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I. DETAILS OF THE EXPERIMENTAL SETUPS AND THE 

MEASUREMENT CALIBRATIONS 

 

A. Parameters of the experimental system 

 

 

Figure S1. Circuit diagram of the superconducting quantum chip. The quantum 

coupler (a tuneable-gap flux qubit) is coupled to cavity a and cavity b through 

capacitors CaC and CbC, respectively. The eigen-frequencies of the two cavities can be 

tuned by capacitive coupling to two gap-tuneable flux qubits QL and qubit QR through 

capacitors CaL and CbR, respectively.  The two cavities are coupled to the environment 

through capacitors Ca and Cb, respectively. 

 

The superconducting quantum chip consists of two CPW cavities and three tuneable-

gap flux qubits [S1] , as shown in Fig. S1. The two cavities are designed with the same 

eigen-frequency but different decay rates which are mainly controlled by the coupling 

capacitor between cavities and transmission line (Ca and Cb, respectively). The direct 

coupling between the two cavities is negligible and we can control the coupling strength 

between the two cavities by a quantum coupler. The flux qubit works as a quantum 

coupler which has been demonstrated elsewhere in superconducting quantum 

information processing [S2] , [S3] . In our experiments, the flux qubits are with large 

anharmonicity and thus work as good two-level systems. The additional two flux qubits, 

i.e., QL and QR in Fig. S1, are used for tuning the resonant frequencies of the two 



cavities slightly and inducing nonlinearity in the two cavities. Each flux qubit has two 

independent control-lines to inject external magnetic fields. One line is for controlling 

the flux in   loop, and the other line is for controlling the flux in the main loop. We do 

some simulations before fabricating the chip, and have   4.8 aL bRC C fF   , 

105.8 L RC C fF   , 3.1 aC bCC C fF   , 17 aC fF  , 30 bC fF  . These circuit 

parameters agree well with the extracted parameters in experiments. The parameters of 

the experimental system are show in Table. S1. 

 

Figure S2.  Observation of vacuum Rabi splitting through normalized amplitudes 

of reflection coefficients versus the flux bias δΦ. a, The vacuum Rabi splitting 

between cavity a and QL. b, The vacuum Rabi splitting between cavity b and QR. The 

dashed lines are the theoretical fitting curves. 

Table S1. Parameters of the experimental system. 0cf  is the bare frequency of the 

cavity without qubit, and 1cf is the frequency of the cavity when the cavities are tuned 

by the left and right qubits. κa,b are the decay rates of the two cavities.  ⊥   is the 

decoherence rate of the qubit at the optimal point extracted from the two-tone 

spectroscopy. Ip is the persistent current of the flux qubit. g  is the coupling strength 

between the cavity and the qubit. 

Modes 𝒇𝒄𝟎 (GHz) 𝒇𝒄𝟏 (GHz) 𝜿𝒂,𝒃(𝜸⊥)

𝟐𝝅
 (MHz) 𝑰𝒑 (𝐆𝐇𝐳/𝐦𝚽𝟎) 𝒈̃

𝟐𝝅
 (MHz) 

𝑸𝑳 - - 7.3 0.03 50 

𝑸𝑹 - - 4.8 0.03 50 

𝑸𝑪 - - 10.0 0.38 71 

Cavity a 6.469 6.474 7.7 - - 

Cavity b 6.483 6.474 20.9 - - 



B. Calibration of the photon numbers inside the cavities 

We calibrate the measurement system with the ac-Stark shift [S4] , [S5] . Consider a 

system that a cavity is coupled to a qubit in a dispersive regime. The transition 

frequency of the qubit will be shifted by the photon number stored in the cavity which 

is called ac-Stark shift. The frequency shift of qubit is ( )22q n g =  , where n  is 

the average photon number stored in the cavity. g  and   are the coupling strength and 

frequency detuning between the qubit and the cavity.  

 

 

Figure S3. AC-Stark shift of the quantum coupler. The two-tone spectra of Qc when 

the cavity a is driven (a) or the cavity b is driven (b). The black dots are the experimental 

data points while the blue solid lines are the fitting curves using Eq. (S.1). 

 

We use the flux qubit Qc, which is biased at the optimal point with transition frequency 

14.93 GHz, to calibrate the measurement system for few-photon nonreciprocity 

transmission experiment. Here, the effective coupling between two cavities is 

negligible and the EP system is at the broken-symmetric regime. We obtain the ac-Stark 

shift by performing standard two-tone spectroscopy and changing n  with different 

probing power from VNA. We set the probing power from VNA as VNAP (the unit is 

dBm). The total attenuation from VNA port to chip is as tot (unit is dB). The resonant 

frequency of cavity is c . The decay rate of cavity is ( )a b . Then, the frequency shift 

of qubit can be calculated by 

 
( )

totVNA( 3)2 102 10
,

bc a

P

q

g


 


−
−

=
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 (S.1) 



with  as the reduced Plank constant. 

  

We then drive cavity a (cavity b) through the port 1 (port 3) of VNA, and measure the 

transition frequency of Qc versus the probing power as shown in Fig. S3. By fitting the 

theoretical curves using Eq. (S.1), we can obtain the attenuations of two different input 

lines, which are 114.5 dB and 107.5 dB, respectively. Here, the ac-Stark shift of the 

qubit per photon in cavity is 2.0 MHz. Then, we adjust the attenuators mounted at the 

two input lines at room temperature to make sure that the attenuations of the two input 

lines are with the same value of 107.5 dB. In this way, the probing power on chip keeps 

constant in few-photon nonreciprocity experiments. Once we get the total attenuation 

tot 107.5 =  dB, we can estimate the photon number in few-photon nonreciprocity 

experiments using 

 

VNA tot 3
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P

c a

n


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− 
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 

=  (S.2) 

The photon number we mentioned in this paper is calculated for the cavity with higher 

quality-factor (cavity a). The noise spectral density of the preamplifier (Model: LNF-

LNC0.3_14A with a nominal noise temperature around 3.6 K) placed at temperature of 

3.2 K is 222 ( ) 1.05 10B nS k T  −= =   W/Hz, which corresponds to the effective noise 

temperature 7.5nT =  K of the amplifier at the input port. Therefore, we can conclude 

that the calibration precision is better than ±3dB. 

 

 

II. BIFURCATION IN THE VICINITY OF THE EXCEPTIONAL POINT 

 

A. Hamiltonian of the coupled system 

As shown in Fig. S4, the flux qubit that we consider here is a superconducting loop 

with four Josephson junctions, by which the minimum energy gap of the qubit can be 

adjusted through a dc-SQUID ( loop) [S2] . Traditionally, a flux qubit consists of three 

Josephson junctions, i.e., two larger junctions with the same Josephson energy JE  and 

capacitance JC  and a smaller junction with Josephson energy JE  and capacitance 

JC  ( 0.5 1  ). The existence of the   loop, i.e., the smaller junction is replaced 



by a dc-SQUID, allows that the   value can be tuned by the external flux   piercing 

the loop of the dc-SQUID. When the biased flux    is close to 0 / 2 =   , the 

Hamiltonian of the flux qubit can be written as  

( ) / 2 ( ) / 2q z xH   = −  −   ,                                       (S.3) 

where 0   is the flux quantum, ,z x   are the Pauli spin matrices,    is the minimum 

 

 

Figure S4. Simplified circuit diagram of the gap-tuneable flux qubit. The main loop 

is formed by two larger junctions (black) and a dc-SQUID. The    loop of the dc-

SQUID is formed by two smaller junctions (red). 

 

energy gap, 02 ( / 2)=2p pI I   −   , and 02 /p JI E    is the persistent 

current in the main loop of the flux qubit. The flux qubit behaves as a two-level system, 

and we can use the following Jaynes-Cummings-type Hamiltonian to describe the flux 

qubit capacitively coupled to a cavity mode a  as [S2] , 

 † †1
( )

2
JC q z qccH a a g a a    − += + + + . (S.4) 

Here, 2 2( ) ( )q  =  +     is the transition frequency between the two lowest 

energy states of the flux qubit , c  is the resonance frequency of the cavity mode, and 

qcg  is the coupling strength between the qubit and the cavity mode. We can use JCH

to describe the system composed of the left (right) qubit and the cavity mode in the left 

(right) superconducting resonator. 

 

For a system with two cavity modes a and b which are indirectly coupled with each 

other and mediated by a flux qubit (quantum coupler), the Hamiltonian can be 

expressed as  

( ) ( )† † † † .c a a bb qH a a b b g a a g b b        + − − + − += + + + + + +       (S.5) 



Here, a (b ) is the annihilation operator of the high-Q (low-Q) cavity mode.  −  and  +

are the ladder operators of qubit. ( )a bg g  is the coupling strength between the cavity 

mode a (b )  and the mediated flux qubit. ( , , )i i a b q =  are the resonance frequencies 

of the two cavities and the qubit. In our experiments, the coupling strengths ag and bg  

are designed to be close to each other, i.e., a bg g .  

 

B. Exceptional point of the coupled-resonator system 

In order to understand the mechanism of the system, we firstly consider the Hamiltonian 

in Eq. (S.5). In the rotating frame at the driving frequency d , we introduce the unitary 

transformation † †exp( )d z d dU i i a a i b b   = − − −   and the Hamiltonian in Eq. (S.5) 

can be rewritten as 

( ) ( )† † † †

1 ,a a bb qH a a b b g a a g b b     + − − + − +=  +  +  + + + +        (S.6) 

where ( , , )i i d i a b q  = − =  is the effective frequency of the cavity mode or the 

qubit. The dynamical equation of the system can be written as [S6] ,[S7]  

1
ˆ, ,ˆ ˆ ˆd

Q i Q H Q
dt

 = − +
                                                    (S.7) 

where Q̂  is the operator of the system and   denotes the average value of an operator. 

The Liouville superoperator ˆQ̂ , representing the dissipation terms of the cavity modes 

and the qubit, is defined as 

( ) ( )

( ) ( )

† † † † † †

φ

ˆ 2 2
2 2

2 2 ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
2

ˆ ˆ

a

ee ee ee ee

bQ a Qa Qa a a aQ b Qb Qb b b bQ

Q Q Q Q Q Q

 


          + − + − + −

= − − + − −

+ − − + − −

           (S.8) 

where ( )a b    is the decay rate of cavity mode a  ( b  ),    is the depolarizing rate of 

mediated flux qubit,    is its dephasing rate, and the qubit’s total relaxation rate is 

/ / 2   ⊥ = + . 0 1= +a ca   ( 0 2= +b cb   ) consists of the intrinsic damping rate 0a  

( 0b ) and the coupling loss 1c  ( 2c ) induced by the input transmission line. 

 

In the strong dispersive regime, we can neglect the evolution of the off-diagonal 

elements of the qubit state and let 0 + −= = , by which we have 



† †
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Δ Δ
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Taking ˆ
zQ =  in Eq. (S.6), we can obtain 

( ) ( )/ /

†

/

†

/ 2 .2 bz z aig a a ig b b      − + − += − − − + −+ − −               (S.10) 

By substituting Eq. (S.9) into Eq. (S.10), we can obtain the approximate expression of 

z  by letting 0z =  and expanding up to the second order term of 
1

21 2Δq 
⊥

−
−  = +   

as 
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 

†2 2

/ /

2 4

† † †

† † † †4

2

/ /

1
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1
16 .

z a b a b

a b

g a a g b b g g a b ab

g a aa a g b bb b

  
 


  ⊥

⊥ ⊥ − + + + +

 − + 

      (S.11) 

By substituting Eq. (S.9) and Eq. (S.11) into the dynamical equations of cavity modes 

a and b, we can obtain 
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 (S.12) 
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    (S.13) 

 

We then simplify our model and expand up to the fourth-order Kerr-nonlinear terms of 

the two cavity modes induced by the mediated qubit, by which we can obtain the 

following effective Hamiltonian from Eq. (S.12) and Eq. (S.13) by eliminating the 

degrees of freedom of the mediated qubit 

( )

( )

†

†

† †

† †

†

†

2 2

.

eff a b
a

k r

b

e r

i i
H g a a g b b g ab a b

a aa a b bb b
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 



   
= − − + − − − +   
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+ +

         (S.14) 

The effective coupling strength between the two cavity modes g  and the effective self-

Kerr coefficient kerr can be written as 



( )

4

( )

22 2 2 2

/ /

4
, .

q a b q

kerr
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


  

⊥
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 
= =
 +  +

                                       (S.15) 

As shown in Eq. (S.14), the effective coupling strength g  can be tuned by modulating 

the effective frequency detuning q q d  = −  of the qubit. As the driving frequency 
d

is tuned to be close to ,a b   and ,q a b   ,  the effective frequency detuning q  

can be approximated as q q a  − . 

 

From the Hamiltonian in Eq. (S.14), we can analyze the phase transition in the vicinity 

of the exceptional point in our system. Since the Kerr nonlinearity is weak in our system, 

we can only consider the first three terms of Eq. (S.14), which can be rewritten as 
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                         (S.16) 

 

By diagonalizing this Hamiltonian, we can obtain the eigenvalues   as 

( ) ( )
2

2 1
,

2 442 2

a b
a b

a b
a b

i i
g g i

   
     

 

+ − 
− = − +  − − +


− 


=   (S.17) 

and the corresponding supermodes are a−  , a+  . The real parts of    represent the 

eigenfrequencies of the two supermodes and the imaginary parts denote the dissipative 

rates of the supermodes. We tune the frequency detuning between the two cavity modes 

ab a b  = −  and the effective coupling strength g  to obtain the topological diagram 

of the eigenfrequencies (Fig. S5a) and the dissipative rates (Fig. S5b). At zero detuning 

( 0a b  = = ), Eq. (S.17) is simplified as 

( )
( )

2

2

0 .
4 16

a b

a b

i
g g

 
   

−
= − − +  −                   (S.18) 

It can be shown that there is an exceptional point (EP) at 4a bg   =  − , where the 

complex eigenvalues degenerate with each other. There are two different regimes as 

shown in Fig. S5c, d. (i) In the weak-coupling regime such that g  , which is also 



called the passive PT-symmetry-broken regime, the imaginary parts of   are splitting, 

while the real parts of   are degenerate at 0 0 g  − . This frequency shift from 0  

to 0  is induced by the interaction between the qubit and the cavity modes in the large-

dispersive regime known as the ac-Stark shift of the cavity mode. (ii) In the strong-

coupling regime such that g  , which is also called the passive PT-symmetric regime, 

the imaginary parts of   are degenerate while the real parts of   are splitting. Thus, 

the two supermodes have different eigenfrequencies but the same dissipative rate.  

 

Figure S5. Topology of non-Hermitian degeneracy. Topological evolutions of the 

real (a) and imaginary (b) parts of the eigenvalues of the coupled resonators with 

changing coupling strength g   and the frequency detuning between the two cavity 

modes bab a  = − . The real and imaginal parts of the eigenvalues when 0= ba  =  

are shown in c and d. 

  



C. Experimental setup of the bifurcation and the nonreciprocity measurement 

 

Figure S6. Schematic diagrams of the measurement circuits for the bifurcation 

and the nonreciprocity measurement. The two input lines are connected to port 1 and 

port 3 of VNA while the two output lines are connected to the port 2 and port 4 of VNA. 

We add two signal generators in two input lines for the two-tone measurement.  

 

D. Experimental data for the bifurcation in the vicinity of EP 

After we tune the two cavity modes to be resonant with each other and calibrate the 

attenuations in the two input lines, we can tune the effective coupling between the two 

cavity modes by the quantum coupler (Fig. S7) and find the exceptional point using the 

measurement circuits in Fig. S6.  

 

 

    

   

  

    

  

 
  
 
 
   

    

     

     

    

 
  
 
 
  
 
 

   

    

   

 
  
 
 
   

    

     

     

    

 
  
 
 
  
 
 

   

    

   

   

    
  

      

          

                

          

 
 
  
  
 



 

Figure S7. Illumination of the tuneable coupling strength between the two 

resonators with a flux qubit as a quantum coupler. a, Intensity plot of the phase of 

a transmission signal as a function of the driving frequency and   for the mediated 

qubit.  The dash lines are the theoretical fitting curves for energy levels obtained from 

the full Hamiltonian of flux qubit, corresponding to the single-photon transition from 

the ground state to the first excited state (
01E  , solid black line) and the two-photon 

transition from the ground state to the second excited state (
02 / 2E , dashed green line), 

respectively. b, The calculated effective coupling strength g   between the two 

resonators versus the biased magnetic flux  . 

 

We show the reflection coefficient of cavity b (S43) versus different external magnetic 

fields in the main loop ( ) of the quantum coupler in Fig. S8. Here, the average 

photon numbers 
an   of the probe field are less than 1. The energy levels of the 

quantum coupler are shown in Fig. S8a. A dip in the reflection spectrum can be observed 

when the 01E  frequency of the quantum coupler is far away from the frequencies of the 

two cavity modes, while a mode-splitting in the reflection coefficient spectrum can be 

seen when the frequency of the quantum coupler is close to those of the cavity modes. 

The exceptional points can be found in the crossover regions. The asymmetric splitting 

in the strong-coupling regime indicates that the coupled system works in the quantum 

regime.   



Figure S8. Bifurcation in the vicinity of the exceptional point by applying external 

magnetic fields to the quantum coupler. The amplitude (a) and phase (b) of the 

reflection coefficient spectrum of cavity b (S43) versus the external magnetic field in the 

main loop of the quantum coupler. The dashed lines are the theoretical curves of the 

frequencies of the supermodes.  

 

E. Extracting the complex frequencies of the supermodes 

Because the measurement circuit background is fluctuating and there is minor 

nonlinearity in the two cavities, the reflection spectra are not perfect Lorentzian shapes. 

Therefore, we cannot extract the accurate complex frequency by just a simple 

Lorentzian fitting. We extract the real part of the complex frequency by finding the 

extreme points of the polynomial fit, and extract the imaginary part by a one-dip or two-

dip Lorentzian fitting curve with fixed frequencies.  

 

We first fit the reflection spectrum of the right cavity by using a polynomial fitting, 

after getting the polynomial function f(x), then calculate the first derivative function 

' ( )f x  and second derivative function 
'' ( )f x . Get the local minimum points by solving 

the roots of '

0( ) 0f x =  when ''

0( ) 0f x  . In the direction that the coupling strength 

increases, the number of the local minimum points changes from one to two, thus we 

know that we catch the exceptional point. We plot the frequencies of local minimum 

points as the real part of the complex frequency. Next step is getting the imaginary part 

of the complex frequency. In the strong-coupling regime, we fit the reflection spectra 



of the right cavity with a two-dip Lorentzian function  

0 12 2

0 1

,
4( ) 4( )

w w
L a a a

x x w x x w
= + +

− + − +
 

where / / 2a bw  =  is the linewidth, a  is the offset, 0a  and 1a  are the scaling factors, 

and 0x , 1x  are the centers of the two dips with fixed center frequencies. Here, 0x  and 

1x  are gotten from the two local minimum points. In the weak coupling regime, we fit 

the reflection spectra of the left cavity with a one-dip Lorentzian function  

0 2

04( )

w
L a a

x x w
= +

− +
， 

where / 2aw  =  is the linewidth, a  is the offset, 0a  is the scaling factors, and 0x  is 

the center of the dip with fixed center frequency. Note that 0x  is gotten from the one 

local minimum point. After this one-dip Lorentzian fitting, we get one of the imaginary 

branch Im( )+ , and another imaginary branch Im( )−  is calculated directly with 

( ) Im( )a b  ++ − . The fitting details are shown in Fig. S9.  



  

Figure S9. Curve fitting details for extracting the complex frequencies of the 

supermodes. a-13 - a12, Polynomial fittings of the right cavity spectra to extract the real 

parts of the supermodes. The real parts are gotten from the one or two local minimum 

points of every polynomial fitting. b-13 - b12, The one-dip Lorentzian fittings of the left 

cavity spectra (in the weak-coupling regime) and the two-dip Lorentzian fittings of the 

right cavity spectra (in the strong-coupling regime). 



 

III. FEW-PHOTON NON-RECIPROCAL TRANSMISSION 

 

A. Simulation of nonreciprocity 

Through the analysis in Supplementary Part III Section B, we know that nonlinearity 

will be localized in the high-Q cavity in the weak-coupling regime, which will introduce 

nonreciprocal transport of photons. When the microwave signal is fed into the high-Q 

cavity a, it will be transmitted to the low-Q cavity b due to the coupling between the 

two cavities. The output fields from the two cavities can be represented by [S8]  

,inref aa a a= +                                            (S.19) 

,trans ba b=                           (S.20) 

where 
ina  is the average amplitude of the input field and a  is the expectation of 

the cavity mode a  in steady state. In our system, the input microwave field is a coherent 

state at few-photon level and the Hamiltonian of the driving field can be written as 

( )† / 2d dH i a a  −


=


 . Thus, the average amplitude of the input field is 

( )2 ain da = −   and the total Hamiltonian is 1 dH HH= +  , where 1H   is 

expressed in Eq. (S.6) with ( ) 0 0a b   =  −  . The master equation of the total 

system can be expressed as 

     † †

||
ˆ , 2 ,a b z

d
i H a b

dt
           −

   = − + + + +                (S.21) 

where the Lindblad superoperator can be written as
† † †[ ] / 2/ 2a a aaa aa   −= − . 

We have omitted the thermal noise in Eq. (S.21). By letting ˆ 0d dt = , we can get the 

stationary value of a  . Therefore, the normalized transmission T  from cavity a to 

cavity b (forward) and the reflection R  from the cavity a can be expressed as  

22

,
Ω / 2

trans

a b

in d

b

a

a b
T

a




→ = =                                   (S.22) 

2 2

1 .
/ 2d

ref a

a

a

in

a a
R

a




−


= =                                   (S.23) 

Analogously, when the probe signal is fed into the low-Q cavity b, the Hamiltonian of 



the driving field will be expressed as ( )†'

2

d
d

i
H b b


= −   and the normalized 

transmission T  from cavity b to cavity a (backward) can be written as 

22

Ω / 2

trans

b a

in d

a

b

b a
T

b




→ = = .                                  (S.24) 

We can define the isolation ratio as 

/l10 og( ).b a a bI T T→ →=                                             (S.25) 

 

Figure S10. Numerical simulations of the unidirectional transmission. a, Isolation 

ratio versus different probe frequencies 
0( ) −   and different effective coupling 

strengths /g   . b, Comparison of forward (dashed blue line) and backward (solid 

orange line) transmissions in the weak-coupling regime. c, The forward (dashed blue 

line) and backward (solid orange line) transmissions in the strong-coupling regime. 

 

From Eqs. (S.21), (S.22), (S.24) and (S.25), we use Qutip to give numerical simulations  

[S9] of the isolation ratio by changing   and effg  in Fig. S10a. We can see that the 

isolation ratio in weak-coupling regime can be large enough to reach 12 dB which 

agrees well with experimental value 10.1 dB, while in strong-coupling regime the 

isolation ratio is zero. From the transmission spectra in Fig. S10b and c, it can be seen 

that the transmission signal will be suppressed when traveling backward in weak-

coupling regime. Additionally, as shown in Fig. S10c, the nonreciprocal phenomena 

exist only when the probe frequency is close to the real part of eigenvalues in Eq. (S.18), 



i.e., the eigenfrequencies of the supermodes. In fact, when the probe field is off-resonant 

with the supermodes, the photon cannot enter the cavity and thus the nonreciprocal 

phenomenon will be suppressed. 

 

As shown in Fig. S11a, the isolation ratio turns to be zero when the average photon 

number of the input field is less than 0.5, which means that the nonreciprocal effects 

will be suppressed with the decrease of the strength of the input field. In fact, the 

nonreciprocal transmission of photon appeared in the weak-coupling regime is induced 

by the localization of the intracavity photons in the high-Q cavity. These localization 

effects will be suppressed with the decrease of strength of the input field due to the 

increasing effects induced by the quantum noises. The nonreciprocal transmission of 

photon is also induced by the enhanced nonlinearity in the vicinity of the exceptional 

point. This enhanced nonlinearity will also be weakened with the decrease of the 

strength of the input field. As shown in Fig. S11b, the forward transmission power 

increases almost linearly with the average driven photon numbers in the strong-

coupling regime, but nonlinearly in the weak-coupling regime. With the decrease of the 

strength of the input field, the increasing noise effects and the weakened nonlinearity 

will greatly suppress the forward transmission, and thus lead to the decrease of the 

isolation ratio. 

 

Figure S11. Numerical simulations of the suppressed non-reciprocal transmission 

with deceasing input photon numbers. a, The isolation ratios versus the input photon 

numbers. b, The forward output powers versus the input photon number in the strong-

coupling regime (solid blue line) and the weak-coupling regime (dashed orange line). 

 



B.  Amplified nonlinearity in the vicinity of the exceptional point 

In this part, we will show the mechanism of the amplified nonlinearity in the vicinity 

of the exceptional point. There is a transformation matrix P between supermodes and 

the cavity modes, which can be expressed as  

 P
a

a

a

b

+

−

   
=   

  
， (S.26) 

where 
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+ − + −

. (S.27) 

From Eq. (S.17) and Eq. (S.27), we have 
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(S.28) 
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 (S.29) 

The Kerr term in Eq. (S.14) can be written as 

( ) ( )
2 2

2 2 2 2† † † † .kerr kerrH a a a a a a a a    − + −− + +− + − − + += +
 

+


+
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            (S.30) 

We then consider the cross Kerr term in the supermode picture 

 † †' 'kerrH a a a a + −+ −= , (S.31) 

where ( )2 2 2 2
2 kerr     + − + −

 = + . It can be shown that   can be represented 

in the strong-coupling regime and the weak-coupling regime as 
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In the weak-coupling regime, the field is localized in the high-Q resonator. Thus, we 

can omit the field in the low-Q cavity and the supermodes can be approximated as 
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. (S.33) 

Therefore, the cross Kerr term can be written as Eq. (S.34), which means that the cross 

Kerr will introduce self-Kerr effect in the high-Q cavity, 
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