56 shows estimated exposure-proximal vaccine 

efficacy curves (all three markers) for the moderate to severe-critical COVID-19 endpoint, 

for each of the three geographic regions separately.  

Supplementary Text:  

“Supplementary Fig. 54 shows the results of assessing each current marker as an 

exposure-proximal correlate of severe-critical COVID-19 in the Latin America cohort.  

Estimated exposure-proximal VE against severe-critical COVID-19 rose as current nAb-

ID50 titer increased across the range of analyzed values (Supplementary Fig. 54C). 

Similar results were obtained for the two bAb markers (Supplementary Figs. 54A, B), 

except that the curves appeared less steep than the nAb-ID50 curve and had 

substantially wider 95% CIs at the left-end tail of each curve. Supplementary Fig. 55C 

shows that estimated VE against moderate COVID-19 also increased with current nAb-

ID50 titer, with similar results for the binding antibody markers in the severe-critical 

COVID-19 analysis (somewhat flatter bAb vs. nAb curves, with wider 95% CIs on the bAb 

curves) (Supplementary Fig. 55A, B).”    

 

The finding that lower nAbs are sufficient to protect against severe disease than against 

symptomatic covid (the main endpoint used in studies) is also not new: see discussion in 

Cromer et al, Lancet Microbe 2022; or simply the fact that first generation vaccine continued to 

be effective against severe disease while they barely neutralize Omicron variants. So overall, 

the finding and the methodology that neutralizing antibody are associated with symptomatic or 

even severe disease is not new, and the specific finding of this study are relatively outdated 

(vaccine no longer used, entirely pre-omicron, in a fully naïve population), making it difficult to 

be used for operational purposes. 

 

Response: We have expanded the Discussion to place our findings into the context of 

existing work on correlates of severe COVID-19.  

“Our findings based on individual-level correlates of protection analysis are consistent 
with those of previous studies using complementary approaches to investigate 
correlates of protection against severe COVID-19 disease outcomes. Khoury et al. took a 
population-level modeling approach including data from seven phase 3 COVID-19 
vaccine efficacy trials and one convalescent cohort and reported that a given nAb level 
(expressed as fold of convalescent, due to assay differences across the studies) predicts 
higher VE against severe vs. symptomatic COVID-19, with this difference greatest at 
lowest nAb levels (Fig. 3a in ref.1). For example, the nAb level associated with 50% VE 
against severe COVID-19 was approximately six-fold lower than that associated with 50% 
VE against symptomatic COVID-19. Subsequently, Cromer et al. applied the model 
developed by Khoury et al. to show that the prediction for a given nAb level of higher VE 
against severe vs. symptomatic COVID-19 was most apparent for Ancestral COVID-19, 
but also held for Alpha, Delta, and Beta COVID-19 (Fig. 3b vs. 3a in ref.2). Cromer et al. 



also validated the model of Khoury et al. with vaccine efficacy/effectiveness estimates 
from one phase 3 randomized, controlled COVID-19 vaccine trial, seven test-negative 
design studies, and six retrospective cohort studies, showing significant correlation 
between the predicted vs. reported vaccine efficacy/effectiveness estimates against 
severe (Fig. 3B) and against symptomatic (Fig. 3A) COVID-19.3  A limitation of the model 
used in refs.1-3 is its assumption that nAbs alone are responsible for protection against 
severe disease, and thus potential contributions of T-cell responses or other non-
neutralizing functions are not considered.” (pp. 11-12)  

We also now include a paragraph describing the strengths and limitations of this work, 

where we include many of the Reviewer’s points:  

“To our knowledge, this is the first analysis of individual-level data from a phase 3 

randomized, placebo-controlled efficacy trial (RCT) – considered “gold standard” data10 

due to the lack of biases and confounding that can be present in other types of studies – 

to examine whether post-vaccination antibody levels correlate with a severe COVID-19 

disease outcome, as well as whether they associate with vaccine protection against the 

same severe outcome. One strength of the study, given that all data are from the same 

phase 3 study, is that all severe-critical cases included in the analysis met the same 

definition for severe COVID-19 disease. Another strength of the study is the application 

of multiple distinct statistical frameworks11 to assess the D29 markers as CoPs of severe-

critical COVID-19 (two frameworks used) and against moderate to severe-critical COVID-

19 (three frameworks used), with the stochastic interventional vaccine efficacy (SVE) 

framework not previously applied to assess immune markers as CoPs in the ENSEMBLE 

trial. Moreover, this is the first analysis of the ENSEMBLE trial to assess current marker 

levels as correlates of instantaneous COVID-19 outcomes, including a severe outcome. 

Limitations of the present analysis include the fact that the follow-up period considered 

here was in the pre-Omicron era such that it is unknown whether the antibody 

measurements analyzed here have the same statistical relationship with VE against 

Omicron COVID-19, or whether antibody measurements against e.g. Omicron SARS-CoV-

2 would be better correlates of Omicron COVID-19. Another limitation is that the analysis 

was done in baseline SARS-CoV-2 seronegative participants, whereas the majority of the 

global population is now SARS-CoV-2 seropositive.12” (p. 12)  

Moreover, as to the comment that the methodology is not new, we have added two new 

supplementary figures (Supplementary Figs. 49, 50) showing results from a distinct 

statistical framework for assessing correlates of protection, stochastic interventional VE 

(SVE). As we recently summarized in our recent review [Gilbert et al. 2024 Vaccine, “Four 

statistical frameworks for assessing an immune correlate of protection (surrogate 

endpoint) from a randomized, controlled, vaccine efficacy trial”], this analysis assesses 

how overall VE would be expected to change under user-specified shifts d of the marker 

values of vaccine recipients from their observed values. This framework is distinct from 

the two other frameworks used in the manuscript (controlled VE and mediation of VE).  

Of the five phase 3 COVID-19 vaccine trials for which immune correlates of protection 

were assessed under the US Government’s COVID-19 Vaccine Correlates of Protection 

Program,13 the SVE method has so far only been applied to Moderna COVE, for which 

results have been reported.14,15 Application of the SVE method to the ENSEMBLE trial 



adds to the body of evidence13 supporting binding and neutralizing antibodies as 

correlates from the other methods16 using a different statistical lens.  

The results provided further support for D29 nAb-ID50 titer as a correlate of protection 

against moderate to severe-critical COVID-19, in both the geographic region-pooled 

analysis (Supplementary Fig. 49C) and in the Latin America analysis (Supplementary Fig. 

50). They also supported D29 RBD IgG binding antibody concentration as a correlate of 

protection against moderate to severe-critical COVID-19 in the pooled analysis 

(Supplementary Fig. 49B); evidence for D29 Spike IgG was weaker (Supplementary Fig. 

49A). We have added the following to the revision (pp. 9-10): 

“We also applied a third statistical framework for assessing CoPs, stochastic 
interventional VE (SVE),8 to assess the D29 markers as CoPs against moderate to severe-
critical COVID-19. In this framework, VE is estimated under hypothetical immune marker 
shifts applied to all individual vaccine recipients, relative to their observed immune 
marker levels. For D29 nAb-ID50, estimated VE generally increased with successive 
shifts in titer: At no D29 nAb-ID50 shift, estimated SVE was 47.7% (95% CI: 44.6%, 50.7%), 
and with 1.6-fold, 4-fold, and 10-fold shifts, estimated SVE was 57.3% (53.4%, 60.8%), 
54.4% (47.9%, 60.1%), and 62.9% (54.2%, 69.9%), respectively (Supplementary Fig. 49c). 
The p-value for testing the hypothesis that VE changes as a function of shift in D29 nAb-
ID50 titer (see Methods) was <0.001, providing further evidence in support of D29 nAb-
ID50 as a CoP against moderate to severe-critical COVID-19. A similar result was seen for 
D29 RBD IgG, with estimated SVE increasing to 49.7% (46.0%, 53.1%), 58.5% (51.5%, 
64.5%), and 69.7% (54.0%, 80.0%), respectively, at the same shifts of 1.6-fold, 4-fold, and 
10-fold in IgG concentration (p=0.007 for testing the hypothesis that VE changes as a 
function of shift in D29 RBD IgG concentration) (Supplementary Fig. 49b). For D29 Spike 
IgG, the increases in SVE were smaller with shifted IgG concentration and the p-value for 
testing the hypothesis that VE changes as a function of shift in D29 Spike IgG 
concentration was 0.12 (Supplementary Fig. 49a).”   

Supplementary Text (p. 17): 

“Latin America: Stochastic interventional vaccine efficacy (SVE) 

We applied the stochastic-interventional VE (SVE) framework2 to assess the D29 markers 

as CoPs against moderate to severe-critical COVID-19 in the Latin America cohort. For 

D29 nAb-ID50, estimated VE increased with shifts in titer:  At no D29 nAb-ID50 shift, 

estimated SVE was 38.7% (95% CI: 34.3%, 42.8%), and with 1.6-fold, 4-fold, and 10-fold 

shifts, estimated SVE increased to 43.8% (37.8%, 49.2%), 54.5% (41.2%, 64.8%), and 

59.4% (46.9%, 68.9%), respectively (Supplementary Fig. 50). The p-value for SVE 

changing with D29 nAb-ID50 was <0.001, providing further evidence in support of D29 

nAb-ID50 as a CoP against moderate to severe-critical COVID-19. SVE estimates for the 

binding antibody markers (Spike IgG, RBD IgG) were not stable and are not shown.” 
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REVIEWERS' COMMENTS 
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The current README file does not cover every code file, making it difficult to follow the 
code flow. More comprehensive explanations would be helpful for readers. 
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Availability statement to provide more information on which code was used to generate the 
various tables and figures in the manuscript, as well as added references to the methods papers 
that describe the statistical methodologies. We have also added a README file to the 
Supplementary Software 2 file, which contains the code for conducting the stochastic 
interventional vaccine efficacy analysis. The revised Code Availability statement is provided 
below:  
 
Code Availability  
 
Code for generating Figure 1 and Supplementary Figure 3 is provided in the Supplementary 
Software 1 file.  
 
Immune correlates analyses were done reproducibly based on publicly available R scripts.1 The 
https://github.com/CoVPN/correlates_reporting2 repository hosts multiple modular workflows for 
correlates of risk/protection analyses and automated reporting of analytic results. Analysis 
modules used in the present work, along with the figures/tables they were used to generate, 
include: cor_graphical (graphical descriptions of correlates of risk: Figure 2 and Supplementary 
Figures 4-7); cor_tabular (tabular descriptions of correlates of risk: Table 1 and Supplementary 
Tables 2-5); cor_coxph (Cox proportional hazards modeling of risk: Table 2, Table 3, Figure 3, 
Supplementary Tables 11-18, Supplementary Figures 9-16, Supplementary Figures 41-48, 
Supplementary Figure 58); immuno_graphical (graphical descriptions of immunogenicity data: 
Supplementary Figure 8); immuno_tabular (tabular descriptions of immunogenicity data: 
Supplementary Tables 8, 9); and cor_threshold (nonparametric marker-thresholded correlate of 
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Code and documentation for nonparametric and Cox-based inference for controlled risk and 
controlled vaccine efficacy curves (Figure 4, Supplementary Figures 17-24, Supplementary 
Figures 33-40) and for calculating mediation effects for our application with no variability in the 
post vaccination antibody markers across placebo recipients (Supplementary Tables 19-22) is 
provided in the vaccine R package (version 1.2.1, https://CRAN.R-

project.org/package=vaccine), with scripting code available at https://github.com/Avi-
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