Supplementary Information

O'Connell et al.

Figure S1	page 2
Figure S2	page 3
Figure S3	page 4
Video S1	page 5
Video S2	page 5
Video S3	page 6
Video S4	page 6
Video S5	page 7
Video S6	page 7
Table S1	page 8
Table S2	page 8
Table S3	pages 8-9
References	page 10

Supplementary Figures:

Supplementary Figure 1

Figure S1: PLAAC Analysis of proteins. The protein sequences of (a) hnRNPAB X2 and (b) PTBP3 were analyzed using Prion-Like Amino Acid Composition (PLAAC)¹ to identify prion-

like domains. The program identified a region at the C-terminus of hnRNPAB X2 as having a high degree of prion-like character (highlighted in red). PTBP3 was not found to have significant prion-like character.

Figure S2: Expression of hnRNPAB X2 domain constructs in oocytes. Lysates were prepared from stage II oocytes injected with RNA transcribed from mCh-hnRNPAB X2 full-length (FL, lane 1), mCh-hnRNPAB X2-RBD (lane 2), mCh-hnRNPAB X2-IDR constructs, and uninjected control oocytes (lane 4). The constructs are diagrammed in Figure 2a. Immunoblot analysis was carried out using anti-RFP to detect the expressed proteins. The sizes (in kD) of molecular weight standards (lanes M) are indicated at the right.

Supplementary Figure 3

Figure S3: Ouantitation of hnRNPAB X2 condensates formed in vitro. (a-f) Fluorescent micrographs of (a, d) full-length hnRNPA2 X2, (b. e) hnRNPAB X2 IDR, and (c, f) hnRNPAB X2 RBD proteins at 12.5 µM in 20 mM NaPi, pH 7.4, 150 mM NaCl, 10% PEG, in the absence (a-c) or the presence (d-f) of 0.25 mg/mL Xenopus β -globin (X β G) RNA. After cleavage of the MBP tags with TEV protease, phase separation was carried out the presence of 25 µM Thioflavin T for fluorescent labeling. Images are representative from three or more biological replicates (with independently expressed and purified protein) and three or more technical replicates. Scale bars=10 µm. (g-i) Circularity of the condensates was analyzed using the ImageJ Analyze Particles plugin on a scale of 0-1.0 arbitrary units, with 1.0 representing a perfect circle, for (g) full-length hnRNPA2 X2 (green), (h) hnRNPAB X2 IDR (blue), and (i) hnRNPAB X2 RBD (orange) at 5, 12.5, 25, and 50 µM protein concentrations in the presence (+RNA, hatched bars) and absence (-RNA, open bars) of 0.25 mg/mL Xenopus β-globin RNA. (j-l) Average size (in μm) of the condensates was determined using the ImageJ Analyze Particles plugin for (j) full-length hnRNPA2 X2 (green), (k) hnRNPAB X2 IDR (blue), and (l) hnRNPAB X2 RBD (orange) at 5, 12.5, 25, and 50 µM protein concentrations in the presence (+RNA, hatched bars) and absence (-RNA, open bars) of 0.25 mg/mL Xenopus β-globin RNA. (g-l) Error bars represent standard error of the mean, **** indicates p < 0.0001, *** indicates p < 0.001, ** indicates p < 0.001, * indicates p < 0.05, and all brackets not shown are not significant (p > 0.05). Statistics shown are an ordinary two-way ANOVA followed by Tukey's multiple comparisons.

Supplementary Video Legends:

Videos S1: Time-lapse video of hnRNPAB X2 RBD condensates. Condensates were formed at room temperature by incubation of 50 μ M hnRNPAB X2 RBD in 20 mM NaPi, pH 7.4, 150 mM NaCl, followed by treatment with 0.03 mg/ml TEV protease. Condensates were imaged on a Nikon Ti2-E Fluorescence microscope, using a 20× objective, with frames collected every 0.6 sec. Shown are videos of hnRNPAB X2 RDB condensates (a) fusing and (b) wetting the slide, beginning 20 min. after TEV addition; the display rate is 7 frames per sec.

Videos S2: Time-lapse video of hnRNPAB X2 RBD condensates in the presence of RNA. Condensates were formed at room temperature by incubation of 50 μ M hnRNPAB X2 RBD with 0.25 mg/mL *Xenopus* β -globin RNA in 20 mM NaPi, pH 7.4, 150 mM NaCl, followed by treatment with 0.03 mg/ml TEV protease. Condensates were imaged on a Nikon Ti2-E Fluorescence microscope, using a 20× objective, with frames collected every 0.6 sec. Shown are videos of hnRNPAB X2 RDB condensates (a) fusing and (b) wetting the slide, beginning 20 min. after TEV addition; the display rate is 7 frames per sec.

Video S3: Time-lapse video of hnRNPAB X2 condensates. Condensates were formed at room temperature by incubation of 50 μ M hnRNPAB X2 in 20 mM NaPi, pH 7.4, 150 mM NaCl, followed by treatment with 0.03 mg/ml TEV protease. Condensates were imaged on a Nikon Ti2-E Fluorescence microscope, using a 20× objective, with frames collected every 0.6 sec. Shown are videos of hnRNPAB X2 condensates, beginning 20 min. after TEV addition; the display rate is 7 frames per sec.

Video S4: Time-lapse video of hnRNPAB X2 condensates in the presence of RNA. Condensates were formed at room temperature by incubation of 50 μ M hnRNPAB X2 with 0.25 mg/mL *Xenopus* β -globin RNA in 20 mM NaPi, pH 7.4, 150 mM NaCl, followed by treatment with 0.03 mg/ml TEV protease. Condensates were imaged on a Nikon Ti2-E Fluorescence microscope, using a 20× objective, with frames collected every 0.6 sec. Shown are videos of hnRNPAB X2 condensates, beginning 20 min. after TEV addition; the display rate is 7 frames per sec. Video S4: Time-lapse video of hnRNPAB X2 IDR condensates. Condensates were formed at room temperature by incubation of 50 μ M hnRNPAB X2 IDR in 20 mM NaPi, pH 7.4, 150 mM NaCl, followed by treatment with 0.03 mg/ml TEV protease. Condensates were imaged on a Nikon Ti2-E Fluorescence microscope, using a 20× objective, with frames collected every 0.6 sec. Shown are videos of hnRNPAB X2 IDR condensates, beginning 20 min. after TEV addition; the display rate is 7 frames per sec.

Video S6: Time-lapse video of hnRNPAB IDR condensates in the presence of RNA. Condensates were formed at room temperature by incubation of 50 μ M hnRNPAB IDR with 0.25 mg/mL *Xenopus* β -globin RNA in 20 mM NaPi, pH 7.4, 150 mM NaCl, followed by treatment with 0.03 mg/ml TEV protease. Condensates were imaged on a Nikon Ti2-E Fluorescence microscope, using a 20× objective, with frames collected every 0.6 sec. Shown are videos of hnRNPAB X2 IDR condensates, beginning 20 min. after TEV addition; the display rate is 7 frames per sec.

Supplementary Tables:

Supplementary Table 1

Protein Classification	% of L-body proteome	% of L-body IDR-containing proteins
No IDR	53%	n/a
Non-Prion-Like IDR	17%	37%
Prion-Like IDR	29%	63%

Table S1: Survey of L-body proteome for prion-like character. Using the L-body proteome¹ (n=86 proteins), L-body protein sequences available in Xenbase² were analyzed using PLAAC¹ to identify predicted IDRs and prion-like character. Proteins were rated as either having no IDR, a prion-like IDR, or a non-prion-like IDR, and percentages of the L-body proteome as a whole were generated based on these counts.

Supplementary Table 2

Antibody	Source
Rabbit polyclonal anti-RFP	Abcam (ab62341)
Rabbit polyclonal anti-40LoVe	K. Czaplinski ³
Goat anti-rabbit AF546	Thermofisher (11010)

Table S2: Antibodies used in this study. The name of the antibody and the antigen are specified on the left, and the source is shown on the right.

Supplementary Table 3

Primer	Sequence
X2AB_FL_Fwd_GibsonCherry	GTACAAGAGATCTGATCATGCCATGGGGGCCCATG TCCGACACCGAGCAGC
X2AB_RBD_Fwd_GibsonCherry	GTACAAGAGATCTGATCATGCCATGGGGCCCAAA ATGTTTGTTGGTGGCTTGAGCTG
X2AB_IDR_Fwd_GibsonCherry	GTACAAGAGATCTGATCATGCCATGGGGGCCCAAA GAAGTGTATCAGCAACAGTATGGCG

X2AB_FL_Rev_GibsonCherrySpel	GTTTAGTGGTAACCAGATCCTAGTCAGTCATCAGT
	TTTTACTGTAGTCATAGCCTGGTCC
X2AB_RBD_Rev_GibsonCherrySpel	GTTTAGTGGTAACCAGATCCTAGTCAGTCATGGTT
	GTGCAATCTTTATCTCACACTTGC
hnRNPAB_PYNull_Cherry_Rev	GTTTAGTGGTAACCAGATCCTAGTCAGTCATCACT
	TGTAGTTATTCTGGTGGCTCCCAC
X2AB_FL_Fwd	TCCGACACCGAGCAGCAGTGTCTAGAA
X2AB_FL_Rev	GTTCTTACTGTAGTCATAGCCTGGTCCATATCCAT
	AATAG
X2AB_RBD_Fwd	AAAATGTTTGTTGGTGGCTTGAGCTGG
X2AB_RBD_Rev	TGGTTGTGCAATCTTTATCTCACACTTG
X2AB_IDR_Fwd	AAAGAAGTGTATCAGCAACAGTATGGCGG
P3_IDR_Fwd	GTACAAGAGATCTGATCATGCCATGGGGCCCATG
	AGCCATTCCACTCCAGCTACAG
P3_IDR_Rev	CAGAGACAGAGACAGAGACAGAGAGATCATCGAT
	TTGGAGAAAGAGACACG
XBM_Fwd	GAAAT <u>TAATACGACTCACTATAG</u> GGAGAGTTGAAC
	TTGTAGCATCCAGCTCAGAATAAACGCTCAACTTT G
XBM_Rev	GGATCCACATGTAGGGTCTCT
Vg1_qPCR_Fwd	GGTATCTCCTCCTGTCCCT
Vg1_qPCR_Rev	TGGGTGGATGTCATCGGAGT
CanAB_qPCR_Fwd	GGCTATTATGGATATGGACCAG
X2AB_qPCR_Fwd	ACAATTACTGGAACCAGGGCT
CanAB_qPCR_Rev	GGCTATTATGGATATGGACCAG
X2AB_qPCR_Rev	GTTTTTACTGTAGTCATAGCCTG

Table S3: Primers used in this study. All Forward (Fwd) and Reverse (Rev) primers are listed from 5' to 3'. The following abbreviations are used: X2AB (hnRNPAB X2), FL (full-length), P3 (PTBP3), XBM (*Xenopus* β globin), and CanAB (canonical hnRNPAB). XBM_Fwd contains a T7 promoter sequence (underlined).

Supplementary References:

- 1. Lancaster, A. K., Nutter-Upham, A., Lindquist, S. & King, O. D. PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. *Bioinformatics* **30**, 2501–2502 (2014).
- 2. Fisher, M. *et al.* Xenbase: key features and resources of the *Xenopus* model organism knowledgebase. *Genetics* 244, iyad018 (2023).
- 3. Czaplinski, K. & Mattaj, I. W. 40LoVe interacts with Vg1RBP/Vera and hnRNP I in binding the Vg1-localization element. *RNA (New York, N.Y.)* **12**, 213–222 (2006).