Supporting Information S1:

Comparative in vivo biocompatibility of cellulose-derived and synthetic

meshes in subcutaneous transplantation models

Nina M.M. Peltokallio^{1,*}, Rubina Ajdary², Guillermo Reyes^{2,*}, Esko Kankuri³, Jouni J.T.

Junnila⁴, Satu Kuure⁵, Anna S. Meller⁶, Jani Kuula⁷, Eija Raussi-Lehto^{7,8}, Hannu Sariola⁹,

Outi M. Laitinen-Vapaavuori¹, Orlando J. Rojas^{2,10,11,12,*}

¹ Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, FI-00014 Helsinki University, Finland.

²Biobased Colloids and Materials, Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland.

³ Department of Pharmacology, Faculty of Medicine, University of Helsinki, P.O. Box 29, Helsinki, Finland.

⁴ EstiMates Oy, Kamreerintie 8, FI-022770 Espoo, Finland.

⁵GM unit, Helsinki Institute of Life Science/STEMM, Research Program's Unit, Faculty of Medicine, University of Helsinki, P.O. Box 63, Helsinki, Finland.

⁶Laboratory Animal Centre, HiLIFE, University of Helsinki, P.O. Box 29, Helsinki, Finland

⁷ Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland.

⁸Customer-oriented Wellbeing and Health Services, Metropolia University of Applied Sciences, PL 4000, FI-00079 Metropolia, Helsinki, Finland.

⁹Department of Pathology, Faculty of Medicine, University of Helsinki, P.O. Box 63, Helsinki, Finland.

¹⁰ Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.

¹¹ Department of Wood Science, University of British Columbia, 2385 East Mall, Vancouver, BC V6T 1Z4, Canada.

¹² Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.

* Corresponding authors: Nina M.M. Peltokallio (Email: nina.peltokallio@helsinki.fi),

Guillermo Reyes (guillermo.reyes@vtt.fi), Orlando J. Rojas (orlando.rojas@ubc.ca).

Figure S1. Wound grading after subcutaneous implantation of bacterial nanocellulose (BNC), regenerated cellulose (RC), 3D-printed cellulose nanofibrils (CNFs), polypropylene (PP) and polydioxanone in a rat subcutaneous transplantation model. Normal wound healing right after implantation of CNF and PP (a), sham and PP (b, c), RC and PP (d), and BNC and PP (e) at 0 (a), 1 (b), 7 (c), 30 (d), and 90 (e) days post-implantation. Cellulose-derived implants on the right, PP on the left side. Wound reactions classified as (f) mild swelling (PP), (g) clear discharge (RC, PP), and (h) abscess (PP).

