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S1. LANL Super Separator 
 

 
Figure S1. LANL Super Separator – an automation system for high-throughput separation 

 
 
 
 

 
Figure S2. Step-by-step robotic executions for liquid-liquid extraction using the LANL Super Separator. 
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S2. N,N-dialkyl Monoamide Extractants Dataset 
 

 
Figure S3. The N,N-dialkyl monoamide dataset broken down between (A) the different extractant types 

and (B) the actinide cations studied. The numbers in the pie charts represent the total number of 
distribution ratios reported.  

 
Figure S3 shows a breakdown of our current N,N-dialkyl monoamide dataset which reports 
distribution ratios of various actinide metals focusing on the following criteria: 
 

1. A single extractant in the organic phase 
2. A single metal in the aqueous phase 
3. No initial radiolytic dosage applied to either phase before extraction was performed 
4. A single acid type is used in the aqueous phase (HNO3) 
5. No third-phase formation was reported upon extraction  
6. The organic phase solvent was not FS-13 (CHALMEX process). This was considered as 

FS-13 is fairly polar compared to standard organic solvents such as n-dodecane 
7. Only symmetric N,N-dialkyl monoamides were considered. Symmetric refers to when both 

R’ groups bonded to the amine nitrogen are identical (see Figure 1 in main text). 
 
This leads to a total of 2132 distribution ratios which have been extracted from previously 
published literature.1-33 Overall, there are 35 unique monoamide extractants in the dataset and 11 
different actinide cations. The complete dataset can be available to readers upon request. 
Addtionally, this dataset has also been uploaded to the Separation Archive for f-elements (SAFE) 
at https://safe.lanl.gov. 
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Table S1. Complete list of the N,N dialkyl monoamide acronyms, full names, and references which were 
used to for distribution ratio values in the complete monoamide dataset. 

Acronym Full Chemical Name Reference 
DEHiBA N,N-di-2-ethylhexylisobutyramide 1, 3-9, 13, 19, 22-25, 28, 33 
DEHAA N,N-di-2-ethylhexylacetamide 2, 13, 25 
DEHPA N,N-di-2-ethylhexylpropanamide 2, 13 

DEHPVA N,N-di-2-ethylhexylpivalamide 2, 13, 19, 25 
DEHBA N,N-di-2-ethylhexylbutyramide 4, 5, 9, 19, 28, 32, 33 
DHOA N,N-dihexyloctanamide 9-12, 15, 27, 29, 31, 33 
DBBA N,N-dibutylbutyramide 11, 18 
DBHA N,N-dibutylhexanamide 11 
DHHA N,N-dihexylhexanamide 11, 14, 15 

DBEHA N,N-dibutyl-2-ethylhexanamide 11, 18, 29 
DEHHA N,N-di-2-ethylhexylhexanamide 11, 26 
DHEHA N,N-dihexyl-2-ethylhexanamide 11, 19 
DOOA N,N-dioctyloctanamide 11, 30 
DHDA N,N-dihexyldecanamide 15, 31 
DHBA N,N-dihexylbutyramide 16 
DHiBA N,N-dihexylisobutyramide 16 
DOBA N,N-dioctylbutyramide 17 
DOiBA N,N-dioctylisobutyramide 17 
DHFA N,N-dihexylformamide 18 
DBAA N,N-dibutylacetamide 18 
DBPA N,N-dibutylpropanamide 18 
DBiBA N,N-dibutylisobutyramide 18 
DBPVA N,N-dibutylpivalamide 18 
DiBBA N,N-diisobutylbutyramide 18 
DiBiBA N,N-diisobutylisobutyramide 18 
DMDA N,N-dimethyldecanamide 18 
DEDA N,N-diethyldecanamide 18 
DsBHA N,N-di-sec-butyl-hexanamide 18 

DEDoDA N,N-diethyldodecanamide 20, 21 
DODoDA N,N-dioctyldodecanamide 20 
DBDoDA N,N-dibutyldodecanamide 20 

DEHDoDA N,N-di-2-ethylhexyldodecanamide 26 
DEHtBAA N,N-di-2-ethylhexyl-tert-butyl-acetamide 26 
DOEHA N,N-dioctyl-2-ethylhexanamide 30 
DiBEHA N,N-diisobutyl-2-ethylhexanamide 30 
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S3. Development of the Bayesian Optimization Methodology 
 
S3a. Data Processing for 𝐔𝐎𝟐𝟐"Extraction with DEHiBA 
 
As referenced in the main text, when considering a single metal identity with one extractant, the 
most studied system is UO##" extraction with the DEHiBA ligand, representing 245 total 
distribution coefficients in the dataset. In this work, Gaussian Process regression was performed 
to predict UO##" distribution coefficients (DU) across five unique input parameters: (1) Extractant 
concentration, (2) UO##" concentration, (3) HNO$(&') concentration, (4) Total NO$(&'))  
concentration, and (5) Temperature. Solvent extraction in this field typically works in an acidic 
environment with nitric acid, HNO$(&'). However, since some experimental setups included 
inorganic nitrate salts (LiNO3, Al(NO3)3, etc), we elected to treat the acid concentration and total 
nitrate concentration independently. Figure S4 plots the histograms for these inputs, along with 
the histograms on the reported DU values. 
 

 
Figure S4. Histograms showing the distribution of the five unique input parameters (top) and the reported 
DU values for UO!!"extraction with DEHiBA (bottom). The inset in the lower figure displays the log(DU) 

values.  
 

As depicted in Figure S4, most of the DU values for this system are < 10, but there exists an outlier 
with a measured value at ~33. Therefore, this point was removed from the dataset for the kernel 
testing (Section S3b) and virtual experiments (Section S3c). Additionally, 61 total datapoints were 
missing either the initial UO##" concentration, DEHiBA concentration, acid/nitrate concentration, 
and/or temperature. Therefore, the following criteria was used to handle these missing input 
values: 
 

1. If no temperature was explicitly reported, then it was assumed the experiment was 
conducted at room temperature (25°C). 

2. One study4 did not report an initial DEHiBA concentration. But the same authors 
reproduce/reprint one of the figures in a later study,23 where they report the initial DEHiBA 
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concentration to be 1.0 M. Therefore, this value was used for the initial DEHiBA 
concentration. 

3. Two publications4, 28 from the same authors report the initial [UO##"] to be ‘tracer level’ 
with no explicit concentration value given. But later studies2, 3 reported by the authors state 
UO##" ‘tracer level’ concentrations to be ~0.01 mM, so this value was used. A third study5 
states “the initial metal concentration was low <100 mM” for extraction studies, while 
some experiments report the initial UO##" concentration to be £50 mM. Therefore, a value 
of 50 mM was used to fill the initial UO##"concentration for any missing values from this 
report.     

 

 
Figure S5. Duplicated inputs in the dataset examining UO!!"extraction with DEHiBA showing each 
reported DU value, their mean, and standard deviation (‘error bars’). The x-axis represents an arbitrary 

index for the duplicated experiment.  
 

After initial handling of missing input values, 24 ‘duplicated’ experiments were found inside the 
dataset. Since distribution coefficients were studied based on only five unique input values, this 
occurs when similar experiments are performed through (1) different labs at different times, (2) 
different contact (mixing) times, or (3) different organic diluents. Figure S5 shows these duplicated 
experiments with their measured DU values. To keep the function-space view of Gaussian Process 
regression (one input:one output), we needed a way to handle the duplicated input values. One 
method would be to replace all duplicated inputs to a single experiment with their average DU 
value. Such a technique would decrease our total dataset size from 245 to 202 total values. Since 
we are already dealing with a smaller size dataset, we instead chose to implement a small amount 
of random ‘noise’ into the input values, now allowing for a single input, single output of each data 
point. To do this, a random value was chosen from a normal Gaussian distribution with a mean 
equal to the original input and a 2.5% standard deviation meaning the original values were 
perturbed at most ~5% within a 95% confidence interval. The randomly chosen value was then 
used as the new input value for the experimental input space.     
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S3b. Gaussian Process Regression and kernel testing 
 

In this work, regression analysis was performed using a Gaussian Process to model the 
experimental response surface. A Gaussian Process describes a probability distribution over all 
possible functions which fit a set of data points and is completely defined its mean, 𝜇(𝒙), and 
covariance (kernel) functions, 𝑘(𝒙, 𝒙′), (Equation S1).  

 
𝑓(𝒙) = 𝐺𝑃(𝜇(𝒙), 𝑘(𝒙, 𝒙′))                 [S1] 

 
In practice, 𝜇(𝒙) is often considered to be a constant (𝐶), while the kernel function is used to 
describe the relationship between adjacent points. Therefore, 𝑘(𝒙, 𝒙′) determines most, if not all, 
of the generalization properties of the Gaussian Process. Real-world experiments may have 
measurement errors, which are modeled as a noisy response surface, 𝑦 = 𝑓(𝒙) + 	𝜖. Regression 
analysis with a Gaussian Process model in the Bayesian framework allows for the incorporation 
of the variance in these measurements (𝜎#) into the model as shown through Equations S2-S5. 
 

8
𝑦
𝒇∗: 	~	𝒩 =𝐶, >𝑲 + 𝜎#𝑰 𝑲∗

𝑲∗
𝑻 𝑲∗∗

AB              [S2] 

 
(𝒇∗|𝒙, 𝑦, 𝒙∗)	~	𝒩(𝐶 + 𝑲∗

𝑻(𝑲 + 𝜎#𝑰)),(𝑦 − 𝐶),𝑲∗∗ −𝑲∗
𝑻(𝑲 + 𝜎#𝑰)),𝑲∗)       [S3] 

 
𝑚(𝒙∗) = 𝐶 + 𝑲∗

𝑻(𝑲 + 𝜎#𝑰)),(𝑦 − 𝐶)              [S4] 
 

𝜎#(𝒙∗) = 	𝑲∗∗ −𝑲∗
𝑻(𝑲 + 𝜎#𝑰)),𝑲∗              [S5] 

 
Here, 𝒙 and 𝒙∗ represent the observed and predicted data points, respectively, and 𝑲 = 𝑘(𝒙, 𝒙-), 
𝑲∗ = 𝑘(𝒙, 𝒙∗), and 𝑲∗∗ = 𝑘(𝒙∗, 𝒙∗) are the kernel matrices formed between observed and 
predicted points. Lastly, Equations S4 and S5 present the predictive (posterior) mean and variance 
of the Gaussian Process model upon training of the kernel hyperparameters on the observed data 
points. 
 
The overall efficiency of Bayesian Optimization depends on how well the Gaussian Process model 
can capture the true experimental response surface, and the method’s decision-making strategy. In 
Gaussian Process modeling, the kernel function determines most, if not all, the generalization 
properties of the model. Therefore, the performance of the Squared-Exponential (RBF) and the 
Matérn classes with three unique 𝜈 values (5 2# , 3 2# , 1 2# ) (Equations S6 and S7, respectively) were 
examined for their prediction on DU values from UO##" extraction with DEHiBA. These kernels 
were selected as they represent the most common kernels used in Bayesian Optimization. 

 
𝑘./0(𝒙, 𝒙-) = 𝜎# exp J− 𝒓!

#2!
K + 𝜀                   [S6] 

𝑘345é78(𝒙, 𝒙-) = 𝜎# #
(#$%)

9(:)
(√2𝜈 𝒓2)

:𝐵: J√2𝜈
𝒓
2
K + 𝜀        [S7] 
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In Equations S6 and S7, 𝜎# represents a constant scaling factor which determines the average 
distance away from the mean function the Gaussian Process model will deviate, while 𝜀 is used to 
incorporate independent and identically distributed (i.i.d) noise in the data. This was chosen as the 
UO##" with DEHiBA dataset was constructed through manual data extraction of previously 
published literature across numerous research groups where distribution ratios were often reported 
without error bars. Additionally, Figure S4 shows the distribution of the five experimental 
parameters for the dataset where each of these parameters vary significantly in their overall 
magnitudes. Therefore, anisotropic versions of these kernel functions were used by redefining the 
input space metric with a 5 × 5 diagonal matrix where the inverse of effective correlation length 
scales (𝑙) for each dimension defines the diagonal.34, 35 (Equation S8) Input distances (𝒓) are then 
calculated on this newly defined space.  
 

𝒙𝒏𝒆𝒘 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

,
2#

0 0 0 0

0 ,
2!

0 0 0

0 0 ,
2'

0 0

0 0 0 ,
2(

0

0 0 0 0 ,
2)⎠

⎟
⎟
⎟
⎟
⎟
⎞

𝒙𝒊𝒏𝒊𝒕  [S8] 

 
 
 
 

 
Figure S6. Performance of the RBF and Matérn kernels on the testing sets from repeated 5-fold cross-

validation. Displayed are boxplots of the final R2, mean absolute error (MAE), and root mean square error 
(RMSE) values between the predicted and actual DU values in the dataset. Solid red lines represent the 

median of the dataset, while the dotted green lines correspond to the mean. 
 

The overall performance of the four kernel functions was investigated through a repeated (40×) k-
fold (k=5) cross-validation (Figure S6). Here, initial length-scale hyperparameters for the Gaussian 
Process kernel functions (Equation S6 and S7) were set the mean value of each dimension and 
bound by a factor of 10 above and below the minimum and maximum values of that dimension, 
respectively. The i.i.d noise hyperparameter was initialized at 0.001 and bound with a maximum 
value of 1.0 to avoid over-fitting of the noise parameter. Final kernel hyperparameters were found 
within these bounds by maximizing the log-marginal likelihood of data during the fitting process. 
Based on the resulting R2, MAE, and RMSE values for the testing sets, the RBF and Matérn kernels 
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have similar performance for the when predicting DU values for UO##"extraction with DEHiBA. 
This is expected as the kernels represent very similar structure with their differences primarily 
being in function differentiability. Therefore, to compare this factor further, selected regions of the 
dataset were examined to investigate how each Gaussian Process model performs in predicting DU 
when varying each input parameter. As depicted in Figure S7, the RBF kernel results in a smooth 
function prediction as the kernel is infinitely differentiable. When transitioning to the Matérn 
kernel class, these functions become rougher, as they correspond to twice differentiable (n=5 20 ), 
once differentiable (n=3 20 ), and an absolute exponential kernel (n=1 20 ). As the anisotropic RBF 
kernel appears to interpolate between reported DU values the best, this kernel function was elected 
to for further Bayesian Optimization development (Section S2c) involving this dataset. However, 
based on the results in Figure S6 and Figure S7, similar outcomes may be expected between the 
RBF and Matérn kernels. 
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Figure S7. Performance of the various kernel functions with varying (A) Extractant Concentration, (B) 
Metal Concentration, (C) Acid Concentration, and (D) Temperature. Here, the Gaussian Process model 

was trained on the whole dataset before prediction on specified regions with a single varied input 
parameter. Shaded regions represent the 95% confidence region for the Gaussian Process mean posterior 

prediction.   
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S3c. Virtual Optimization Campaigns for UO22+ Extraction by DEHiBA  
 

 
Figure S8. (Top) Representative schematic of the virtual Bayesian Optimization campaigns performed for 

the extraction of UO!!" by DEHiBA. (Bottom) Results from these campaigns using various acquisition 
functions. Lighter lines correspond to one of the 75 virtual campaigns while the dark bolded lines 

correspond to the average of these tests.   
 

To further develop the Bayesian Optimization methodology for our work, the performance of 
various acquisition functions was examined through virtual optimization campaigns of UO##" 
extraction by DEHiBA (Figure S8). Three acquisition function types were evaluated based on their 
selection criteria: (1) Kriging Believer36-38, (2) Thompson Sampling39, 40, and (3) Distance 
Exploration41, and compared to randomly selecting experiments to generate a new batch. 
Pseudocodes for each acquisition function are provided in Section S4. It is observed both the 
Kriging Believer and Thompson Sampling methods, on average, find the maximum DU value after 
the ~8th cycle. This corresponds to needing to perform (at most) 90 total experiments or sampling 
~37% of the experimental space (244 total experiments) compared to the Distance Exploration and 
random selection methods, which both needed to sample almost the entire experimental space 
before finding the maximum DU value.  
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Figure S9. (Left) Measured DU of the first 90 selected experiments from a selected toy experiment on the 

U(VI)/D2EHiBA dataset. (Right) Density plot of the measured DU values from these first 90 selected 
experiments.  

 
To further show the utility of Bayesian Optimization for actinide separations, the DU values of the 
first 90 selected conditions from a single virtual optimization campaign is presented in Figure S9. 
The density plots indicate that the Kriging Believer and Thompson Sampling methodologies 
prioritize sampling experiments with DU values > 2.0, whereas the Distance Explorer and random 
sampling methods favor sampling of DU values < 2.0 during this same time frame. These results 
follow what has previously been observed in chemical reaction optimization.42  
 
Due to these encouraging results, this Bayesian Optimization methodology using the anisotropic 
RBF kernel for Gaussian Process modeling and the Kriging Believer acquisition function was 
applied to optimize solvent extraction of the Th@" cation with DEHBA. Here, we note that each 
unique solvent extraction experiment of Th@" with DEHBA was performed in triplicate. 
Therefore, the Gaussian Process model was fit to the experimentally measured mean DTh value, 
while the measured variance was used for input noise.34 This removed the need for the additional 
i.i.d noise kernel used in Equation S6.  
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S4. Acquisition Functions 
 
Pseudocode for the Kriging Believer, Thompson Sampling, and Pure Exploration acquisition are 
given below. 
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S5. Bayesian Optimization for 𝐓𝐡(𝐚𝐪)𝟒6  Extraction with DEHBA containing an 
Anomalous Experiment 
 

 
Figure S10. (Top) Sampling locations and measured DTh values across the four-dimensional experimental 

input space after four Bayesian Optimization cycles on the extraction of Th($%)
'"  by DEHBA in 20v% 

TBP/n-dodecane organic phase. (Middle) Sampling and measured DTh values after expansion of the input 
space into 6.0 M [HNO3(aq)]. In the top and middle sections, the location of the anomalous experiment 

with DTh = 6.58 ± 0.05 is shown in green. (Bottom) Heat map showing the predicted DTh values from the 
final Gaussian Process model after all six Bayesian Optimization cycles were complete.  
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Figure S10 provides the initial four-dimensional experimental input space which was generated to 
evaluate the extraction of  Th(&')@"  from aqueous nitric acid solutions into an organic solution 
composed of DEHBA dissolved in 20v% TBP/n-dodecane. After  four experimental cycles, 
initially a maximum DTh value of 6.58 ± 0.05 was observed using the experimental conditions of 
[Th(4A)@" ] = 4.0 mM, [HNO$(&')] = 5.0 M, [DEHBA(BCD)] = 40 mM, and temperature = 25°C. A fifth 
batch of predicted experimental conditions was generated from the measurements which resulted 
in a single a single DTh prediction of 4.50 while all other values were < 2.80. Since none of these 
conditions were expected to improve upon our current maximum DTh value (6.58 ± 0.05), and the 
Gaussian Process model showed good prediction inside the experimental space (Cycle 4, Figure 
S11a), we explored conditions beyond the initial experimental bounds in an effort to exceed our 
currently highest measured DTh value. Here, the Gaussian Process model predicted that nitric acid 
concentrations higher than 5.0 M could yield even higher DTh values, therefore, a new experimental 
batch using a tighter grid centered around the 6.58 ± 0.05 value and expanding out 6.0 M 
[HNO$(&')] was generated. Upon measurement of the new batch, no DTh values were observed > 
4.03, (Figure S10) and there was a drastic decrease in the model performance (Cycle 5, Figure 
S11a). As many of these measurements were performed at experimental conditions similar to those 
that achieved the 6.58 ± 0.05 value, it was suspected that this may have resulted from an anomalous 
experiment and was contaminating the Gaussian Process model. To investigate this further, the 
6.58 experiment was removed from the dataset and Gaussian Process model retraining was 
performed at each cycle again. This resulted in improved predictions in Cycles 4-5 (Figure S11a 
vs Figure S11b), strongly suggesting an experimental anomaly, likely arising from an error in the 
accuracy in the robotic liquid dispensing. With the 6.58 datapoint removed from the dataset, one 
final experimental batch was generated and run to verify good model performance (Cycle 6, Figure 
S9b) and convergence of the DTh values inside the newly expanded experimental space with 
maxima ~4.0.   
 
We do note that the MAE values for the Gaussian Process predictions increase Cycles 5 and 6 
compared to Cycle 4, even with the anomalous experiment removed. These cycles represent the 
point in our experimental work where the experimental space was expanded beyond the initial 
boundary of 5.0 M HNO3. Gaussian Processes are well-known for their poor extrapolation 
behavior, and standard kernel functions like the RBF kernel used in this work will always 
extrapolate back to their prior mean function as they extend beyond observed data points. Of the 
72 unique experiments performed in cycles 5 and 6, 53 were located outside the original bounds 
of our experimental space. Therefore, we believe the drop in performance is due to the poor 
extrapolation behavior of the model. 
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Figure S11. (A) Measured vs. predicted DTh values for the six experimental cycles of Bayesian 

Optimization for Th($%)
'"  extraction by DEHBA. Here, the anomalous experiment is shown in Cycle 2. (B) 

Measured vs. predicted DTh values for the six experimental cycles after removing the anomalous 
experiment and retraining the Gaussian Process model at each cycle. Error bars represent a single 

standard deviation from the predicted and measured values. 

 

 

 

 

 

S6. Comparison of Different Experimental Optimization Techniques 
 
To compare the efficiency of the Bayesian Optimization approach in identifying the optimal 
separation conditions, different experimental sampling techniques were explored for reaction 
optimization. Here, the final Gaussian Process model predictions (Figure 4 in main text) were used 
as a surrogate response surface of our initial experimental space. Initially, we examined the 
performance of one-factor-at-a-time (OFAT) sampling, and random sampling compared to 
Bayesian Optimization. To simulate OFAT sampling of the experimental space, a random variable 
was initially chosen as the independent variable while the remaining three variables were held 
constant (initial values were also randomly chosen). After sampling through the independent 
variable’s values, the maximum location of the ‘measured’ DTh was identified and held constant 
while sampling through the next variable. This process was repeated until all four variables were 
sampled. An example of this approach, representing a total of 20 experiments performed in a single 
OFAT cycle is shown in Table S2. If the maximum DTh was not identified, then the OFAT cycles 
were repeated while using checks to make sure similar independent/constant variable combinations 
were not performed more than once.  
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Table S2. Example sampling locations and measured DTh values for one-factor-at-a-time (OFAT) 
experiment. 

Exp ID [Th]feed [HNO3(aq)] (M) [DEHBA(org)] (mM) Temperature (°C) DTh 

1 2.00 0.10 10.00 25.00 0.17 
2 2.00 1.00 10.00 25.00 0.11 
3 2.00 2.00 10.00 25.00 0.29 
4 2.00 3.00 10.00 25.00 0.60 
5 2.00 4.00 10.00 25.00 0.74 
6 2.00 5.00 10.00 25.00 0.55 
7 2.00 4.00 5.00 25.00 0.57 
8 2.00 4.00 10.00 25.00 0.74 
9 2.00 4.00 20.00 25.00 1.09 
10 2.00 4.00 30.00 25.00 1.38 
11 2.00 4.00 40.00 25.00 1.51 
12 2.00 4.00 50.00 25.00 1.44 
13 0.10 4.00 40.00 25.00 0.31 
14 1.00 4.00 40.00 25.00 0.18 
15 2.00 4.00 40.00 25.00 1.51 
16 3.00 4.00 40.00 25.00 2.94 
17 4.00 4.00 40.00 25.00 3.63 
18 5.00 4.00 40.00 25.00 2.64 
19 4.00 4.00 40.00 25.00 3.63 
20 4.00 4.00 40.00 75.00 3.78 

 
 
As a single OFAT cycle refers to a total of 20 experiments, virtual Bayesian Optimization and 
random sampling campaigns were examined using a batch size of 20 at cycle. The virtual OFAT, 
Bayesian Optimization, and random sampling optimization campaigns were then performed a total 
of 75 times to examine, on average, how quickly the optimal experimental conditions could be 
identified. This was needed as the initial batch for each virtual campaign was randomly generated. 
Results comparing each of the approaches are provided in Figure S12. 
 

 
Figure S12. Virtual optimization campaigns using Bayesian Optimization, One-Factor-At-a-Time, and 

Random sampling techniques. On average, optimization was found after 3, 6, and 11 experimental cycles 
for Bayesian Optimization, OFAT, and Random sampling, respectively. 
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Lastly, we examined the performance of response surface modeling using a Design of Experiments 
full-factorial sampling technique. Here, different factorial levels (2-4) were used to determine the 
sampling locations along the experimental space, while the results were fit using both quadratic 
and cubic polynomial functions. During the fitting process, all main effect terms (the input 
variables) were kept, while interaction terms which contained insignificant p-values (>0.10) were 
removed from the final equation. Figure S13 shows the final predictions from the fitted polynomial 
functions compared the actual DTh on the surrogate response surface. As expected, increasing the 
factorial level and degree of the polynomial function improved the fitting, but even with a four-
level factorial sampling (256 experiments), the location of highest DTh value predicted by a cubic 
polynomial is not the same as the optimal DTh value on the surrogate response surface. Such an 
effect shows the advantage of using a nonparametric modeling technique (such as a Gaussian 
Process) for modeling experimental response surfaces and applying those results to efficiently 
identifying the optimal conditions.   
 

 
Figure S13. Actual vs. Predicted DTh values from the fitted polynomials based on full factorial sampling.   
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S7. Measured DTh Values at Various Conditions 
 

Table S3. Complete list of the unique conditions, measured, and predicted DTh values for the Th($%)
'"  

liquid-liquid extraction experiments 
Exp 
ID 

[Th(IV)] 
(mM) 

[HNO3] 
(M) 

[DEHBA] 
(mM) 

Temperature 
(°C) 

Exp 
D avg 

Exp 
s 

ML 
Pred D 

ML 
Pred s ∆D  

1 0.10 0.10 5.00 25.00 0.71 0.31 *** *** *** 

C
ycle 0  

2 0.10 5.00 5.00 25.00 0.08 0.04 *** *** *** 
3 0.10 0.10 30.00 25.00 0.70 0.74 *** *** *** 
4 0.10 5.00 30.00 25.00 0.10 0.04 *** *** *** 
5 13.00 0.10 5.00 25.00 0.68 0.93 *** *** *** 
6 41.00 5.00 5.00 25.00 0.42 0.18 *** *** *** 
7 12.00 0.10 30.00 25.00 0.79 0.45 *** *** *** 
8 78.00 5.00 30.00 25.00 2.68 1.39 *** *** *** 
9 0.10 0.10 5.00 75.00 0.57 0.53 *** *** *** 
10 0.10 5.00 5.00 75.00 0.04 0.01 *** *** *** 
11 0.10 0.10 30.00 75.00 0.24 0.29 *** *** *** 
12 0.10 5.00 30.00 75.00 0.09 0.02 *** *** *** 
13 5.00 0.10 5.00 75.00 0.79 0.20 *** *** *** 
14 16.00 5.00 5.00 75.00 0.91 1.24 *** *** *** 
15 5.00 0.10 30.00 75.00 0.54 0.21 *** *** *** 
16 16.00 5.00 30.00 75.00 3.29 2.64 *** *** *** 
17 5.00 5.00 50.00 25.00 2.78 0.39 0.16 0.04 2.62 

C
ycle 1  

18 5.00 0.10 50.00 25.00 0.83 0.22 0.59 0.12 0.24 
19 0.10 0.10 50.00 25.00 0.86 0.25 0.57 0.12 0.30 
20 5.00 2.00 10.00 25.00 1.14 0.34 0.46 0.17 0.68 
21 2.00 0.10 5.00 25.00 0.44 0.01 0.57 0.11 0.13 
22 3.00 1.00 50.00 25.00 0.34 0.08 0.55 0.14 0.21 
23 0.10 1.00 10.00 25.00 0.33 0.14 0.52 0.14 0.19 
24 0.10 1.00 50.00 25.00 0.48 0.15 0.53 0.15 0.05 
25 0.10 2.00 5.00 25.00 0.27 0.12 0.42 0.18 0.16 
26 0.10 5.00 50.00 25.00 0.47 0.14 0.12 0.03 0.35 
27 2.00 0.10 10.00 25.00 0.17 0.01 0.57 0.11 0.40 
28 2.00 0.10 50.00 25.00 0.28 0.15 0.57 0.12 0.29 
29 2.00 2.00 5.00 25.00 0.35 0.04 0.44 0.17 0.09 
30 2.00 5.00 10.00 25.00 0.55 0.12 0.08 0.02 0.47 
31 2.00 5.00 50.00 25.00 1.08 0.13 0.14 0.04 0.94 
32 3.00 2.00 20.00 25.00 0.36 0.05 0.45 0.17 0.09 
33 5.00 3.00 50.00 25.00 2.33 0.24 0.37 0.17 1.95 
34 5.00 5.00 10.00 25.00 1.35 0.24 0.10 0.03 1.24 
35 5.00 5.00 50.00 75.00 1.30 0.36 2.58 0.27 1.28 C

ycle 2  

36 5.00 5.00 40.00 75.00 1.30 0.24 2.50 0.28 1.20 
37 5.00 4.00 50.00 75.00 1.53 0.05 2.43 0.22 0.90 
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38 5.00 4.00 40.00 25.00 3.36 0.36 2.35 0.22 1.01 
39* 4.00 5.00 40.00 25.00 6.58 0.05 2.11 0.23 4.48 
40 5.00 3.00 20.00 75.00 0.94 0.25 1.52 0.20 0.58 
41 3.00 5.00 5.00 75.00 0.14 0.04 0.81 0.18 0.67 
42 5.00 2.00 40.00 75.00 1.33 0.11 1.58 0.18 0.25 
43 2.00 3.00 50.00 25.00 1.36 0.09 0.67 0.15 0.69 
44 4.00 0.10 5.00 75.00 0.01 0.00 0.63 0.15 0.62 
45 4.00 3.00 5.00 75.00 0.65 0.32 0.96 0.18 0.31 
46 1.00 0.10 50.00 25.00 0.35 0.06 0.36 0.12 0.01 
47 4.00 2.00 50.00 25.00 2.69 0.08 1.20 0.12 1.49 
48 3.00 4.00 40.00 25.00 4.85 0.84 1.27 0.15 3.57 
49 1.00 2.00 5.00 75.00 0.11 0.02 0.24 0.09 0.13 
50 1.00 0.10 10.00 25.00 0.73 0.15 0.26 0.08 0.47 
51 1.00 5.00 5.00 75.00 0.16 0.02 0.21 0.08 0.05 
52 3.00 0.10 5.00 75.00 0.04 0.00 0.48 0.11 0.44 
53 4.00 5.00 50.00 25.00 4.02 0.14 6.38 0.33 2.36 

C
ycle 3  

54 4.00 5.00 50.00 75.00 3.52 0.14 4.75 0.61 1.23 
55 3.00 5.00 50.00 25.00 4.03 0.18 4.46 0.59 0.43 
56 4.00 4.00 40.00 25.00 3.30 0.15 5.89 0.19 2.59 
57 4.00 5.00 30.00 25.00 4.15 0.04 5.88 0.28 1.73 
58 3.00 3.00 50.00 75.00 1.96 0.16 2.39 0.77 0.43 
59 4.00 5.00 30.00 75.00 3.61 0.15 4.11 0.53 0.50 
60 3.00 5.00 30.00 25.00 2.58 0.49 3.79 0.48 1.20 
61 1.00 4.00 50.00 75.00 0.16 0.05 0.22 0.74 0.07 
62 4.00 0.10 50.00 75.00 0.60 0.28 -0.01 0.73 0.60 
63 2.00 4.00 30.00 75.00 1.35 0.12 0.51 0.70 0.84 
64 4.00 0.10 30.00 25.00 0.28 0.04 -0.12 0.61 0.40 
65 4.00 3.00 40.00 75.00 3.17 0.17 3.31 0.55 0.14 
66 0.10 3.00 50.00 75.00 0.43 0.08 0.26 0.55 0.17 
67 4.00 5.00 5.00 75.00 1.06 0.17 1.00 0.55 0.07 
68 3.00 0.10 30.00 75.00 0.02 0.02 -0.63 0.62 0.65 
69 3.00 4.00 50.00 25.00 2.93 0.10 4.02 0.53 1.10 
70 3.00 4.00 30.00 75.00 2.38 0.43 2.30 0.67 0.08 
71 2.00 2.00 30.00 75.00 0.26 0.08 0.15 0.66 0.11 
72 2.00 4.00 5.00 75.00 0.55 0.05 -0.06 0.48 0.61 
73 4.00 4.00 50.00 75.00 3.93 0.24 4.32 0.58 0.39 
74 3.00 3.00 5.00 75.00 0.22 0.06 -0.05 0.38 0.27 
75 4.00 2.00 30.00 25.00 1.52 0.08 2.32 0.40 0.80 
76 4.00 4.00 30.00 75.00 3.46 0.05 3.69 0.52 0.23 
77 4.00 5.00 40.00 75.00 3.57 0.28 4.78 0.53 1.21 
78 3.00 5.00 40.00 25.00 4.04 0.15 5.33 0.49 1.29 C

ycle 4 

79 3.00 5.00 50.00 75.00 2.16 0.20 3.32 0.70 1.15 
80 3.00 4.00 40.00 75.00 2.41 0.11 3.40 0.67 0.99 
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81 4.00 4.00 5.00 25.00 0.23 0.03 0.83 1.04 0.60 
82 2.00 4.00 30.00 25.00 1.30 0.10 1.09 0.92 0.21 
83 0.10 0.10 50.00 75.00 0.65 0.36 0.36 1.09 0.29 
84 5.00 3.00 30.00 25.00 1.50 0.04 1.39 0.90 0.11 
85 4.00 2.00 50.00 75.00 2.54 0.34 1.75 0.85 0.78 
86 3.00 5.00 30.00 75.00 1.64 0.33 2.66 0.64 1.03 
87 5.00 4.00 5.00 75.00 0.71 0.26 1.06 0.90 0.35 
88 5.00 2.00 5.00 75.00 0.69 0.15 0.66 0.97 0.03 
89 5.00 2.00 50.00 25.00 1.26 0.04 2.49 0.67 1.23 
90 5.00 1.00 30.00 25.00 0.88 0.07 0.89 0.91 0.02 
91 3.00 3.00 40.00 25.00 1.71 0.16 1.84 0.77 0.13 
92 1.00 4.00 5.00 25.00 0.31 0.04 0.52 0.93 0.21 
93 2.00 2.00 50.00 75.00 0.79 0.30 0.09 0.98 0.70 
94 4.00 2.00 5.00 25.00 0.24 0.01 0.65 0.89 0.41 
95 5.00 3.00 5.00 25.00 0.60 0.08 0.87 0.95 0.27 
96 5.00 1.00 50.00 75.00 1.59 0.38 0.81 0.92 0.78 
97 4.00 1.00 30.00 75.00 1.02 0.56 0.62 0.86 0.40 
98 3.00 3.00 30.00 75.00 1.97 0.32 1.73 0.71 0.24 
99 2.00 1.00 5.00 75.00 0.34 0.13 0.28 0.82 0.06 
100 3.00 4.00 30.00 25.00 1.88 0.04 1.68 0.74 0.20 
101 4.00 4.00 40.00 75.00 3.76 0.09 3.87 0.42 0.10 
102 1.00 0.10 30.00 75.00 0.59 0.17 0.13 0.79 0.46 
103 1.00 0.10 5.00 75.00 0.39 0.06 0.63 0.77 0.24 
104 5.00 4.00 50.00 25.00 2.13 0.16 2.08 0.54 0.04 
105 2.00 5.00 30.00 75.00 1.12 0.05 1.09 0.84 0.03 
106 3.00 4.00 5.00 25.00 0.13 0.09 0.53 1.02 0.39 
107 4.00 1.00 50.00 25.00 1.70 0.15 1.36 0.56 0.35 
108 2.00 4.00 50.00 75.00 1.00 0.63 1.12 0.67 0.12 
109 4.00 4.00 50.00 25.00 2.60 0.64 2.72 0.46 0.12 
110 4.00 4.00 30.00 25.00 1.77 0.06 2.16 0.61 0.39 
111 1.00 5.00 30.00 75.00 0.40 0.27 0.35 0.68 0.05 
112 5.00 0.10 5.00 25.00 0.54 0.03 0.47 1.08 0.07 
113 5.00 5.00 30.00 25.00 2.27 0.05 3.37 0.71 1.10 
114 4.00 5.30 40.00 25.00 3.94 0.30 6.82 0.18 2.88 

C
ycle 5 

115 3.85 5.30 40.50 25.00 3.62 0.52 6.74 0.20 3.12 
116 3.95 5.30 39.00 25.00 2.41 0.22 6.79 0.18 4.38 
117 4.00 5.25 40.00 25.00 3.69 0.20 6.81 0.15 3.12 
118 4.00 5.35 40.00 25.00 3.97 0.39 6.81 0.21 2.84 
119 4.10 5.30 39.50 25.00 4.00 0.21 6.77 0.19 2.77 
120 4.00 5.25 40.50 25.00 3.92 0.22 6.80 0.15 2.88 
121 3.95 5.25 40.00 25.00 3.74 0.14 6.81 0.15 3.07 
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122 3.55 6.00 47.50 25.00 3.66 0.32 4.07 0.67 0.41 
123 5.00 6.00 43.00 25.00 3.73 0.42 3.01 0.76 0.72 
124 4.30 6.00 34.00 25.00 2.42 0.10 4.58 0.67 2.16 
125 3.35 6.00 38.00 25.00 2.42 0.14 4.14 0.68 1.72 
126 4.00 5.30 40.50 25.00 3.87 0.16 6.81 0.18 2.93 
127 5.00 4.20 30.00 25.00 1.30 0.14 1.77 0.36 0.48 
128 3.95 5.20 40.00 25.00 3.61 0.13 6.78 0.12 3.18 
129 5.00 4.95 41.00 25.00 3.84 0.04 3.96 0.39 0.12 
130 3.95 5.30 40.00 25.00 3.63 0.11 6.81 0.18 3.19 
131 4.00 5.35 40.50 25.00 3.76 0.27 6.80 0.21 3.04 
132 3.00 6.00 30.00 25.00 3.88 0.65 1.77 0.74 2.11 
133 3.00 4.60 39.50 25.00 1.78 0.22 3.82 0.21 2.03 
134 5.00 5.75 30.00 25.00 1.26 0.12 2.07 0.55 0.82 
135 4.55 6.00 50.00 25.00 4.01 0.11 2.77 0.70 1.24 
136 4.05 5.25 40.50 25.00 3.94 0.27 6.78 0.15 2.84 
137 4.00 5.25 39.50 25.00 3.91 0.37 6.80 0.15 2.89 
138 3.95 5.25 40.50 25.00 3.83 0.29 6.80 0.15 2.97 
139 3.95 5.35 40.00 25.00 3.60 0.17 6.81 0.21 3.21 
140 3.05 4.00 30.00 25.00 1.16 0.13 1.88 0.04 0.72 
141 4.10 6.00 41.00 25.00 3.90 0.29 5.48 0.65 1.58 
142 3.70 4.90 44.00 25.00 3.71 0.22 5.87 0.18 2.17 
143 3.00 5.55 44.00 25.00 3.37 0.15 3.94 0.39 0.58 
144 4.30 4.00 50.00 25.00 2.97 0.10 2.59 0.32 0.39 
145 4.05 5.20 39.50 25.00 3.77 0.21 6.77 0.12 3.00 
146 3.95 5.30 40.50 25.00 3.61 0.09 6.80 0.18 3.20 
147 4.00 5.30 39.50 25.00 4.02 0.20 6.81 0.18 2.79 
148 5.00 4.00 43.00 25.00 3.01 0.34 3.02 0.27 0.01 
149 4.00 5.30 41.00 25.00 3.65 0.11 6.78 0.18 3.13 
150 4.75 5.75 45.00 25.00 3.74 0.25 1.26 1.28 2.48 

C
ycle 6 

151 4.00 6.00 20.00 25.00 3.57 0.17 1.31 1.14 2.25 
152 4.00 6.00 30.00 25.00 3.48 0.17 2.08 0.40 1.40 
153 3.25 6.00 50.00 25.00 3.99 0.16 2.86 0.50 1.13 
154 3.75 4.25 50.00 25.00 3.28 0.13 0.58 1.36 2.70 
155 4.75 6.00 47.50 25.00 4.22 0.17 4.06 0.21 0.17 
156 3.00 6.00 50.00 25.00 4.05 0.06 2.33 0.64 1.73 
157 4.75 4.75 47.50 25.00 4.11 0.11 0.38 1.24 3.73 
158 4.25 6.00 47.50 25.00 4.12 0.13 4.33 0.20 0.21 
159 3.75 6.00 30.00 25.00 3.42 0.06 2.29 0.46 1.14 
160 3.75 6.00 50.00 25.00 3.77 0.30 3.76 0.33 0.01 
161 3.50 4.00 50.00 25.00 3.15 0.04 3.26 0.20 0.11 
162 5.00 6.00 45.00 25.00 4.06 0.15 3.73 0.34 0.33 
163 4.00 5.75 30.00 25.00 3.51 0.19 1.23 1.01 2.27 
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164 4.50 6.00 45.00 25.00 3.86 0.10 4.28 0.23 0.41 
165 3.50 6.00 50.00 25.00 3.63 0.15 3.35 0.40 0.28 
166 4.75 2.75 40.00 25.00 2.25 0.16 0.38 1.37 1.87 
167 4.00 4.00 20.00 25.00 3.24 0.45 0.56 0.86 2.68 
168 3.50 4.50 47.50 75.00 2.57 0.33 0.66 1.29 1.91 
169 3.00 6.00 50.00 75.00 2.50 0.28 1.69 1.06 0.81 
170 4.50 6.00 50.00 75.00 2.91 0.10 2.94 0.95 0.04 
171 3.75 4.50 47.50 75.00 2.79 0.51 0.58 1.31 2.21 
172 4.25 4.75 42.50 75.00 2.43 0.11 0.42 1.24 2.02 
173 4.00 6.00 20.00 75.00 1.84 0.05 0.96 1.26 0.89 
174 3.00 6.00 40.00 75.00 2.62 0.12 1.49 0.98 1.13 
175 3.50 2.00 40.00 75.00 1.21 0.31 1.96 0.94 0.75 
176 3.00 6.00 20.00 75.00 1.93 0.28 1.64 1.24 0.30 
177 3.25 6.00 45.00 75.00 2.98 0.63 2.01 0.98 0.97 
178 4.25 3.25 30.00 75.00 1.44 0.03 0.35 1.37 1.09 
179 3.75 2.50 50.00 75.00 1.36 0.15 0.00 1.38 1.35 
180 4.00 6.00 30.00 75.00 1.82 0.04 1.51 0.99 0.31 
181 3.50 6.00 40.00 75.00 2.61 0.25 2.06 0.96 0.56 
182 4.50 2.00 50.00 75.00 1.36 0.04 2.05 0.47 0.69 
183 2.00 6.00 40.00 75.00 1.92 0.35 0.64 1.25 1.28 
184 3.25 6.00 30.00 75.00 1.86 0.05 1.89 1.01 0.03 
185 4.00 5.25 45.00 75.00 2.56 0.14 2.65 0.98 0.09 

* Represents the anomalous experiment 
*** No ML-predictions were made as this was the beginning experimental cycle. 
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