Catalase activity deficiency sensitizes multidrug-resistant *Mycobacterium tuberculosis* to the ATP synthase inhibitor bedaquiline

Ofori-Anyinam B, Hamblin M, Coldren ML, Li B, Mereddy G, Shaikh M, Shah A, Grady C, Ranu N, Lu S, Blainey PC, Ma S, Collins JJ, Yang JH

<i>M. tuberculosis</i> Strain	Genotype	Resistance	Reference (PMID)	Source	
H37Rv	Wild-type H37Rv		ATCC #27294	Deborah Hung (Broad Institute) William Jacobs (Einstein)	
H37Rv ∆ <i>katG</i>	H37Rv ∆ <i>katG</i>	INH ^R	32631825	William Jacobs (Einstein)	
H37Rv ∆katG pEmpty	H37Rv ∆ <i>katG</i> pMSG430	INH ^R		Christina Stallings (WUSTL)	
H37Rv ∆ <i>katG</i>	H37Rv ∆katG pMSG430- <i>katG</i>			Christina Stallings (WUSTL)	
H37Rv p <i>Empty</i>	H37Rv p <i>EXCF</i>		23823726, 25380655	David Sherman (U Washington)	
H37Rv p <i>furA</i>	H37Rv p <i>EXCF-Rv1909c</i>	INH ^R	23823726, 25380655	David Sherman (U Washington)	
mc ² 7902	H37Rv ∆panCD ∆leuCD ∆argB		29844114	William Jacobs (Einstein)	
mc ² 8245	mc ² 7902 ∆2116169-2162530	INH ^R	29844114	William Jacobs (Einstein)	
H37Rv p <i>Rv3160c</i>	H37Rv p <i>EXCF-Rv3160c</i>		23823726, 25380655	David Sherman (U Washington)	
H37Rv p <i>kmtR</i>	wild-type katG, inhA, rpoB		23823726, 25380655	David Sherman (U Washington)	
H37Rv p <i>prpR</i>	H37Rv p <i>EXCF-Rv1129c</i>		23823726, 25380655	David Sherman (U Washington)	
TDR-TB-0019	KatG S315T, RpoB L533P	INH ^R	22236841	David Alland (Rutgers)	
TDR-TB-0077	wild-type katG, inhA, rpoB		22236841	David Alland (Rutgers)	
TDR-TB-0081	wild-type katG, inhA, rpoB		22236841	David Alland (Rutgers)	
TDR-TB-0091	wild-type katG, inhA, rpoB		22236841	David Alland (Rutgers)	
TDR-TB-0126	wild-type katG, inhA, rpoB		22236841	David Alland (Rutgers)	
TDR-TB-0163	wild-type <i>katG, inhA, rpoB</i>		22236841	David Alland (Rutgers)	
TDR-TB-0031	KatG S315T, RpoB S531W	INH ^R	22236841	David Alland (Rutgers)	
TDR-TB-0042	KatG S315T	INH ^R	22236841	David Alland (Rutgers)	
TDR-TB-0193	inhA C -15 T, RpoB S531L	INH ^R	22236841	David Alland (Rutgers)	
TDR-TB-0198	KatG S315T, RpoB D516V	INH ^R	22236841	David Alland (Rutgers)	

SUPPLEMENTARY TABLES

Supplementary Table 1. List of strains used in this study.

Strain	INH MIC	RIF MIC	<i>katG</i> nucleotide variant	katG amino acid variant	<i>inhA</i> nucleotide variant	<i>rpoB</i> nucleotide variant	<i>rpoB</i> amino acid variant	Lineage	Geographical Origin
INH- Susceptible									
TDR-TB-0077	0.2	30	wild type	wild type	wild type	wild type	wild type	2/Beijing	South Korea
TDR-TB-0081	0.2	≤10	wild type	wild type	wild type	wild type	wild type	2/Beijing	South Korea
TDR-TB-0126	0.2	≤10	wild type	wild type	wild type	wild type	wild type	4/LAM	Brazil
TDR-TB-0163	≤ 0.05	≤10	wild type	wild type	wild type	wild type	wild type	4/Haarlem	Peru
INH-Resistant									
			AGC 315			CTG 533			
TDR-TB-0019	3.2	120	ACC	Ser 315 Thr	wild type	CCG	Leu 533 Pro		Azerbaijan
			AGC 315			TCG 531			
TDR-TB-0031	> 3.2	> 120	ACC	Ser 315 Thr	wild type	TGG	Ser 531 Trp		Kazakhstan
								1/East	
			AGC 315					African	
TDR-TB-0042	> 3.2	≤ 10	ACC	Ser 315 Thr	wild type	wild type	wild type	Indian	Bangladesh
						TCG 531			
TDR-TB-0193	> 3.2	> 120	wild type	wild type	C -15 T	TTG	Ser 531 Leu	4/LAM	Portugal
			AGC 315			GAC 516			

Supplementary Table 2. Information on isoniazid-resistant and isoniazid-susceptible TDR-TB strains used in this study.

wild type

GTC

Asp 516 Val

4/LAM

Peru

Ser 315 Thr

TDR-TB-0198

3.2

> 120

ACC

SUPPLEMENTARY FIGURES

Supplementary Fig. 1. Catalase activity deficiency sensitizes drug-resistant *Mycobacterium tuberculosis* to bedaquiline. a, $\Delta katG$ cells are resistant to INH relative to wild-type cells in 8-day growth inhibition dose-response experiments. *katG* complementation by transformation with pMSG430-*katG* partially restores INH susceptibility in $\Delta katG$ cells. b, *katG* complementation in $\Delta katG$ cells decreases BDQ sensitivity relative to empty vector $\Delta katG$ control cells in 8-day growth inhibition dose-response experiments. n = 3 biological replicates for all experiments. Data depicted as mean ± SEM. Source data are provided in the Source Data file.

Supplementary Fig. 2. Catalase activity-deficient cells are sensitized to oxidative stress. a, 8-day H_2O_2 growth inhibition dose-response experiments for individual TDR-TB clinical strains (Fig. 2b). MDR (orange) and non-MDR INH-resistant (red) clinical strains are hypersensitive to H_2O_2 relative to INH-susceptible (black) clinical strains. **b**, KatG-deficient mc²8245 cells are hypersensitive to H_2O_2 relative to KatG-replete mc²7902 cells in 8-day growth inhibition dose-response experiments. **c**, $\Delta katG$ cells are not sensitized to carbonyl cyanide m-chlorophenyl hydrazone (CCCP) (left) or to nigericin (right) relative to wild-type cells in 8-day growth inhibition dose-response experiments. **n** = 4 biological replicates for non-MDR INH-resistant TDR-TB 42 (red). **n** = 1 biological replicate for all other TDR-TB clinical strains. **n** = 3 biological replicates for experiments involving wild-type or $\Delta katG$ H37Rv cells. Data depicted as mean ± SEM. Source data are provided in the Source Data file.

Supplementary Fig. 3. Transcriptional programs induced by catalase activity deficiency sensitize Mtb to bedaquiline. a, BDQ treatment decreases *inhA* expression in wild-type and $\Delta katG$ cells as measured by RNA sequencing. b, BDQ treatment decreases *atpE* expression in $\Delta katG$ cells as measured by RNA sequencing. Expression data reported as smooth quantile normalized log₂ sequencing counts. c, *prpR* over-expression does not sensitize cells to BDQ-inhibited ATP synthesis or growth in 7-day dose-response experiments as determined by BacTiter-Glo and optical density. Brown-Forsythe and Welch ANOVA tests were performed on RNA expression data with comparisons between BDQ-treated and untreated cells wild-type and $\Delta katG$ cells or between untreated wild-type and $\Delta katG$ with Dunnett's T3 multiple comparisons test FDR correction, as indicated. n = 3 biological replicates for all experiments. **: p ≤ 0.001, ****: p ≤ 0.001. Data depicted as mean ± SEM. Source data are provided in the Source Data file.

Supplementary Fig. 4. Catalase activity deficiency sensitizes Mtb to DNA damage. a, Smooth quantile normalized RNA sequencing expression data from BDQ-treated and untreated wild-type and $\Delta katG$ H37Rv cells. Clusters defined by hierarchical clustering, illustrating differences in BDQ-induced expression changes between H37Rv and $\Delta katG$ cells. n = 3 biological replicates. b, 8-day phleomycin growth inhibition dose-response experiments for individual TDR-TB clinical strains (Fig. 4d). MDR (orange) and non-MDR INH-resistant (red) clinical strains are hypersensitive to phleomycin relative to INH-susceptible (black) clinical strains. n = 4 biological replicates for non-MDR INH-resistant TDR-TB 42 (red). n = 1 biological replicate for all other TDR-TB clinical strains. Data depicted as mean ± SEM. Source data are provided in the Source Data file.

Supplementary Fig. 5. Bedaquiline grossly alters mycobacterial metabolism in $\Delta katG$ cells. a, Simulated catalase (CAT reaction) for BDQ-treated and untreated wild-type and $\Delta katG$ H37Rv cells from the iEK1011 Mtb genome-scale metabolic model. b, Simulated fatty acid synthase (FAS100), α -meroacid synthase (MYCSacp50), and mycolic acid condensation (MYCON1) activities for BDQ-treated and untreated wild-type and $\Delta katG$ H37Rv cells. BDQ synergistically represses mycolic acid synthesis in $\Delta katG$ cells. c, Simulated propionyl-CoA carboxylase (PPCOAC) activities for BDQ-treated and untreated wild-type and $\Delta katG$ H37Rv cells. BDQ synergistically represses propionate metabolism in $\Delta katG$ cells. n = 10,000 flux samples were collected for each metabolic simulation. Two-tailed Mann-Whitney or Kruskal-Wallis test was performed on metabolic modelling simulations with comparisons between untreated wild-type and $\Delta katG$ cells, BDQ-treated and untreated cells wild-type cells, and BDQ-treated and untreated $\Delta katG$ cells with Dunn's multiple comparisons test FDR correction, as indicated. ****: p ≤ 0.0001. Data depicted as mean ± SEM. Source data are provided in the Source Data file.

Supplementary Fig. 6. Catalase activity deficiency sensitizes Mtb to inhibition of folate biosynthesis. a, BDQ treatment increases aroF and foIP1 expression and decreases foIP2, folc, and dfrA expression in wildtype and $\Delta katG$ H37Rv cells as measured by RNA sequencing. Expression data reported as smooth quantile normalized \log_2 sequencing counts. **b**, Simulated phosphoribosylpyrophosphate synthase (PRPPS reaction), glutamine phosphoribosyldiphosphate amidotransferase (GLUPRT), and orotate phosphoribosyltransferase (ORPT) activities for BDQ-treated and untreated wild-type and $\Delta katG$ H37Rv cells using the iEK1011 Mtb genome-scale metabolic model. n = 10,000 flux samples were collected for each metabolic simulation. c, 8-day TMP (left) and SMX (right) growth inhibition dose-response experiments for individual TDR-TB clinical strains (Fig. 5b and 5c). A non-MDR INH-resistant (TDR-TB 42) clinical strain is hypersensitive to both TMP and SMX relative to INH-susceptible (black) clinical strains. MDR clinical strains (orange) are not hypersensitive neither TMP nor SMX relative to INH-susceptible strains. n = 4 biological replicates for non-MDR INH-resistant TDR-TB 42 (red). n = 1 biological replicate for all other TDR-TB clinical strains. d, $\Delta katG$ cells are not sensitized to the combination of TMP and SMX relative to wild-type cells in 14-day growth inhibition dose-response experiments. n = 3 biological replicates. Brown-Forsythe and Welch ANOVA tests were performed on RNA expression data with comparisons between BDQ-treated and untreated cells wild-type and $\Delta katG$ cells or between untreated wild-type and *\DeltakatG* with Dunnett's T3 multiple comparisons test FDR correction, as indicated. *: $p \le 0.05$, **: $p \le 0.01$, ***: $p \le 0.001$, ****: $p \le 0.0001$. Data depicted as mean \pm SEM. Source data are provided in the Source Data file.