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Supplementary figure 1. Summary scheme of the screening strategy and compound selection
process. Schematics representing the in-silico (top) and wet-lab (bottom) strategies. In-silico
bioinformatic strategy allowed the generation of a large oligodendroglial transcriptional signature
(steps 1-3) and gene hubs of the oligodendroglial gene networks (step 4) used to generate a list of
compounds with putative pro-oligodendrogenic and (re)myelinating activities (step 5). Compounds
were ranked by their large pro-oligodendrogenic activities through expert curation of their regulated
target genes (steps 6-8), and then by their pharmacological properties (step 9), with a final selection
of the top 11 compounds. Wet-lab strategy to assess the pro-oligodendrogenic activity of the selected
compounds in the culture of neural progenitor cells (step 10) and OPCs (step 11), resulting in 6
compounds being selected for further activity assessment in ex vivo cerebellar explant cultures (step
12). Finally, the top two compounds were used in vivo in a model of preterm birth injury (neonatal
hypoxia, step 13) and a model of adult de/remyelination (step 14). Numbers in grey circles indicate the

different steps of the project as detailed in the main text.
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Supplementary figure 2. OligoScore, a new web resource to evaluate gene sets for their involvement
in oligodendrogenesis. Schematics illustrating the OligoScore resource, a curation strategy currently
encompassing over 430 genes and 1000 publications that report the functional implication (either by
loss-of-function or gain-of-function experiments) of a given gene in each aspect (process) of
oligodendrogenesis (i.e., specification, proliferation, migration, survival, differentiation, myelination,
and remyelination). Detailed statistics obtained either from queries using either (1) a gene set (i.e., list
of genes) or (2) a list of deregulated genes (i.e., genes and logarithmic fold-changes, logFC) are

provided as barplots.
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Supplementary figure 3. OligoScore validation using expression and deregulated transcriptional
signatures. (a-d) Querying of OligoScore with genes enriched in OPC vs. myelinating OLs (mOLs), and
vice versa, using either (a) postnatal purified brain cell transcriptomes (Zhang et al., 2024) or (c)
oligodendroglial single-cells transcriptomes (Marques et al., 2016, 2018; see also Methods and
OligoScore_validation_tables file). In both cases, OligoScore highlights that while OPC gene programs
are involved in several processes of oligodendrogenesis, including specification, proliferation,
migration, differentiation, and myelination (a, c¢), mOL-enriched genes are mainly involved in
differentiation and myelination (b, d). (e, f) Querying OligoScore (genes and fold-changes) with genes
dysregulated in OPCs upon a genetic (postnatal day 7 OPCs with an induced knockout for Chd7,
compared to controls; Marie et al., 2018), or an environmental (P10 OPCs in the systemic IL1b-
mediated neonatal neuroinflammatory model, Schang et al., 2022) perturbation. This analysis
highlights the deregulated processes identified in these studies, such as reduced survival, and
differentiation of Chd7 iKO OPCs (e), and increased proliferation and reduced differentiation of OPCs

in the IL1b-model (f).
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Supplementary figure 4. Dose effect of compounds’ pro-oligodendrogenic activity in neonatal neural
progenitor cultures. Quantifications of Sox10M" cells (iOLs) in cultures treated with compounds at
250nM (N=4), 500nM (N=3), and 750nM (N=6), showing the best effect at 750nM. Data are presented
as mean + SEM of fold change normalized to vehicle. Statistical analysis used linear mixed-effects
models followed by Type Il Wald chi-square tests. Each dot represents a biological replicate. *p < 0.05;
**p < 0.01; ***p < 0.001. Exact p-values, sample sizes (represented in the dot plots), and source data

are provided in the Source Data file and in Methods Table 3.
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Supplementary figure 5. Automatic quantification of OPC differentiation cultures. (a) Representative
image illustrating the immunodetection of OPCs (PDGFRa* cells, magenta) and differentiating OLs
(MBP* cells, green) together with nuclear DAPI staining (grey) from OPC differentiation cultures, used
to illustrate the automatic segmentation and quantification shown in the following panels. (b) Image
illustrating with yellow masks the segmentation of DAPI nuclei (grey) used for automatic
quantification. (c-h) Images illustrating with cyan masks the automatic identification of OPCs, DAPI
nuclei having PDGFRa labeling (magenta), and with orange marks the identification of OLs, DAPI nuclei
having MBP labeling (green), shown with (c, e, g) or without the DAPI channel (d, f, h), and showing
PDGFRa and MBP labeling together (c, d) or as separate channels (e-h) to facilitate mask visualization.

Scale bars: 20 um.
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Supplementary figure 6. Automatic quantification of differentiation and myelination index in ex vivo
cerebellar cultures, with a ranking of selected drugs for their pro-oligodendrogenic effects. (a)
Illustration images of the automatic quantification approach to obtain the myelinating index (as
optimized in Baudouin et al., 2021). (b) High magnification images illustrating the overlap between
myelin, MBP immunodetection (magenta), and Purkinje neuronal axon immunodetected with CaBP
antibody (green). Examples of myelinated- (blue arrows) and non-myelinated (yellow arrowheads)
axonal segments are indicated in the lower panels. (c) Table integrating and ranking the effects of
selected compounds on oligodendrogenesis. Biological effects of the small molecules and positive
controls (T3, clemastine) determined through in vitro and ex vivo systems allow ranking them for their
pro-oligodendrogenic activity to select the top two candidates for in vivo analysis. Data are presented
as fold change compared to their respective vehicle. Diff, differentiation; NA, not assessed; Clem,

clemastine. Scale bars: 20 um in a panel, 10 um in b panels.
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Supplementary figure 7. Dyclonine and leucovorin promote oligodendroglial regeneration in a
mouse model of preterm birth brain injury. (a) Schematic illustrating the workflow used to assess the
capacity of dyclonine and leucovorin to promote OPC proliferation and rescue OLs maturation
following neonatal chronic hypoxia. (b, ¢) Olig2 immunodetection and quantification showing that the
density of OLs is not changed by hypoxia nor by treatment within the cortex at P19 (c). Quantification
was performed via automated detections (QPath) as illustrated by the mask used for cellular
segmentation in the third illustration (mask). (d, e) lllustrations validating the use of CC1 and GSTxn
markers to identify OLs and mature/myelinating OLs respectively. Note that during OL differentiation,
immature OLs (labeled with GFP) present a stellar morphology and are positive for CC1 but not for
GSTr (d), while mature/myelinating OLs having myelin segments co-express CC1 and GSTr (e). (f, g)
Representative images illustrating myelination by MBP immunodetection in the hypothalamic lateral
zone, showing no difference between groups at P19 (f) and quantification of MBP immunofluorescence
in this zone is represented in arbitrary units (A.U.) (g). Data are presented as Mean + SEM. Statistics
were performed using One-way ANOVA to compare the cell counts across different treatments
followed by Dunnett's test to compare each treatment with either Normoxia (Nx) or Hypoxia
considered as control groups. Each dot corresponds to a biological replicate. Exact p-values, sample
sizes (represented in the dot plots), and source data are provided in the Source Data file and in

Methods Table 3. Scale bars: 100 um in b left panel, 20 um in b right panels, and f; e; 4 umin d and e.
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Supplementary figure 8. Dyclonine and leucovorin promote both OPC proliferation and
differentiation in a mouse model of adult demyelination. (a) Schematics illustrating the protocol for
LPC demyelination in the corpus callosum, the timing of compound administration in drinking water
and analysis. (b) Quantification of drinking intake per day (ml) during treatment showing no difference
between groups and thus confirming the expected compound dose administration. (c) Single channel
panels for the immunofluorescence in the lesion site identified by cell density (DAPI),
microglia/macrophages (Ibal* cells, red) and their phagocytic profile (CD68* cells, green), and the
reduction in myelin immunodetection (MOG, blue) in different treatment conditions. (d) Schematics
illustrating the protocol of a replicated experiment to that of figure 7, comparing different doses of
leucovorin and dyclonine, and using clemastine as a pro-oligodendrogenic positive control. (e-h).
Quantification of Olig2* oligodendroglial density (e), OPC density (f), iOL1 density (g) and iOL2 density
(h) showing a similar increase at both doses tested of leucovorin and dyclonine in the density of
oligodendroglia (Olig2+ cells), iOL1s (only increased by leucovorin treatment), and iOL2s. Note that
clemastine induces a similar effect to dyclonine, with only leucovorin increasing the density of iOL1s.
Dycl., dyclonine; Leuc., leucovorin; 2X Dycl. 2-fold dyclonine dose; 10X Leuc., 10-fold leucovorin dose;
Clem., clemastine. Data are presented as Mean + SEM. Each dot corresponds to a biological replicate.
Statistics were performed using One-way ANOVA to compare the cell counts across different
treatments followed by Dunnett's test to compare each treatment with Vehicle (control group). *p
<0.05; **p <0.01; ***p < 0.001. Exact p-values, sample sizes (represented in the dot plots), and source

data are provided in the Source Data file and in Methods Table 3. Scale bars: 20 mm.
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Supplementary figure 9. Leucovorin and dyclonine accelerate the generation of myelinating
oligodendrocytes in a mouse model of adult demyelination. (a) Schematics illustrating the protocol
used for compounds’ administration in the drinking water and ultrastructural analysis by EM at 10 days
post-lesion (dpl). (b) High magnification micrographs illustrating newly formed (re)myelinating OLs
(mOL) in the lesion area, identified by their typical ultrastructural traits, i.e., oval-shape nucleus having
densely packed chromatin with several heterochromatin spots and large cytoplasm in continuity with
axons presenting compact myelin ultrastructure (red arrows) in dyclonine- and leucovorin-treated
animals. Two examples of immature OLs (iOL), characterized by less compacted chromatin (lighter
nuclear contrast than mOLs) and large cytoplasmic processes, are also shown in the bottom-left panel.
The right panels show higher magnifications to better visualize the continuity between the OL

cytoplasm and the myelinated axons (red arrows). Dycl., dyclonine; Leuc., leucovorin. Scale bars: 1 mm.
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