

Supplementary Figure 1: *ubql-1* is bound by HSF-1 and broadly expressed (a) Schematic representation of RNAi screen to find modifiers of *hsf-1* OE extended survival. (b) UCSC genome browser view of *ubgl-1* genomic region from HSF-1::GFP ChIP-seg data¹⁶. (c) Schematic diagram of C. elegans ubgl-1 gene and corresponding protein structures. Arrows to the left above exon 3 indicate set of primers used in Supplementary Fig.1f and arrows to the far right above exon 12 indicate primers used in Fig. 1d. (d) Lifespan of wildtype and hsf-1 OE (AM583) animals on empty vector and ubgl-1(RNAi) (wildtype vs ubgl-1(tm1574), p=0.0017; wildtype vs hsf-1OE, p<0.0001; hsf-1OE vs hsf-1OE;ubql-1(tm1574), p<0.0001). (e) Heatmap depicting tissue/cell-specific expression of ubgl-1. (f) Relative expression of *ubgl-1* mRNA on day 1 of adulthood in wildtype, *ubgl-1(tm1574)*, *hsf-1* OE, and hsf-1 OE; ubgl-1(tm1574) animals grown on OP50 (wildtype vs ubgl-1(tm1574), p<0.0001; hsf-1OE vs *hsf-1*OE;*ubgl-1(tm1574*), p<0.0001; wildtype vs *hsf-1*OE, p=0.0015; *ubgl-1(tm1574*) vs hsf-1OE;ubgl-1(tm1574), p>0.9999. Data plotted are the mean +/- SD of 4 biological replicates. All error bars denote SD. Statistical significance was calculated using (f) two-way ANOVA with Fishers LSD test or (d) Mantel-Cox log rank test. **p < 0.01, ***p < 0.001, ****p<0.0001. Full statistics for lifespan trials (including n values) can be found in Supplementary Data 2. Source data are provided as a Source Data file.

188

10 100

18

-

1000

-

.

25

15

a-Tubulin52

15

ubqi-1(tm1574)

kDa

= =

15

wildtype hst-1 OE wildtype hsf-1 OE ubql-1(tm1574) + + + + kDa 260 140 70 50 50 40 35 25 15

wildtype hsf-1 OE + - + + + + + + + + + +

-

Supplementary Figure 2: *Loss of ubql-1* or overexpression of *hsf-1* does not alter the accumulation of polyubiquitylated or K63-linked ubiquitylated proteins with age

(a and b) Relative expression of hsp-16.11 and hsp-70 mRNA on day 1 of adulthood in wildtype, ubgl-1(tm1574), hsf-1 OE or hsf-1 OE; ubgl-1(tm1574) animals grown on OP50. Data plotted are the mean +/- SD of 4 biological replicates. Statistical comparisons are (a) hsp-16.11 (wildtype vs ubgl-1(tm1574), p=0.7087; hsf-1OE vs hsf-1OE; ubgl-1(tm1574), p=0.7936; wildtype vs hsf-1OE, p=0.6471; ubgl-1(tm1574) vs hsf-1OE; ubgl-1(tm1574), p=0.7293) and (b) hsp-70 (wildtype vs ubql-1(tm1574), p=0.6806; hsf-1OE vs hsf-1OE; ubql-1(tm1574), p=0.7648; wildtype vs hsf-1OE, p=0.5395; ubgl-1(tm1574) vs hsf-1OE; ubgl-1(tm1574), p=0.1990). (c) Representative images of wildtype and *hsf-1* OE worms expressing body wall muscle polyQ35::YFP grown on empty vector (EV) or ubql-1(RNAi) at day 5 of adulthood. Scale bar, 200 µm. (d and e) Number of polyglutamine::YFP aggregates present in the (d) intestine (Q44::YFP) and (e) body wall muscle (Q35::YFP) on day 3 of adulthood in wildtype and *hsf-1* OE animals grown on empty vector and *ubgl-1*(RNAi). One of three independent experiments has been shown for intestinal and muscle PolyQ sensors. Statistical comparisons are (d) iPolyQ EV (n=30) vs iPolyQ;ubql-1(RNAi) (n=30), p=0.2170; hsf-1OE;iPolyQ EV (n=32) vs hsf-1OE;iPolyQ;ubgl-1(RNAi) (n=26), p=0.9246; iPolyQ EV vs hsf-1OE;ipolyQ EV, p<0.0001; iPolyQ;ubgl-1(RNAi) vs hsf-1OE;iPolyQ;ubgl-1(RNAi), p=0.0002 and (e) mPolyQ EV (n=19) vs mPolyQ;ubgl-1(RNAi) (n=25), p=0.4250; hsf-1OE;mPolyQ EV (n=21) vs hsf-1OE;mPolyQ;ubql-1(RNAi) (n=20), p=0.0110; mPolyQ EV vs hsf-1OE;mPolyQ EV, p<0.0001; mPolyQ;ubql-1(RNAi) vs hsf-1OE;mPolyQ;ubql-1(RNAi), p<0.0001. (f and g) SDS-PAGE followed by western blotting and immunodetection for polyubiquitylated proteins or tubulin in wildtype, ubgl-1(tm1574), hsf-1 OE or hsf-1 OE; ubgl-1(tm1574) animals on (f) day 1 or (g) day 5 of adulthood. (h and i) Ponceau S staining of western blots used to detect K48linked ubiquitin on (h) day 1 or (i) day 5 of adulthood (these panels are an accompaniment to Fig. 2h and i). (i-m) SDS-PAGE and western blotting followed by (i and I) immunodetection for K63-linked ubiquitylated proteins or (k and m) pre-staining of blots with Ponceau S on (j and k) day 1 or (I and m) day 5 of adulthood. All blots are representative of 4 independent experiments. All error bars denote SD. Statistical significance was calculated using two-way ANOVA with Fishers LSD test. ns, not significant (p>0.05), *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Source data are provided as a Source Data file.

Pathways allered upon hst-1 OE

0.0020 0.0015 0.0010 0.0004 0.0004 0.0003

patrifpe 0.00002-

0.0001

0-

De

0.05 Wht signaling pathway 0.04 Nucleotide 0.02 Recision repair

Mismatd

otch signaling 👩

DNArepio

Number of genes

5 10 15

sed genes

Fanconi anemia pathway

Basal transcript

FoxO signaling

pathway

ation 🔴

С

0.025-

0.020

97 0.015

d pointed 0.005-

0-

eatly acid metabolism

Metabolic pathways ●

is of amino acids

10 20 30 40 5 Number of genes

20

Supplementary Figure 3: *hsf-1* overexpression leads to changes in genes and proteins associated with metabolic homeostasis

(a and b) Volcano plots showing log2 (fold change, FC) against -log10 (p-value) of (a) genes identified from RNASeg analysis or (b) proteins identified by label-free quantitative massspectrometry of *hsf-1* OE *vs* wildtype worms. (c and d) KEGG pathway enrichment analysis of significantly up- and downregulated (right) (c) genes and (d) proteins upon hsf-1 overexpression. (e and f) Volcano plots showing log2 (fold change, FC) against -log10 (qvalue) of (e) genes identified from RNASeg analysis or (f) proteins identified by label-free quantitative mass-spectrometry of *ubql-1(tm1574)* vs wildtype worms, (g and h) Lifespan analysis of (g) wildtype and ubgl-1 (tm1574) mutants subjected to nhr-49 RNAi (wildtype vs *ubgl-1(tm1574)*, p<0.0001; wildtype vs wildtype;*nhr-49*(RNAi), p<0.0001; *ubgl-1(tm1574*) vs *ubal-1(tm1574);nhr-49*(RNAi), p<0.0001; wildtype;*nhr-49*(RNAi) vs ubal-1(tm1574), p<0.0001) and (h) hsf-1 OE and hsf-1 OE;ubgl-1(tm1574) animals subjected to nhr-49 RNAi (hsf-1OE vs hsf-1OE;ubql-1(tm1574), p<0.0001; hsf-1OE vs hsf-1OE;nhr-49(RNAi), p<0.0001; hsf-1OE;ubql-1(tm1574) vs hsf-1OE;ubql-1(tm1574);nhr-49(RNAi), p=0.0010; hsf-1OE;nhr-49(RNAi) vs hsf-1OE;ubgl-1(tm1574). p=0.9438). (i) Representative fluorescence images of wildtype, or *hsf-1* OE, NHR-49 reporter animals (*acs-2*p::GFP) on day 1 of adulthood following exposure to empty vector (EV) control, ubql-1(RNAi) or nhr-49(RNAi). Scale bar, 200 µm. (j) Quantification of acs-2p::GFP fluorescence on day 1 of adulthood in wildtype, or *hsf-1* OE worms grown on empty vector control, *ubgl-1*(RNAi) or *nhr-49*(RNAi). Data are represented as mean +/- SD (acs-2p::GFP EV (n=35) vs acs-2p::GFP;ubgl-1(RNAi) (n=33), p=0.0011; acs-2p::GFP EV vs acs-2p::GFP;nhr-49(RNAi) (n=38), p=0.0009; acs-2p::GFP EV vs hsf-1OE;acs-2p::GFP EV (n=50), p=0.0006; hsf-1OE;acs-2p::GFP EV vs hsf-1OE;acs-2p::GFP;ubql-1(RNAi) (n=55), p=0.1854; hsf-1OE;acs-2p::GFP EV vs hsf-1OE;acs-2p::GFP;nhr-49(RNAi) (n=54), p=0.0009). Statistical significance was calculated by (g and h) Mantel-Cox log rank test and (j) two-way ANOVA followed by Fishers LSD test. ns, not significant (p>0.05), ****p<0.0001. Full statistics for lifespan trials (including n values) can be found in Supplementary Data 2. Source data are provided as a Source Data file.

Supplementary Figure 4: *hsf-1* overexpression alters the abundance of a sub-set of the mitochondrial proteome but does not activate the UPR^{mt}

(a) Volcano plot showing log2 (fold change, FC) against $-\log 10$ (p-value) of mitochondrial proteins detected in *hsf-1* OE and wildtype worms by mass-spectrometry. Pink dots mark all detected mitochondrial proteins, with significantly altered mitochondrial proteins outside the black curve (FDR < 0.05). (b) Relative expression of the canonical UPR^{mt} gene *hsp-6* in wildtype and *hsf-1*OE worms. Data plotted are the mean +/- SD of 4 biological replicates and values were normalized to the geometric mean of the housekeeping genes *rpb-2*, *pmp-3* and *cdc-42* (unpaired, two-tailed Student's t-test, p=0.8120) (c) Representative western blot following immunodetection for HSP-6 or alpha-tubulin in wildtype and *hsf-1* OE protein extracts on day 1, 5, and 10 of adulthood. Blots presented are representative of 4 experiments. (d) Quantification of HSP-6 levels relative to tubulin in wildtype and *hsf-1* OE worms on day 1, 5, and 10 of adulthood. Blots presented are representative of 4 experiments. (d) Quantification of HSP-6 levels relative to tubulin in wildtype and *hsf-1* OE worms on day 1, 5, and 10 of adulthood. Blots presented are representative of 4 experiments. (d) Quantification of HSP-6 levels relative to tubulin in wildtype and *hsf-1* OE worms on day 1, 5, and 10 of adulthood. Blots presented are representative of 4 experiments. (d) Pullippi every *hsf-1* OE, p=0.7158; day5 wildtype vs *hsf-1* OE, p=0.9673; day10 wildtype vs *hsf-1* OE, p=0.6669). Statistical significance was calculated by two-way ANOVA followed by Fishers LSD test. ns, not significant (p>0.05). Source data are provided as a Source Data file.

Supplementary Figure 5: Ubql-1 regulates total fat levels

(a) Proportion of mitochondrial morphologies observed in p_{mvo-3} ::GFP(mit) worms and hsf-1 OE; p_{mvo-3}::GFP(mit) worms grown on empty vector control or ubql-1(RNAi) on day 2 adulthood (myo-3::GFP(mit), n=12; myo-3::GFP(mit);ubgl-1(RNAi), n=26; hsf-1OE; myo-3::GFP(mit), n= 20; hsf-1OE; myo-3::GFP(mit);ubql-1(RNAi), n=29. (b) Prevalence of fused mitochondria in muscle tissues of wildtype and hsf-1 OE worms, +/- ubql-1 (RNAi), on day 2 of adulthood. Values are the mean +/-SD of three independent experiments (myo-3::GFP(mit) vs myo-3::GFP(mit);ubql-1(RNAi), p=0.8344; hsf-1OE; myo-3::GFP(mit) vs hsf-1OE; myo-3::GFP(mit);*ubql-1*(RNAi), p=0.1994; myo-3::GFP(mit) vs hsf-1OE;myo-3::GFP(mit), p<0.0001; *myo-3*::GFP(mit);*ubgl-1*(RNAi) vs hsf-1OE;myo-3::GFP(mit);ubql-1(RNAi), p<0.0001). (c) Representative confocal microscope images of myo-3p::GFPmit within muscle tissues of wildtype or hsf-1 OE worms +/- ubql-1(RNAi) on day 2 of adulthood. Scale bar, 20 µm. (d) Volcano plot showing log2 (fold change, FC) against -log10 (q-value) of mitochondrial proteins detected in *hsf-1* OE and *hsf-1* OE;*ubgl-1(tm1574)* worms by mass-spectrometry. Pink dots mark all detected mitochondrial proteins, with significantly altered proteins outside the black curve (FDR < 0.05). (e) Levels of mtDNA (ND1) relative to genomic DNA (cdc-42) as detected by real-time quantitative PCR in wildtype, ubgl-1(tm1574), hsf-1 OE and hsf-1 OE; *ubgl-1(tm1574)* worms on day 1 of adulthood following growth on OP50 bacteria. Data plotted are the mean +/- SD of 7 biological replicates (wildtype vs ubgl-1(tm1574), p=0.6171; hsf-1OE vs hsf-1OE; ubgl-1(tm1574), p=0.1148; wildtype vs hsf-1OE, p=0.1509; ubgl-1(tm1574) vs hsf-1OE; ubgl-1(tm1574), p=0.7265). (f) ATP levels in wildtype, ubgl-1(tm1574), hsf-1 OE and hsf-1 OE; *ubql-1(tm1574)* animals at day 1 of adulthood. Data are the mean +/- SD of 4 biological replicates (wildtype vs ubgl-1(tm1574), p=0.9171; hsf-1OE vs hsf-1OE; ubgl-1(tm1574), p=0.1482; wildtype vs hsf-1OE, p=0.0821; ubgl-1(tm1574) vs hsf-1OE; ubgl-1(tm1574), p=0.6550). (g and h) Triglyceride levels in day 5 wildtype, ubgl-1(tm1574), hsf-1 OE and hsf-1 OE; ubgl-1(tm1574) adult animals. (g) Representative images and (h) quantification representing the relative lipid content in whole body of worms. (wildtype (n=58) vs ubql-1(tm1574) (n=71), p<0.0001; hsf-1OE (n=86) vs hsf-1OE; ubql-1(tm1574) (n=87), p<0.0001; wildtype vs hsf-1OE, p=0.0307; ubgl-1(tm1574) vs hsf-1OE; ubgl-1(tm1574), p=0.9626). One of three independent experiments has been shown. All error bars denote SD. Scale bar, Statistical significance was calculated by (b, e, f, and h) two-Way ANOVA with 500µm. Fishers LSD test ns, not significant (p>0.05), *p<0.05, **p < 0.01, ****p<0.0001. Source data are provided as a Source Data file.

Target Gene	Forward sequence	Reverse sequence
ubql-1		
(Exon 3)	TCTCACACAGCACAAAATCGC	CCTCCCATTGTTGGTGCAGA
ubql-1		
(Exon 12)	GGGAGGAGGAAGACCCTCAT	TTCTGGCACGATCCGAGAAG
hsp-16.11	TGGCTCAGATGGAACGTCAA	TGGCTTGAACTGCGAGACAT
hsp-70		
(C12C8.1)	CTACATGCAAAGCGATTGGA	GGCGTAGTCTTGTTCCCTTC
hsp-6	GTTATCGAGAACGCAGAAGGAG	CATCCTTAGTAGCTTGACGCTG
pmp-3	GTTCCCGTGTTCATCACTCAT	ACACCGTCGAGAAGCTGTAGA
rpb-2	AACTGGTATTGTGGATCAGGTG	TTTGACCGTGTCGAGATGC
cdc-42	TCGACAATTACGCCGTCACA	GAAACACGTCGGTCTGTGGA
F44E5.4	GTTGAGATCCTCGCCAACTC	GCTGCATCTCCAACCAATCT
nd-1		
(genomic)	AGCGTCATTTATTGGGAAGAAGAC	AAGCTTGTGCTAATCCCATAAATGT
cdc-42		
(genomic)	ATGGTAAAGAAACGCTCGTG	TGAAAAATACGGATGAGTCACA

Supplementary Table 1. List of primers used in this study.