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Supplementary Note 1. Resonant dipoles formalism

The interaction of far-field plane waves and resonant modes of periodic photonic structures

can be efficiently described using an illustrative model of resonant dipoles. Consider a plane

wave with electric field Einc(ω, r) propagating in a medium with background permittivity εb

that is incident on a structure defined by the permittivity distribution ε(ω, r) = εb+∆ε(ω, r).

The permittivity change ∆ε(ω, r) causes scattering of the incident waves, thus the full electric

field is given as a sum of the scattered field and the incident wave:

E(ω, r) = Esc(ω, r) + Einc(ω, r). (S1)

Using the resonant approximation,1,2 the scattered field is expressed as the sum of the reso-

nant fields Ei(r) with resonant amplitudes ai(ω) that rapidly change in the magnitude and

phase in the vicinity of corresponding complex resonant frequencies ωi and the background

term Ẽsc(ω, r) that smoothly varies as a function of frequency. When only one strong res-

onance determines the structure response, the background term and all distant resonances

can be neglected:

Esc(ω, r) =
∑
i

ai(ω)Ei(r) + Ẽsc(ω, r) ≈ α1(ω)E1(r). (S2)

The resonant amplitude α1(ω) is determined using the following formula:

α1(ω) = − ω

N1(ω − ω1)

∫
Vres

∆ε(ω, r)Einc(ω, r)E1(r)d
3r, (S3)

where N1 is the normalization constant of the resonant mode with complex frequency ω1.

The integral is taken over the volume Vres of the metasurface unit cell. A detailed discussion

of the resonant approximation and the resonant mode normalization can be found in Refs.3,4

Considering a normally incident plane wave Einc(ω, r) = E0 exp(ink0z) to be the excitation
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(k0 is the wavenumber in the free space, n is the refractive index of the embedding medium),

one can express the resonant amplitude as a product of the incident wave polarization vector

E0 and a dipole D that represents the whole resonant mode:

α1(ω) = − ω

(ω − ω1)
E0

∫
Vres

∆ε(ω, r) exp(ink0z)E1(r)

N1

d3r = − ω

(ω − ω1)
E0D. (S4)

In the main text, we use the ratio of the amplitudes of the same resonant mode excited by

normally incident RCP and LCP plane waves to measure the resonance chirality, thus the

normalization constant and frequency-dependent terms can be omitted. Moreover, since the

thickness of the discs is much smaller than the excitation wavelength, the evaluation of the

resonant dipoles can be significantly simplified:

D ≈
∫
Vdisc

E1(r)d
3r. (S5)
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Supplementary Note 2. Resonant properties of single-

layer metasurfaces of notched discs

In this section, we analyze the properties of a single-layer metasurface, which can be either

the top or bottom metasurface in the bi-layer metasurface described in the main text. The

unit cell of the single-layer metasurface is shown in Supplementary Fig. 1a, it consists of Si

discs (the refractive index of silicon is shown in Supplementary Fig. 1b) fully embedded in

SiO2. The structure parameters are: pitch p = 400 nm, disc radius R = 145 nm, thickness

h = 50 nm, depth d = 100 nm, and width w = 80 nm of rectangular notches. Foremost, we

consider a periodic array of cylindrical pillars arranged in a square lattice. The structure

has D4h symmetry, and all structural parameters are the same as in the main text. All non-

degenerate modes of this structure with frequencies lower than the first diffraction opening

frequency are BIC at Γ-point (normal light incidence).5 To make these modes radiative under

normal light incidence, a symmetry perturbation should be introduced. We cut rectangular

notches in the pillars at angle θ with respect to the y-axis so that the structure symmetry is

reduced to C1h (D1h when θ is a multiple of π/4) (Supplementary Fig. 1a). The four lowest

resonant modes for the single-layer metasurface with θ = 0 are shown in (Supplementary Fig.

1c). The reflection spectra under linearly polarized illumination near the first resonant mode

at 413 THz are shown in Supplementary Fig. 1d. This quasi-BIC mode arises from the BIC

mode that transforms like the A2g irreducible representation of the D4h symmetry group.6

The sharpest resonant feature is observed for x-polarized waves; for y-polarized waves, on the

contrary, no sign of resonant behavior is observed, as coupling this quasi-BIC resonance to a

plane wave is proportional to the x-component of the plane wave polarization. The complex

reflection amplitude r̂ in the vicinity of the resonance for waves with resonance-matching

polarization and the nonresonant background term r are shown in Supplementary Fig. 1e.

We also apply Eq. (S5) to evaluate the resonant dipoles for different notch angles and specify

the selection rules.5 As shown in Supplementary Fig. 1f, the resonant dipole components
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Supplementary Fig. 1: Polarization-selective coupling of the quasi-BIC mode of a single-layer
metasurface. a, The unit cell of a single-layer metasurface, top view. b, Real and imaginary
parts of the silicon refractive index. c, The electric field profile of the four lowest resonant
modes. d, Reflection spectra for normally incident plane waves with polarization E0 =
(cosϕ, sinϕ). e, Real (red solid line) and imaginary (blue solid line) parts of the amplitude
reflection coefficient for plane waves with resonance-matching polarization. Dashed lines
indicate real and imaginary parts of the background reflection coefficient r (illumination
with resonance-mismatching polarization). f, Components of the resonant dipole (Dx, Dy)
for the first resonant mode (413 THz) of the single-layer metasurface with different notch
angles θ.

approximately follow D(θ) ∝ (cos θ, sin θ). Thus, the resonance interaction with plane waves

is fully determined by the angle θ: the resonance stays completely decoupled from the waves

polarized along the line that connects the notch’s center and the disc’s center.
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Supplementary Note 3. Resonant mode coupling for

exact chirality conditions

To provide a rigorous dipole far-field coupling model for the resonant modes of the bi-layer

metasurface and derive the absolute intrinsic resonance chirality conditions, we consider two

arrays of interlayer-coupled dipoles D1 separated by distance H + h, where h is the single-

layer metasurface thickness. First, we approximate the electric fields of the resonant modes

in the top and bottom metasurfaces with dipoles:

Dself
1 = (cos θ,− sin θ) , Dself

2 = ± (cos θ, sin θ) (S6)

where ± sign stands for the anti-symmetric and symmetric with mode, respectively. Due to

the C2 symmetry, these dipoles have equal magnitudes and can be normalized to unit length.

Secondly, during the coupling process, the excited modes generate evanescent near fields

and far-field radiation that induce additional nonresonant electric fields in the counterpart

metasurfaces. These induced fields are approximated by the dipoles:

Dind
1 = (Cnf(H) + Cffe

−ink0H)Dself
2 , Dind

2 = (Cnf(H) + Cffe
−ink0H)Dself

1 , (S7)

where Cff is a constant of far-field coupling and Cnf(H) is a term of near-field coupling that

quickly decreases in magnitude with interlayer distance H. The resonant dipoles of the

coupled modes appear as:

Dn = Dself
n +Dind

n (S8)

Next, we show that the far-field coupling coefficient Cff is a background reflection coef-

ficient of a single-layer metasurface. Consider, for example, the bottom metasurface with

resonant field approximated by dipole Dself
2 . The dipole radiates a plane wave with electric

field polarization CradD
self
2 , where Crad is a proportionality coefficient between the effective
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dipole that represents electric fields in a single-layer metasurface and the radiation amplitude.

As the radiated wave propagates through the intermediate layer of thickness H and refractive

index n it gains a phase factor e−ink0H . Finally, the wave induces additional nonresonant

fields in the top metasurface that are approximated by a dipole Dind
1 = e−ink0HCpolCradD

self
2 ,

where Cpol is a nonresonant polarizability of a single-layer metasurface.

Now let us consider an isolated single-layer metasurface illuminated by a plane wave of

unitary amplitude and polarization Einc. The nonresonant fields excited in the metasurface

can be approximated by an effective dipole CpolEinc. In turn, this dipole radiates outgoing

plane waves CradCpolEinc on the top and bottom boundaries of the metasurface. At the same

time, the amplitudes of the nonresonantly scattered waves should be equal to r, thus:

Cff = CradCpol = r, (S9)

When an an isolated metasurface is nonresonantly excited by a plane wave, it behaves as a

weak symmetric scatterer of thickness h and the scattering amplitudes in the forward and

backward directions are both equal to r, so that the transmission coefficient is

t = e−ink0h + r. (S10)

We also note that the nonresonant background scattering process is characterized by neg-

ligible nonradiative losses; thus, the nonresonant background transmission and reflection

coefficients are shifted in phase by π/2:7

r = eiΦ|r|, t = eiΦi|t|, |r|2 + |t|2 = 1. (S11)

According to Eqs. (S7, S8), the resonant dipoles for the anti-symmetric and symmetric
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modes can be written as:

D1 = (Dx,−Dy) , D2 = ± (Dx, Dy) . (S12)

Under RCP and LCP waves with electric fields eR,L = (1,±i) /
√
2 and time-dependence eiωt

normally incident on the bi-layer metasurface from the top, a hybridized resonance is excited

with amplitudes:

αR,L ∝ eR,L ·D1 + eR,L ·D2e
−ink0(H+h). (S13)

Under the conditions

cot(nk0(H + h)/2) = ∓Dy/Dx, (S14)

the resonance amplitude αR,L of the anti-symmetric mode excited by either RCP or LCP

wave becomes zero. Such resonance becomes completely decoupled from one of the two

circular polarizations, which manifests an absolute intrinsic chirality. At the same time, the

symmetric mode exhibits absolute chirality when:

tan(nk0(H + h)/2) = ±Dy/Dx. (S15)

The conditions (S14) and (S15) can be resolved only when the ratio Dy/Dx is a real

number. Assuming that one can neglect the near-field coupling, from Eqs. (S7) and (S9),

we infer that absolute chirality can be reached when:

a) re−ink0H = |r|, b) re−ink0H = −|r| (S16)

which are conditions for the background Fabry-Pérot resonance of the stacked structure.

The top and bottom single-layer metasurfaces characterized by the nonresonant reflection

coefficient r and transmission coefficient t form a symmetric Fabry-Pérot resonator with a
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total background transmission coefficient:

tFP =
t2e−ink0H

1− r2e−2ink0H
, (S17)

which reaches unitary amplitude when relations (S16) hold. Substituting coupled dipoles for

the anti-symmetric mode in form Eq. (S8) into Eq. (S13), we write:

αR,L ∝ cos θ
(
1 + e−ik0n(H+h)

) (
1 + re−ik0nH

)
∓ i sin θ

(
1− e−ik0n(H+h)

) (
1− re−ik0nH

)
.

(S18)

Using Eqs. (S9)-(S11) one can show that for the bi-layer metasurface operating at Fabry-

Pérot unitary background transmission (S16), the twist angles θ that ensure chirality of

anti-symmetric mode are:

a) ± tan θ =

√
1− |r|2
1− |r|

and b) ± tan θ = −
√
1− |r|2
1 + |r|

(S19)

The ± sign corresponds to LCP-coupled and RCP-coupled modes, respectively. Note that

for the symmetric mode conditions a) and b) in equation (S19) are interchanged. Solutions of

the system of Eqs. (S16), (S19) define the parameters of bi-layer metasurfaces with absolute

intrinsic chirality. A comparison of the numerically calculated resonance chirality values and

those predicted using the analytical dipole coupling model is shown in Supplementary Fig.

2 of the main text.
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Supplementary Note 4. Temporal coupled-mode theory

for chiral bi-layer metasurfaces

In this section, we show the direct relation between the dipole coupling model, which we

use in the main text, and the more rigorous and widely used temporal-coupled mode theory

(TCMT)8 applied to the scattering matrix formalism. We clarify the role of near-field and

far-field coupling and justify the far-field approximation for the dipole model.

The scattering properties of a spatially periodic optical structure can be conveniently

expressed in terms of the scattering matrix.7 The scattering matrix determines how the

amplitudes Ain of the incoming waves are related to the amplitudes Aout of the outgoing

scattered waves:

Aout = SAin, Aout =

u1

d2

 , Ain =

d1

u2

 (S20)

Here, d and u represent the amplitudes of downward and upward propagating waves as

well as diffracted waves and evanescent Fourier harmonics9 having tangential wavevectors

k
(i,j)
|| = k

(0,0)
|| + G(i,j), with k

(0,0)
|| = (kx, ky) being the tangential wavevector in the main

diffraction channel and G(i,j) representing all possible vectors of the reciprocal lattice of the

structure. Subscripts 1, 2 in Eq. (S20) denote the amplitudes evaluated directly above and

below the outer boundaries of the structure.

According to the theory of optical resonances,4,10 in the vicinity of N resonances of a

structure the scattering matrix can be decomposed into a sum of the frequency-smooth

background scattering matrix S̃(ω) and N resonant terms:

Aout =

(
S̃(ω) +

N∑
n=1

|On⟩ ⟨In|
ω − ωn

)
Ain. (S21)

⟨In| and |On⟩ are called the resonant input and output vectors; they determine how a par-
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ticular resonance with frequency ωn couples to the incoming and outgoing waves.

The general theory of resonant mode coupling that includes both far-field and near-field

interactions is described in a series of works.10–13 Here, we show how this formalism can be

applied to derive the conditions of maximum chirality in the bi-layer metasurface structure.

First, we write down the resonant approximation for the scattering matrices of two stacked

metasurfaces (see Supplementary Fig. 2):

 |u1⟩

|da2⟩

=


 S̃a

ud S̃a
uu

S̃a
dd S̃a

du

+ N∑
n=1

∣∣Oa
u,n

〉
∣∣Oa

d,n

〉
 1

ω − ωa
n

(〈
Iad,n
∣∣ 〈Iau,n∣∣)


 |d1⟩

|ua
2⟩

 ,

∣∣ub
2

〉
|d3⟩

=


 S̃b

ud S̃b
uu

S̃b
dd S̃b

du

+ M∑
n=1

∣∣Ob
u,n

〉
∣∣Ob

d,n

〉
 1

ω − ωb
n

(〈
Ibd,n
∣∣ 〈Ibu,n∣∣)


∣∣db2〉

|u3⟩

 .

(S22)

Subscripts 1, 2, 3 indicate the top half-space, intermediate separation layer, and bottom half-

space, respectively. We also distinguish the wave amplitudes found infinitesimally below the

top metasurface |da2⟩ , |ua
2⟩ and infinitesimally above the bottom metasurface

∣∣db2〉 , ∣∣ub
2

〉
. Since

the resonant expansion in this form is written for all Fourier harmonics, both propagating

and evanescent, it fully describes the far-field and near-field optical response of a structure.

Nevertheless, in some cases, it is reasonable to consider the truncated S-matrices for the

far-field waves propagating in open diffraction channels. The resonant approximation for

the far-field scattering matrix is also known as TCMT.8

For the top and bottom single-layer metasurfaces with notch angles ∓θ, Eq. (S22) appear
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in the truncated far-field form as:



u1,x

u1,y

da2,x

da2,y


=





r 0 t 0

0 r 0 t

t 0 r 0

0 t 0 r


+



cos θ

− sin θ

cos θ

− sin θ


A2

ω − ω1



cos θ

− sin θ

cos θ

− sin θ



T




d1,x

d1,y

ua
2,x

ua
2,y


,



ub
2,x

ub
2,y

d3,x

d3,y


=





r 0 t 0

0 r 0 t

t 0 r 0

0 t 0 r


+



cos θ

sin θ

cos θ

sin θ


A2

ω − ω1



cos θ

sin θ

cos θ

sin θ



T




db2,x

db2,y

u3,x

u3,y


.

(S23)

Here, we use the resonant approximation with only one resonant mode at frequency ω1 in

each metasurface, moreover, only the main diffraction channel is open for waves to propagate.

The subscripts x and y denote the polarization of the waves, r and t are the background

reflection and transmission amplitudes of single-layer metasurfaces, and A is a normalization

coefficient.

The amplitudes of the waves that propagate between the two metasurfaces are related

through the propagation matrix P :

ua
2 = Pub

2, db2 = Pda2, (S24)

which, in the case of normally propagating plane waves, is just a phase factor:

P = e−ik0nH ≡ e−iϕ. (S25)

Here, k0 is the wavenumber in vacuum, and n is the refractive index of the embedding

medium.

The resonant energies Ωc of the stacked structure are calculated as the eigenvalues of the
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a b

Supplementary Fig. 2: Schematic illustration of the resonant mode coupling. a, General
approach that includes into consideration both propagating far-field Fourier harmonics and
evanescent near-field Fourier harmonics. b, TCMT for the system of coupled resonances.
Dark blue arrows represent the elements of the subsystems’ scattering matrices involved in
forming the resonant input vector of the hybridized resonance.

coupling Hamiltonian:10

H =

Ωa + Vaa Vab

Vba Ωb + Vbb

 =

Ωa+
〈
Iau

∣∣∣P S̃b
udDddP

∣∣∣Oa
d

〉 〈
Iau|DuuP|Ob

u

〉
〈
Ibd |DddP|Oa

d

〉
Ωb +

〈
Ibd

∣∣∣P S̃a
duDuuP

∣∣∣Ob
u

〉

(S26)

with matrices Ωa,b = diag{ωa,b
n } and

Ddd = (I− P S̃a
duP S̃b

ud)
−1, Duu = (I− P S̃b

udP S̃a
du)

−1 (S27)

representing the infinite number of internal nonresonant reflections in the Fabry-Pérot cavity

formed by the top and bottom subsystems. Due to the C2 symmetry of the stacked structure,

the eigenproblem in the vicinity of the resonant frequency ω1 can be simplified to the form

14



of a two-level Hamiltonian with only two independent components:

ω1 + Vaa Vab

Vab ω1 + Vaa


1 1

1 −1


︸ ︷︷ ︸

X

=

1 1

1 −1


ωA 0

0 ωS

 , (S28)

where ωA and ωS stand for the resonant frequencies of the anti-symmetric and symmetric

with respect to C2-symmetry modes in the bi-layer metasurface. Eq. (S28) shows that

the anti-symmetric mode corresponds to the eigenvector (1, 1)T (note that the modes have

opposite classifications with respect to the broken horizontal mirror symmetry). Thus, in

the anti-symmetric hybrid mode, the resonances of the top and bottom metasurfaces are

excited with the same amplitudes and phases.

Although one can try to evaluate this Hamiltonian in the near-field and intermediate

regimes considering only far fields according to Eq. (S23), this approach will be incorrect,

as the resonances are mostly coupled through near fields. To prove this statement, we

calculate the resonant frequencies of the coupled modes in the stacked metasurfaces without

notches (see Supplementary Fig. 3a). The dependence of the resonant frequencies on the

interlayer distance is very similar to that in the structure with notches; nevertheless, here we

observe coupling between two BIC modes into their symmetric and anti-symmetric hybrids,

which are also optically inactive at normal incidence due to high symmetry of the structure.

Henceforth, the near fields play a primary role in the formation of the resonant energies.

Interestingly, the near-field coupling of two BIC resonances that exhibit nonzero intrinsic

losses can lead to the formation of exceptional points.14

However, when calculating the far-field components of resonant input and output vectors,

the necessity to consider the near fields can be relaxed as the single-layer metasurfaces

weakly scatter far-fields with resonance-mismatching polarization into near fields. One can

see that the near-fields weakly perturb the field profile of the incoming and scattered plane

waves when a single-layer metasurface is illuminated by a wave of mismatching polarization
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Supplementary Fig. 3: Role of the near-fields in the resonant mode coupling. a, Frequency of
the hybridized resonant modes in the bi-layer metasurface comprising aligned discs without
notches as a function of interlayer distance H. The color represents the Q-factor of the
resonant modes; the color bar limits are manually set to 10 and 105. b,c, Electric fields
excited in a notched single-layer metasurface by y-polarized (the resonance is decoupled)
and x-polarized (the resonance is excited) plane waves at 726 nm.

(Supplementary Fig. 3b). Note that it is not the case when the resonance is excited by a

wave with proper polarization (Supplementary Fig. 3c), which is also the reason why we do

not calculate the coupling Hamiltonian in the far-field approximation. The resonant input

and output vectors of a stacked structure in the general case were derived in Refs.,12,13 they

are given as:

⟨Ic| = X−1

⟨Iad |+ ⟨Iau| P S̃b
udDddP S̃a

dd ⟨Iau|DuuP S̃b
uu〈

Ibd
∣∣DddP S̃a

dd

〈
Ibu
∣∣+ 〈Ibd ∣∣P S̃a

duDuuP S̃b
uu

 , (S29)

|Oc⟩ =

|Oa
u⟩+ S̃a

uuP S̃b
udDddP |Oa

d⟩ S̃a
uuDuuP

∣∣Ob
u

〉
S̃b
ddDddP |Oa

d⟩
∣∣Ob

d

〉
+ S̃b

ddP S̃a
duDuuP

∣∣Ob
u

〉
X. (S30)

Here, X is the matrix of eigenvectors of the coupling Hamiltonian derived in Eq. (S28). Due

to weak background scattering of the far-fields to near-fields, we can omit the near-fields

when writing the background scattering matrices S̃ in Eqs. (S29), (S30) and use Eq. (S23)
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to write down the resonant input vectors of the coupled modes as:

⟨Ic| =

⟨IcA|

⟨IcS |

 = (S31)

=

0.5 0.5

0.5 −0.5


︸ ︷︷ ︸

X−1

A

(
cos θ, − sin θ

)(
1 +

e−2iϕrt

1− r2e−2iϕ

)
A

(
cos θ, − sin θ

)
e−iϕt

1− r2e−2iϕ

A

(
cos θ, sin θ

)
e−iϕt

1− r2e−2iϕ
A

(
cos θ, sin θ

)(
1 +

e−2iϕrt

1− r2e−2iϕ

)
 .

Here, ⟨IcA| and ⟨IcS| are the resonant input vectors of the anti-symmetric and symmetric

hybridized resonances. For example, the explicit form of the resonant input vector of the

anti-symmetric mode appears as:

⟨IcA| =
A

2



cos θ

(
1 +

e−2iϕrt+ e−iϕt

1− r2e−2iϕ

)
− sin θ

(
1 +

e−2iϕrt− e−iϕt

1− r2e−2iϕ

)
cos θ

(
1 +

e−2iϕrt+ e−iϕt

1− r2e−2iϕ

)
sin θ

(
1 +

e−2iϕrt− e−iϕt

1− r2e−2iϕ

)



T

. (S32)

Now when the bi-layer metasurface is excited by normally incident RCP or LCP plane waves

from the top, the amplitudes of the incoming waves are given as:

AR,L
in =

(
1, ±i, 0, 0

)T

. (S33)

Using the resonant input vectors ⟨IcA| from Eq. (S32), we write the excited amplitudes

of the anti-symmetric resonance as a product of the resonant input vector and the incoming

wave amplitudes:

αR,L ∝ ⟨IcA| A
R,L
in ∝(

cos θ ∓ i sin θ

)
+

(
cos θ ∓ i sin θ

)
e−2iϕrt

1− r2e−2iϕ
+

(
cos θ ± i sin θ

)
e−iϕt

1− r2e−2iϕ
, (S34)
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with ϕ = nk0H. The three terms in Eq. (S34) have clear physical meanings. The first

term represents the direct coupling of the upper metasurface resonance to the plane wave

coming from the top. The second term is the coupling of the upper metasurface resonance

from the bottom to the wave that was transmitted through the upper metasurface with the

coefficient t, gained a factor e−iϕ while propagating through the separation layer, then was

reflected from the lower metasurface with coefficient r, and then propagated back acquiring

the factor e−iϕ one more time. The Fabry-Pérot denominator (1 − r2e−2iϕ) in the second

term takes into account the infinite number of nonresonant reflections that happened while

the wave was bouncing back and forth between the metasurfaces. The third term stands for

the coupling of the lower metasurface resonance to the wave that passed through the upper

metasurface and the intermediate layer undergoing all the reflections of the Fabry-Pérot

type. To highlight the direct correspondence between the dipole coupling model and the

TCMT for stacked resonant structures we compare the resonant amplitudes calculated using

Eqs. (S18) and (S34). The two approaches are equivalent if Eqs. (S9) and (S10) hold, thus

TCMT leads us to the same system of equations Eqs. (S16), (S19) that defines H and θ of

absolutely chiral bi-layer metasurface.

For example, under the first chirality condition for the anti-symmetric mode

re−ink0H = |r|, ± tan θ = |t|/(1− |r|) (S35)

Eq. (S32) transforms into:

⟨IcA| =
A

2



cos θ

(
1 +

i|t|
1− |r|

)
− sin θ

(
1− i|t|

1 + |r|

)
cos θ

(
1 +

i|t|
1− |r|

)
sin θ

(
1− i|t|

1 + |r|

)



T

=
A

2
cos θ

(
1 + i

1 + |r|
|t|

)


1

±i

1

∓i



T

(S36)
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Similar relations can be derived for the case of plane wave excitation from the bottom;

the only difference is the sign change in front of sin θ in Eq. (S32). At the same time,

amplitudes of RCP and LCP waves are defined as (0, 0, 1,∓i) respectively due to the inverted

propagation direction; thus, the chiral resonance couples to the waves of the same helicity

regardless of the excitation side.

It is also illustrative to derive the resonant output vectors
∣∣Oc

A,S

〉
in Eq. (S30) in the

far-field approximation:

|Oc⟩ =
(
|Oc

A⟩ |Oc
S⟩
)

= (S37)

=


A

 cos θ

− sin θ

(1 + e−2iϕrt

1− r2e−2iϕ

)
A

cos θ

sin θ

 e−iϕt

1− r2e−2iϕ

A

 cos θ

− sin θ

 e−iϕt

1− r2e−2iϕ
A

cos θ

sin θ

(1 + e−2iϕrt

1− r2e−2iϕ

)


1 1

1 −1


︸ ︷︷ ︸

X

.

For example, using the same chirality condition in Eq. (S35), we obtain the explicit form

of the anti-symmetric resonance output vector:

|Oc
A⟩ = A



cos θ

(
1 +

i|t|
1− |r|

)
− sin θ

(
1− i|t|

1 + |r|

)
cos θ

(
1 +

i|t|
1− |r|

)
sin θ

(
1− i|t|

1 + |r|

)


= A cos θ

(
1 + i

1 + |r|
|t|

)


1

±i

1

∓i


. (S38)

Eqs. (S36) and (S38) show that the chiral resonance that can be excited by RCP (LCP)

waves emits RCP (LCP) waves into the top and bottom directions. Consequently, the

resonance appears to be entirely decoupled from the waves of the mismatched polarization.

The resonance can neither be excited by such waves nor radiates them. Thus, the bi-layer

metasurface with intrinsically chiral resonance behaves as a chiral mirror. The same result

can be demonstrated for the second chirality condition.
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Supplementary Note 5. Comparison of the embedded

and open structures for intrinsic chirality

As was mentioned in the main text, the near-field coupling regime can be preferred due

to the strong interaction between the resonant modes of the top and bottom metasurfaces

which even allows for achieving chirality in a bi-layer structure of different metasurfaces. In

Supplementary Fig. 4, we compare the resonant modes of the fully embedded structure (var-

ied H and θ, all other parameters as in the configuration A2) and the “open” structure with

the top discs surrounded by air (varied H and θ, all other parameters as in the configuration

A1). While the two lowest modes of the fully embedded structure converge in frequency at

large interlayer distances H, it does not happen in the case of the “open” structure because

the modes of isolated top and bottom metasurfaces have different resonant frequencies. Ac-

cordingly, the open structure is not capable of demonstrating chirality at H > 200 nm as

the lowest-frequency mode of the structure mainly consists of the lowest-frequency mode of

the bottom fully embedded disc. Nevertheless, for H values close to 60 nm, the interlayer

near-field coupling is sufficient to sustain modes of both top and bottom metasurfaces to

achieve intrinsic chirality.
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Supplementary Fig. 4: Comparison of the embedded and open structures. a,c, Resonant
energies of the coupled modes in the embedded and open bi-layer metasurfaces in dependence
on the interlayer distance. b,d, Resonance chirality of the lowest-frequency mode of the
embedded and open bi-layer metasurfaces with varied twist angle θ and interlayer distance
H.
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Supplementary Fig. 5: Chiral emission from bi-layer metasurface A1 with perfect alignment
(zero lateral displacement) along x direction. a, b, Measured angle-resolved spectra of the
LCP and RCP photoluminescence emission. c, d, Emission spectra at 0◦ and −5◦ emission
angles.
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Supplementary Note 6. Reflectance spectra for bi-layer

metasurfaces operating at unitary background transmis-

sion of the Fabry-Pérot type.

In this section, we select three interlayer distances H = 50 nm (Supplementary Fig. 6),

280 nm (Supplementary Fig. 7), and 530 nm (Supplementary Fig. 8) at which the optimal

chirality can be achieved and calculate the reflectance spectra for various twist angles θ to

illustrate the possibilities of polarization control. Note that active chirality switching due to

relative rotation of the whole metasurfaces by an angle 2∆θ = 90o is possible for structures

operating in the near-field coupling regime H = 50 nm (θ = 20o ⇒ θ = 155o = −25o)

and intermediate coupling regime H = 280 nm (θ = 45o ⇒ θ = 90o ⇒ θ = 135o). The

resonances spectrally overlap for the structures with H > 500 nm and cannot be used for

chirality switching. Also, Supplementary Fig. 7d demonstrates the absolute chirality of

the symmetric mode for the structure operating in the intermediate regime with the model

parameters corresponding to configuration A2 from the main text. The calculated reflectance

spectra agree well with the experimentally measured spectra shown in Fig. 3i of the main

text.
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Supplementary Fig. 6: Bi-layer metasurface in near-field coupling regime with H = 50
nm. a,b, Simulated LCP and RCP reflection spectra at normal incidence of the bi-layer
metasurface with variable twist angle θ. c, CD spectra calculated based on a and b. d-g,
Reflectance spectra for metasurfaces with selected twist angles θ.
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Supplementary Fig. 7: Bi-layer metasurface in intermediate coupling regime with H = 280
nm. a,b, Simulated LCP and RCP reflection spectra at normal incidence of the bi-layer
metasurface with variable twist angle θ. c, CD spectra calculated based on a and b. d-g,
Reflectance spectra for metasurfaces with selected twist angles θ.
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Supplementary Fig. 8: Bi-layer metasurface in far-field coupling regime with H = 530 nm.
a,b, Simulated LCP and RCP reflection spectra at normal incidence of the bi-layer metasur-
face with variable twist angle θ. c, CD spectra calculated based on a and b. d-f, Reflectance
spectra for metasurfaces with selected twist angles θ.
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Let us examine the possibility of achieving maximum chirality in the purely far-field

regime. At large H we can analytically evaluate the effective coupling Hamiltonian (S26)

while neglecting near-field coupling. Using A2 = iγ(r+ t) (see8), in the far-field approxima-

tion, it reads:

H =

Ω + iγ +
iγe2i(Φ−ϕ)|r|(|r|+ i|t|)

1− |r|2e2i(Φ−ϕ)
cos(2θ)

iγei(Φ−ϕ)(|r|+ i|t|)
1− |r|2e2i(Φ−ϕ)

cos(2θ)
iγei(Φ−ϕ)(|r|+ i|t|)
1− |r|2e2i(Φ−ϕ)

Ω + iγ +
iγe2i(Φ−ϕ)|r|(|r|+ i|t|)

1− |r|2e2i(Φ−ϕ)

 , (S39)

where we explicitly write the real and imaginary part of the single-layer resonant frequencies

ωa,b
1 = Ω + iγ, while the reflection phase Φ and propagation phase ϕ were defined in (S11)

and (S25). Since maximum chirality can only be achieved at the background Fabry-Pérot

resonance (S16), we put ei(Φ−ϕ) = ±1. The resonant energies of the purely far-field coupled

modes are eigenvalues of the Hamiltonian:

ωA,S = ω − |r||t|
1− |r|2

+ i
γ

1− |r|2
± cos(2θ)

γ|t|
1− |r|2

∓ i cos(2θ)
γ|r|

1− |r|2
(S40)

Thus, the spectral separation of the resonant modes is equal to cos(2θ)
2γ|t|

1− |r|2
, while the

imaginary parts of the resonant modes are equal Im(ωA,S) =
γ

1− |r|2
(1∓|r| cos(2θ)). We note

that Im(ωA) + Im(ωS) =
2γ

1− |r|2
> cos(2θ)

2γ|t|
1− |r|2

, hence, the tails of the resonant modes

overlap anyways. Moreover, chirality condition for the angle θ (S19) results in cos(2θ) = ±|r|,

hence two chiral modes have imaginary parts γ and γ
1 + |r|2

1− |r|2
. The spectral separation of

the chiral modes
2γ|t||r|
1− |r|2

=
2γ|r|
|t|

turns out to be smaller than the imaginary part of the

broader mode, which means that the broader resonance will always interfere with the sharper

resonance. However, we note that for significantly large |r| the imaginary part of the broader

mode can be much larger than that of the sharper mode, which means that the latter can

dominate in a narrow spectral region. Still, designs with large separation distances and |r|

close to 1 appear impractical since the Fabry-Pérot factor 1/(1 − r2 exp(−nk0H)) rapidly
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oscillates with frequency in this case.
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Supplementary Fig. 9: Comparison of the resonant frequencies of bi-layer metasurfaces a,
simulated using COMSOL and calculated as eigenvalues of the coupling Hamiltonian in the
far-field approximation with b, r = −0.38− 0.19i, and θ = 20◦ and c, r = −0.5− 0.19i, and
θ = 30◦. Solid lines indicate the real part of the resonant frequencies Re(ωA,S), the shaded
areas indicate ±Im(ωA,S).

To corroborate the validity of the far-field approach, we simulated the resonant frequen-

cies of bi-layer metasurfaces with θ = 20◦ and H > 800 nm using the COMSOL eigenmode

solver (Supplementary Fig. 9a). Then, we compared them to the analytical results given by

(S39), where we used Ω = 413.2 THz, γ = 0.9 THz, r = −0.38 − 0.19i, and θ = 20◦ (Sup-

plementary Fig. 9b). Although the theoretical model well reproduces the simulation result,

an even better agreement is achieved for r = −0.5− 0.19i, and θ = 30◦ (Supplementary Fig.

9c), which is easily explained by the subtle anisotropy of the reflection coefficient r and the

slight deviation of the effective dipole from the approximation D(θ) ∝ (cos θ, sin θ).
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Supplementary Fig. 10: Resonant frequencies of bi-layer metasurfaces calculated as eigen-
values of the coupling Hamiltonian in the far-field approximation with a, γ = 1.2 b, γ = 0.6
c, γ = 0.3.

Next, for simplicity, we assume r = 0.425 and tan θ = |t|/(1 + |r|). As shown in Supple-
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mentary Fig. 10, variation of the imaginary part γ (i.e., radiative losses of the resonance)

does not allow for the separation of modes, since the coupling strength (i.e., off-diagonal

elements of the coupling Hamiltonian) is directly proportional to γ.

Finally, by increasing the magnitude of background reflection |r| we can achieve significant

oscillation of the resonant frequencies (see Supplementary Fig. 11), however, the modes

strongly overlap at the Fabry-Pérot resonances.
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Supplementary Fig. 11: Resonant frequencies of bi-layer metasurfaces calculated as eigen-
values of the coupling Hamiltonian in the far-field approximation with a, r = 0.6 b, r = 0.8
c, r = 0.9.
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Supplementary Note 7. Unidirectional resonances in bi-

layer metasurfaces with lateral displacement

At each point in the reciprocal space, the total radiative losses of the resonance can be rep-

resented as a sum of losses in the top and bottom half-spaces: γr = γtop+γbot. The radiative

losses are related to the radiative Q-factor of the resonance Q = ω/2γr (Supplementary Fig.

12b), which can be extracted from the eigenmode simulation of a nonglossy metasurface.

At the same time, the radiative losses are proportional to the squared absolute value of the

far-field amplitude of the resonant mode, which we illustrate in Fig. 1e of the main text and

Supplementary Fig. 13. At the same time, a unidirectional resonance exhibits large radia-

tion asymmetry in the up-down direction (Supplementary Fig. 12c), which is γtop/γbot ≪ 1

or γtop/γbot ≫ 1.
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Supplementary Fig. 12: a, Unit cell (top view) of bi-layer metasurfaces with possible lateral
shifts ranging from -150 nm to 150 nm in both directions. b, c, Corresponding maps of Q-
factor and up-down radiation asymmetry γtop/γbot for the anti-symmetric (lowest) resonant
mode.
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Supplementary Note 8. Extrinsic chirality of configura-

tion D2
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Supplementary Fig. 14: Reflection properties of bi-layer metasurface D2 with extrinsic chiral-
ity. a, SEM image of the bi-layer twisted metasurface with the designed lateral displacement
∆X = 180 nm, ∆Y = 120 nm. b, Calculated eigenpolarization map of the anti-symmetric
resonance. c, d, Measured angle-resolved reflection spectra under LCP and RCP illumina-
tion. e, Measured reflection spectra at 6 degrees incidence corresponding to the dashed lines
in c and d. f, Angle-resolved circular dichroism extracted from the reflection spectra in c,
d. g-i, Simulated reflection spectra corresponding to c-e.
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Supplementary Fig. 15: Chiral emission from bi-layer metasurface D2 with lateral displace-
ment ∆X = 180 nm, ∆Y = 120 nm along x direction. a, b, c, Measured, and g, h, i
simulated angle-resolved spectra of the LCP, RCP, and total intensity of the photolumines-
cence emission. d, e, f, Measured, and j, k, l, simulated spectra of the LCP, RCP, and total
intensity of the emission at ±6o emission angle. The corresponding angles are denoted with
solid and dashed lines in panels a, b, c, and g, h, i.
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Supplementary Note 9. Unidirectional chiral emission

from configuration D1
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Supplementary Fig. 16: Calculated emission intensity in the top and bottom half-spaces
from bi-layer metasurface D1 with lateral displacement ∆X = −150 nm, ∆Y = −75 nm at
wavelength 770 nm.
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Supplementary Fig. 17: Unidirectional chiral emission from bi-layer metasurface D1 with
lateral displacement ∆X = −150 nm, ∆Y = −75 nm along x direction. a, b, c, Measured,
and g, h, i simulated angle-resolved spectra of the LCP, RCP, and total intensity of the
photoluminescence emission. d, e, f, Measured, and j, k, l, simulated spectra of the LCP,
RCP, and total intensity of the emission at ±10o emission angle. The corresponding angles
are denoted with solid and dashed lines in panels a, b, c, and g, h, i.
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Supplementary Methods 1. Fabrication

Supplementary Fig. 18: Schematic illustration of the bi-layer metasurface fabrication process.
a, Clean glass substrate for later fabrication process. b, Growth of a-Si layer on the glass
substrate to prepare for bottom Si disks. c, Au alignment markers are made by EBL,
evaporation, and lift-off. d, Bottom Si disks are fabricated by EBL and etching. e, Formation
of middle SiO2 layer by spin coating and etching. f, Deposition of a-Si layer. g, Formation
of well-aligned and h displaced top Si disks. i, Fabrication of an embedded structure by
incorporation of another SiO2 layer. j, Deposition of emitters on the open structure by drop
casting.
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Supplementary Fig. 19: SEM image of the bi-layer metasurface, top layer with deposited
perovskite quantum dot emitters.
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Supplementary Methods 2. Optical setup

L: lens      ND: neutral density filter
QWP: quarter waveplate    POL: linear polarizer
M: mirror    O: objective lens BS: beam splitter   
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Supplementary Fig. 20: Optical setup for the characterization of the reflectance spectra.
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Supplementary Fig. 21: Optical setup for the characterization of the photoluminescence.
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