
Methods S1

In this supplementary text we will explain the modelling approach chosen
to support our findings and to verify the underlying hypotheses on cluster
turnover dynamics and associated cell fate choices. First, in section 1 we will
argue the dynamics of initiation of proliferative clusters and general cluster
turnover dynamics, while in sections 2 - 4 we will compare the predictions
of different models for cluster turnover dynamics with the cluster data, to
assess which models are consistent with the experimental data.

We will use a slightly different notation of cell types when modelling the
cell fate dynamics. In particular, we identify cell types only by the markers
Ki67 and DCX, and whether they appear within a cluster. Thus, we pool
astrocytes and TAPs, both being DCX-negative cell types that are cycling,
that is, expressing Ki67, as one cell type category, calling them cK cells
(for clustered Ki67). pNB on the other hand are called cKD cells (clustered
Ki67 and DCX), while postmitotic neuroblasts, which do not express Ki67
are called cD cells (clustered DCX).

1. Cluster initiation timings

First we assess the timing of the initiation of cluster proliferation. To
address this question we make use of the fact that GLAST labelling of cells
only occurs in astrocytes, or only for a limited amount of time upon differen-
tiation. In Figure 4 of the main text, we established that clusters originate
from the activation and initial division of an astrocyte each, but cycling as-
trocytes are absent in aged clusters (see also Figure 6, main text). We can
therefore assume that clusters can only be induced to express YFP – via
Cre-recombination upon administration of tamoxifen – before the founding
astrocyte has divided for the first time (initiation), and up to some defined
time after that time point. This is confirmed by the finding that for most
clusters which contain YFP+ cells, all cells are labelled, meaning that the
cell of origin has been labelled initially. Hence, we assume that induction of
cells in a proliferating cluster is not possible when a certain time has passed
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since initiation of the cluster. For convenience, we will in the following refer
to the time point when a (previous) astrocyte cannot recombine anymore
as “initiation”, keeping in mind that the true initiation may have happened
some time before that.

Let us now denote by Y (t0) the number of YFP+ clusters measured at
the time of culling and harvesting of clusters, t = 0, which have been induced
at time t0 < 0 1. These are those clusters which have been initiated after the
time point t0, and which ’survive’ until the time of culling, t = 0, that is,
they remain proliferating. Hence, we can relate this to the number of clusters
initiated between any two time points t1 and t2, ∆N by,

Y (t2)− Y (t1) = ∆N × psurv(t1, t2) (1)

where psurv(t1, t2) is the proportion of clusters initiated between t1 and t2
which survive until being harvested at t = 0.

Since we cannot directly compare Y (t1) and Y (t2) in the same animal,
and since the total number of clusters may vary significantly between clusters
it is helpful to normalise this quantity to allow a more accurate comparison.
For that purpose, we divide by N̄tot, the mean total number of clusters over
the different animals, and take the expected value (indicated by angular
brackets), 〈

Y (t2)

N̄tot

〉
−
〈
Y (t1)

N̄tot

〉
=

〈
∆Npsurv(t1, t2)

N̄tot

〉
(2)

The proportion of surviving clusters, psurv is a property of individual clusters
and does not depend on the total number of clusters Ntot nor the num-

ber of initiated clusters ∆N , hence
〈

∆Npsurv(t1,t2)
Ntot

〉
=
〈

∆N(t1,t2)

N̄tot

〉
p̄surv(t1, t2),

where p̄surv = 〈psurv〉 is the expected proportion of surviving clusters, that

is, the probability of survival. Now we define y(t) =
〈
Y (t)

N̄tot

〉
, and ∆n(t, t′) =〈

∆N(t,t′)
N̄tot

〉
is the proportion of clusters, taken over all animals, initiated be-

tween timepoints t1 and t2. With this we have,

y(t2)− y(t1) = ∆n(t1, t2)p̄surv (3)

1Note that induction occurs by definition at negative times
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Finally we divide by (t2 − t1) and take the limit t2 → t1 (t2 > t1), to get,

r(t) =
d
dt
y(t)

p̄surv(t)
(4)

where we identified the time derivative dy
dt

= lim∆t→0
y(t+∆t)−y(t)

∆t
and the

normalised cluster initiation rate r(t) = lim∆t→0
∆n(t,t+∆t)

∆t
= dntot

dt
, the pro-

portion of clusters initiated per time unit, with n being the total normalised
number of initiated clusters.

Hence, given the cluster survival probability, we can identify the cluster
initiation rate by the slope of the function y(t). The latter can be sampled by
counting YFP+ clusters and total clusters at certain time points t of clonal
induction.

However, the cluster survival probability is a priori unknown, but we
know that immediately after cluster initiation it is psurv = 1 and it can only
decrease with time. Thus, the slope of the function y(t) does for small times t
correspond to the cluster initiation rate r, while it may saturate to a plateau
when psurv drops to zero. Yet, y(t) remains a lower bound for r.

The measured ratio yexp = Y/N , where Y is the number of YFP+ clusters
(containing at least one YFP+ cell) amongN total clusters is shown in Figure
5D of the main text. This serves as an estimate for y(t) and we notice that
indeed this slope is positive for t close to t = 0, meaning that the cluster
initiation rate is non-zero. This shows that clusters are initiated not
at a given time point, but in a staggered manner, throughout time
(at least close to the culling time point).

Further away from t = 0 the slope of y(t) vanishes. We now need to
discern whether this is due to cluster initiation rate being vanishing or due
to psurv vanishing, i.e. clusters stopping to proliferate. In the following we
will show that the cluster initiation rate is non-zero also far from t = 0 and
most likely nearly constant over time.

Let us explore the possibility that psurv remains non-zero while r(t)→ 0.
However, measurements from culling at earlier time points show that clusters
are already present at 3 weeks post-lesion in similar numbers as at 5 weeks
post-lesion (culling time point for clonal induction assays). This means not
only that the cluster initiation rate must be non-zero at earlier time points
(well before 3 weeks post-lesion), but also that cluster numbers stay the same
over time, i.e. attain a steady state.
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We now express the surviving cluster proportion ntot(t) as,

ntot(t) =

∫
t′<t

r(t′)psurv(t− t′) dt′ (5)

The condition that this number does not change over time is expressed by
the vanishing of the time-derivative,

0 =
d

dt
ntot =

d

dt

∫
t′<t

r(t′)psurv(t− t′) dt′ = r(t)psurv(0) +

∫
t′<t

r(t′)
d

dt
psurv(t− t′) dt′

(6)

Here we used Leibniz’ integral derivation rule, d
dt

(∫
s<t

f(s, t)ds
)

= f(t, t) +∫
s<t

d
dt
f(s, t).

Now we identify the extinction probability density function (the probabil-
ity that a cluster ceases to proliferate), γ(t) = − d

dt
psurv, and since psurv(0) =

1, we get the steady state condition

r(t) =

∫
t′<t

r(t′)γ(t− t′) dt′ = 〈r(t− t′)〉t′<t (7)

where 〈...〉t′<t denotes the expected value with respect to the probability
density γ(t) restricted to t′ < t. The right hand side is the total rate of
clusters ceasing at time t, which is related to the mean initiation rate in
the past. To illustrate the meaning of this function, let us consider the case
that clusters have a fixed lifetime tl. In that case, the lifetime distribution is
γ(t− t′) = δ(t− t′) (the Dirac Delta-function), and thus,

r(t) = r(t− tl) (8)

Note that this must hold for all times t during which the clusters are sta-
tionary, hence over this time period the cluster initiation rate must remain
constant. This argument remains valid as long as γ does not explicitly depend
on time, since this means that the expected value in the past must be equal
to the current value. Only if the form of the lifetime distribution changes
over time in an exactly fine-tuned manner, to always compensate changes
of initiation rates at the right point in the future, could the steady state be
maintained, despite varying values of r(t). This seems highly unlikely, given
hat there is no known mechanism which could achieve this fine-tuning. On
the other hand, if r(t) = r0 is constant over time, then Eq. ((7)) is always
fulfilled.
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Thus we can conclude that the cluster initiation rate is most likely
constant over the time period of 3-5 weeks post-lesion, and very
possibly also beyond this time window.

2. The model for cluster turnover

We now establish the outlines for a model of cell proliferation and differ-
entiation dynamics in proliferative clusters.

From Figures 3H,I and 5E, main text, we see that cluster composition
changes from predominantly TAPs (cK cells) to pNBs (cKD cells) and then
postmitotic NBs (cD cells) over time. Hence, we assume that the first cells
after cluster initiation and division of the founding astrocyte are of cK type,
which then differentiate to cKD cells and eventually to cD cells. We can thus
establish the differentiation hierarchy: cK → cKD → cD.

Furthermore, both cK and cKD cells must be dividing ,since they are
expressing Ki67. Our model, as the data on clusters does, will only consider
cycling cells. Hence, we have the following possibilities for cell fate dynamics:

1. Differentiation may be coupled to cell division and thus cK cells choose
their fate immediately upon division:

cK
λK−→


cK + cK with probability rK(1− δK)
cK + cKD with probability 1− 2rK
cKD + cKD with probability rK(1 + δK)

(9)

where λK is the division rate of cK cells (rates are generally defined as
the inverse of the mean time between events). The cell fate probabilities
are parametrised by rK , the proportion of symmetric divisions, and δK ,
the bias towards differentiation into cKD cells.

2. cK cells acquire DCX without cell division, differentiating into cKD
cells:

cK
γK−→ cKD (10)

where γK is the differentiation rate of cK cells, that is, the rate at which
they acquire DCX expression.

Within this model definition, we can identify two clear-cut cases:

• γK = 0 means that cell differentiation can only happen upon division,
i.e. it is completely coupled to cell division.
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• δK = −1, γK > 0 means that cell differentiation is entirely uncoupled
from cell division, since all divisions are symmetric and do not produce
differentiated cells.

The same applies to cKD cells, which can differentiate and exit cell cycle to
become cD cells:

cKD
λD−→


cKD + cKD with prob. rD(1− δD)
cKD + cD with prob. 1− 2rD
cD + cD with prob. rD(1 + δD)

(11)

and

cKD
γD−→ cD . (12)

As our model only considers the proliferating part of clusters, differentiation
into cD cells, which are not cycling, is modelled as cell loss.

Finally, we consider that the propensity to differentiate may change with
cluster age, i.e. the associated parameters either explicitly depend on the
time since cluster initiation, tc (through an internal or external signalling
clock), or on the number of undergone cell divisions m. This is expressed
in terms of functions, δ(tc,m), γK(tc,m) and we will test various functional
forms.

In the following, we will model those processes as a Markov process, that
is, we assume that events occur stochastically, with rates only depending on
the current configuration of the simulated cluster. This will be implemented
and evaluated through stochastic computer simulations using a Gillespie al-
gorithm [1] to predict cluster compositions, which we then compare to the
experimental data. form the confetti data, Figure 4G, we see that 41 out of
43 clusters contained one or no astrocyte, and all astrocytes were dormant.
This shows that in 95.3% of all clusters, astrocytes initially divide asym-
metrically, producing one cK cell (pNB) and one astrocyte, which becomes
dormant and either stays associated to the cluster (1 dormant astrocyte) or
dissociates from it (no dormant astrocyte). We will thus simulate individual
clusters, starting with one cK cell initially, which corresponds to the first cK
cell after the first asymmetric division of an astrocyte, while the latter be-
comes dormant and thus lost from the model scope. By fitting and validating
the model(s) on the data, we will first try to exclude most options and filter
out the possible fitting model options. Note that by modelling the dynamics
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stochastically, we do not necessarily assume that the underlying biological
processes are stochastic, but the probabilistic notion takes into account the
uncertainty related to influences from the cellular environment that may af-
fect cell fate, which we do not model explicitly. The biological processes may
or may not be stochastic.

We note that in order to keep the number of parameters low enough
to provide statistical meaningful fitting results and to avoid overfitting, the
model makes certain simplifications. Most of those simplifications do not
affect the the outcomes, while some deviations may occur, as discussed in
the following:

• By assuming the model to be a Markov process, it is implicitly as-
sumed that event timings follow an exponential probability distribu-
tion. While in reality, events such as cell division times do not follow
such a distribution, we make use of the property of weak convergence (a
generalisation of the central limit theorem) [2, 3], meaning that after
multiple events have occurred, the detailed distribution of the indi-
vidual event times does not matter, and only the mean event times,
defined by the stochastic rates, matter to distinguish model outputs.
This means the predictions of the here implemented Markov model will
be identical, after long times, to a model with the real distribution and
the same stochastic rates. Nonetheless, there may be deviations due
to this assumption, at short simulation times, when not many events
have occurred, and in the tails of of predicted outcome distributions.

• While we do not explicitly model the loss of cK cells – that is either by
exiting the cell cycle, death, or dissociation from a cluster – these are
indirectly taken into account via possible fast transitions cK → cKD
→ cD (whereby cD cells are considered as lost in this model) which
can occur since the Markov property allows events to occur arbitrarily
quickly (though with lower probability). Such events can be accommo-
dated by inclusion in the stochastic rates γK,D, and by adjusting the
distribution of event times. Nonetheless, as argued above, the latter
does not matter in the long term for the bulk of the output distribution
(that is, the distribution of cluster sizes), but may lead to deviations
in its tails.

• The model does not explicitly account for cells that have exited the cell
cycle to re-enter the cell cycle (temporary quiescence). Nonetheless,
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from a modelling standpoint, this simply means that the time period
between cell division events (the last before exiting the cell cycle and
the first before re-entering it) is significantly longer than the mean time
between cell division events. This is in principle covered by the broad
event-time distribution of a Markov process, while if such events occur
in significant numbers it may result in an altered distribution of event
times. However, as argued above, this does not affect model outcomes
in the long term, but distributions at short times may be affected.

3. Fitting and validation procedure

To fit and validate the Markov model defined by (9) - (12), we compute
the model likelihood with respect to the data: the statistical distribution of
cluster sizes and their composition of cK and cKD cells. To that end, we run
simulations of the Markov model defined above, following a kinetic Monte
Carlo (Gillespie) algorithm [1]. The relative frequencies of simulated clusters
with nK cK cells and nD cKD cells give an estimate for the probability pnK ,nD

to find simultaneously nK cK cells and nD cKD cells, as well as for the single
cell-type probability distributions pnK

(to find nK cK cells irrespective of nD)
and pnD

(to find nD cKD cells, irrespective of nK). We note that since for
the data only clusters with 4 or more cells were counted, we do the same
for the simulated clonal statistics. The simulation results are then compared
with the data, the measured total counts fnK ,nD

, as well as fnK
and fnD

(defined analogous to the respective probabilities). Since the outcomes of
individual simulations – simulating a single cluster each – are independent of
each other, the probability that the model with given probabilities pn, where
n stands for nK , nD or the combination (nK , nD) respectively, to reproduce
exactly the data fn, is P (D, θ) ∝

∏
n [pn(θ)]fn , where the sum and product

go over all configurations of n. By normalising the probability distribution,
one obtains a multinomial distribution for the likelihood,

L(θ) = P (D, θ) =
(
∑

n fn)!∏
n fn!

∏
n

[pn(θ)]fn . (13)

To get an estimate for the likelihood function we simulate various model
versions for a wide range of parameter value configurations which form a tight
mesh in parameter space, and determine the likelihood according to Eq. (13).
We then plot the likelihood function. As explained in the following, we will
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reduce the model versions so far that we have only one or two fit parameters
for each model fit, for which the likelihood function L(θ) can be visualised
(for convenience, we will rather show the logarithm of the likelihood, the
log-likelihood, log-L = ln(L), where ln is the natural logarithm).

3.1. Finding the best model

Usually, the model and parameters with the maximum likelihood are
chosen as the best model/parameter combination. We would then accept or
reject a model and parameters based on whether the deviation of the model
prediction from the data is statistically significant. However, several aspects
may confound such a straightforward approach:

• The prediction of the probability pn is stochastic itself due to the
stochastic nature of the simulations. As such, the best likelihood esti-
mate is prone to stochastic variations, leading to a very rugged likeli-
hood landscape L(θ), with many local maxima. In particular, due to
the stochasticity, the global maximum coming from simulations of a fi-
nite number of clusters may not coincide with the true global maximum,
which one would get from an infinite number of simulated clusters.

• The best fit can often be achieved with more than one set of parameters.
Hence, the likelihood maximum is often not unique, and this further
increases the problem from the previous point.

• While the model can take into account simultaneous changes in division
and differentiation rates of cells, through external factors and internal
clocks, the model does not explicitly account for cooperative signalling
interactions between cells that lead to simultaneous divisions, differen-
tiation, or dissolution of clusters.

To address these issues,

• We choose to estimate the likelihood function L(θ) for a wide range
of parameter set values rather than just a single maximum. Then, we
consider a range of parameters θ with values L(θ) close to the maximum
and sample parameters from this range to display the simulation results
overlaid with the data. From this, the goodness of fit can be estimated.

• We do not reject models merely based on the statistical significance
of deviations. Since such deviations may occur due to artefacts com-
ing from the Markov approximation of the dynamics, or the lack of
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modelled cell-cooperative effects, even the best reasonable model (with
our assumptions) may show such deviations. Instead, we inspect the
structure of the predicted and measured cluster size distributions and
see whether those are reasonably matched. Among the non-rejected
models we then compare them based on numerical similarity between
model and data and can thereby determine which model is more likely
to be true, without strictly rejecting others.

• If discrepancies between model and data remain even for the best fit
of the model, we will discuss what factors, not included in the model
(such as the non-Markovian nature of the model and collective effects)
can cause such discrepancies.

4. Model fitting and selection: results

The model as a whole contains at least 8 parameters, a number which
further increases if cluster-age dependence is also considered. Since greedy
optimisation algorithms, such as gradient descent, cannot be employed due to
the potentially large number of local maxima of the likelihood function (see
previous section), the number of parameters needs to be drastically reduced
to avoid overfitting. To this end, we will use data from other experiments
to fix some parameters before fitting on the cluster data, and then we will
consider particular sub-versions of the model, with fewer (one or two) free pa-
rameters and will fit those on the data. By excluding most of these versions,
we seek to arrive at a final version of a candidate model with few parameters
which then can be fitted to the full set of data.

As a convention, we express all times in units of “average cell cycle times
of cK cells” (cc) and associated rates as “per cell cycle” (cc−1). This allows
to eliminate one free fit parameter. We will later, in section 5, determine the
unit “cc” in terms of common time units, from separate experimental data.

4.1. Fitting cK-cells only

Since, in the model, there are no transitions from cKD to cK cells, the
cK-cell population in a cluster evolves independently from the cKD cell pop-
ulation. Thus, we first model only the cK population in a cluster and fit
the model to the measured distribution of cK cells in clusters. We will then,
in the subsequent section, use the best fit for cK cells to extend the model
to include cKD cells and fit their distribution in clusters. For convenience,
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we will drop the subscripts of parameters δK , rK , γK if it is clear from the
context.

4.1.1. Deterministic differentiation

First, we consider a model version in which differentiation occurs precisely
at a certain cluster age, that is, either at a specific time point or after a
specified number of cell divisions after cluster initiation. Hence, we consider
two model sub-variants:

A.t: Differentiation of cK cells occurs when a specified time tc = t0 has
passed since the initiation of the cluster.

A.m: Differentiation occurs after a specified number of cell divisions m = m0.

Thus, we assume that cK cells first only divide symmetrically, cK →
cK + cK until time t0 (version A.t) or for the first m0 cell divisions (version
A.m), upon which they differentiate. This can be implemented in our generic
model by taking only processes (9) and (10) and assuming either (variant
A.t):

γ =

{
0 for t < t0
∞ for t ≥ t0

, (14)

or (variant A.m):

δ =

{
−1 for m < m0

1 for m ≥ m0
. (15)

We can easily see that model A.t cannot be fitted to the data. Since,
according to this model, all cK cells become cKD cells at the same time,
clusters containing a mix of cK and cKD cells could not exist. Thus, the
presence of such mixed clusters in the data tells us that model A.t cannot be
correct.

Hence, we only need to fit model A.m quantitatively to the cK-cell distri-
butions in clusters, whereby m0 is the only free parameter. The fitting results
are shown in Figure 1 in terms of the log-likelihood functions: The top panel
shows the log-likelihood as function of the fitting parameter, m0, the bottom
panels show the predictions for the cK-cell distributions in clusters, according
to the best fit parameter values, together with the experimental data.

We note that also for A.m, the best fit parameters do not produce a
reasonably good match with the data. Therefore we reject both A.t and A.m,
and thus the hypothesis that differentiation occurs entirely deterministically.
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Figure 1: Fitting model A.m to the distribution of cK cells in clusters. (Top
row) log-likelihood for various values of parameters m0. (Bottom row) Plots
of cK-cell distributions in clusters for the value of m0 = 4 with maximum
likelihood. Crosses are simulation results and bars are experimental data.
Corresponding figures for model A.t are not shown since all likelihoods are
zero.
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4.1.2. Constant differentiation rate (stochastic)

The next model version we consider is when the time point of differentia-
tion is uncertain, modelled as stochastic timing of events, while the propen-
sities for doing so do not change over time. We consider two sub-variants:

B.δ Differentiation of cK-cells is coupled to cell division, i.e. γ = 0, while
δ is a free parameter.

B.γ Differentiation of cK-cells is not coupled to cell division, i.e. divisions
simply duplicate cK cells, ensured by δ = −1, while differentiation,
cK → cKD, occurs as separate event, whereby the differentiation rate
γ is a free parameter.

We note that also a mixture of both processes may be a possibility, however,
since this means that in principle differentiation is not coupled to division,
this would predict distributions very similar to variant B.γ.

In Figure 2 we show the fitting of the model variants. For variant B.δ
we have free fit parameter δ for different fixed values of r, and γ = 0. For
variant B.γ, we have free fit parameter γ and δ = −1 (in either cases, λ is
fixed as time unit). The top panels show the likelihoods as a function of δ,
for variant B.δ for cases r = 0.1, 0.3, 0.4 and for variant B.γ. The bottom
panel shows the prediction for the distribution of cK cells for the parameter
values with maximum likelihood (which is unique). As the models with best
fit parameter for either model variant do not reproduce any reasonably good
match with the data, we reject the hypothesis that differentiation rates are
independent of cluster age.

4.1.3. Cluster-age dependent differentiation rates

In this section we study further model variants where the rates are not
constant over time, but change with cluster age, be it with the number of
cell divisions m or explicitly as time tc passes after cluster initiation.

First, we assessed experimentally whether the cell division rate changes
significantly over the course of maturation of a cluster. To that end we
administered BrdU and harvested cells 2 hours later. BrdU labels cells in
S-phase of mitosis, thus the labelling frequency from a single pulse of BrdU
administration is approximately proportional to the cell division rate (given
that the length of S-phase is not coupled to cell division rate and if labelling
is not close to saturation). We compared the BrdU labelling efficiency in
young, cK-only clusters, and more mature, mixed cK+cKD clusters. The
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Figure 2: Fitting model B to distributions of cK cells in clusters. (Top row)
log-likelihood for various values of parameter δK for model B.δ and various
values of parameter γ for model B.γ (parameters do not change with time).
(Left column): model version B.δ with r = 0.1, (Left middle column): model
version B.δ with r = 0.3, (Right middle column): model version B.δ with
r = 0.5. (Right column): model version B.γ. (Bottom row) Plots of cK-cell
distributions in clusters for the parameter values with maximum likelihood
of corresponding plots above in the same column. Crosses are simulation
results and bars are experimental data.
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result is shown in Table 1. Notably, the difference in BrdU labelling efficiency
between cK cells in young and mature clusters is not significant, which led
us to assume that the cell division rate does not change significantly over
cluster age. Thus, we assume that the rate of division remains constant
over cluster aging, while the proportion of differentiation events increases (in
order be consistent with a finite cluster age, see section 5, the differentiation
propensity cannot decrease substantially).

cell types in cluster
type

cK cells in cK clusters cK cells in cK + cKD
clusters

% BrdU+ 52.9 43.1
n 81 47

Table 1: BrdU labelling frequency (% BrdU+) of cK cells in different cluster
types, representing different stages of maturation (cK-only clusters are on
average younger than mixed cK+cKD), together with sample sizes n. The
p-value is p = 0.117 for BrdU percentage of cK cells in different cluster types.
Thus the difference is not significant.

In the following, we model the increase of the differentiation propensity,
γ(X), δ(X), respectively, where X = tc,m, as either an exponential function,

γ(X) = βeαX , δ(X) = βeαX − 1 , (16)

or a power law,

γ(X) = βXα, δ(X) = βXα − 1 . (17)

Here, the parameters α and β are the free fit parameters of this model version.
The term “-1” for δ ensures that δ(X = 0) = −1. Furthermore, δ is capped
at δ = 1 since this is associated with maximal symmetric differentiation
probability equal to one. Note that the power law function includes the case
of a linear increase for α = 1.

We can implement different versions of the model of increasing differen-
tiation propensity:

• As before, we implement model sub-versions when differentiation is
coupled to cell division and when not. In the former case, we set γ = 0
and increase δ with cluster age, in the latter, we set δ = −1 and increase
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γ with cluster age. We will keep r constant over cluster age, since it
does not affect the propensity of differentiation (it is unbiased with
respect to proliferation vs. differentiation).

• We can apply an exponential function (16) or power law (17) to model
the variation over cluster age.

• We can have the parameters depend explicitly on the time tc since the
cluster has been initiated, or on the number of undergone cell divisions
m.

We denote model versions as follows: the first letter is the primary version (C
for main version C, i.e. cluster-age dependent differentiation propensity), the
second symbol denotes which parameter varies with cluster age (“δ” means
that parameter δ increases with cluster age, starting from δ = −1 while
γ = 0; “γ” means that γ varies with cluster age, starting from γ = 0, while
δ = −1), the third string of characters denotes the used function (exp for
an exponential function according to (16), pow for a power law according
to (17)), and the fourth entry denotes whether this function depends on
time since cluster initiation, tc (here simply denoted as t) or the number of
undergone cell divisions, m. In total, this gives 8 model versions, each with
two fit parameters, α and β:

• For C.δ.exp.t, parameter δ varies as δ(t) = βeαtc − 1

• For C.δ.exp.m, parameter δ varies as δ(m) = βeαm − 1

• For C.δ.pow.t, parameter δ varies as δ(t) = βtαc − 1

• For C.δ.pow.m, parameter δ varies as δ(m) = βmα − 1

• For C.γ.exp.t, parameter γ varies as γ(t) = βeαtc

• For C.γ.exp.m, parameter γ varies as γ(m) = βeαm

• For C.γ.pow.t, parameter γ varies as γ(t) = βtαc

• For C.γ.pow.m, parameter γ varies as γ(t) = βmα

Furthermore, we fit versions for different, fixed values of r.
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In Figures. 3-5, top panels, we show the log-likelihood functions of those
model versions as a heatmap, as obtained from kinetic Monte Carlo simula-
tions, where ’hotter’ colours, according to the shown colour range, represent
higher likelihoods, (r = 0.5 and r = 0.3 are shown separately for model
version C.δ, in Figures 3 and 4 respectively). It is notable that most of
those functions do not show a single global maximum, but rather a curve
along which the log-likelihood remains maximal. We therefore tested the
models at two sets of parameter values, each, chosen as close as possible
to the maximal likelihood, and we plotted predicted cK-cell distributions in
clusters along the measured distributions, in the panels below the respective
log-likelihood functions.

We see from the predicted distributions that for r = 0.3 substantial
qualitative deviations between predicted and measured distributions remain,
even for best fit parameter values. Hence we reject model versions C.δ with
r = 0.3. For r = 0.5, predicted cK-cell distributions show a reasonable, qual-
itative fit in all four cases, but some data points still deviate significantly
(by more than two standard deviations). We do not show versions of C.δ
with r < 0.3 since the quality of fits decreases with decreasing r. Hence,
we can exclude any significant contribution of asymmetric divisions, as their
probability is 1− 2r = 0 for r = 0.5.

We also see reasonable fits for C.γ. In particular, for C.γ.pow.t we see the
best fit with highest likelihood. Furthermore, this model version is the only
one for which the likelihood function has a unique maximum. We therefore
identify this model version as the best fitting one, without strictly reject-
ing other versions. We note that this model implies that all divisions are
symmetric, cK → cK + cK and differentiation occurs independently of cell
division, cK → cKD.

While those models of type C yield reasonable fits for cK-cell distribu-
tions, we require a model that matches as accurately as possible the cK-cell
distributions in order to go ahead and also fit the cKD-cell distributions.
Hence, in the following we will seek to further improve the fit as a basis for
modelling cKD cells.

4.1.4. Cluster-age dependent differentiation rates with sharp cut-off

Given that the tails of the distribution in model C.γ.pow.t are slightly
over-estimated in previous fits, we hypothesised whether a combination of
the deterministic differentiation, version A, and varying differentiation rates
could define a model that matches the data better. We therefore now check
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Figure 3: Fitting model versions C.δ with r = 0.5 to distributions of cK
cells in clusters. The heatmaps show the log-likelihoods according to the
adjacent colour scale bar. (Top row) log-likelihood as function of fit pa-
rameters α and β for model subversions C.δ.pow.m (left column), C.δ.pow.t
(left middle column), C.δ.exp.m (right middle column), C.δ.exp.t (right col-
umn). (Middle and bottom rows) Plots of cK-cell distributions in clusters
for the parameter values with maximum likelihood of corresponding plots
above in same column. Crosses are simulation results and bars are ex-
perimental data. The parameters of simulated cluster size distributions in
the two bottom rows are: (in the order ’top’, ’bottom’, and in units of
cc−1): (left) α = 1.6, β = 0.135 and α = 4.4, β = 0.005, (middle left)
α = 16.0, β = 0.58 and α = 20.0, β = 0.005, (middle right) α = 1.3, β = 0.01
and α = 1.55, β = 0.005, (right) α = 0.7, β = 0.08 and α = 2.8, β = 0.01.
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Figure 4: Fitting model versions C.δ with r = 0.3 to distributions of cK cells
in clusters. The heatmaps show the log-likelihoods according to the adjacent
colour scale bar. (Top row) log-likelihood as function of fit parameters α and
β for model subversions C.δ.pow.m (left column), C.δ.pow.t (left middle col-
umn), C.δ.exp.m (right middle column), C.δ.exp.t (right column). (Middle
and bottom rows) Plots of cK-cell distributions in clusters for the parameter
values with maximum likelihood of corresponding plots above in same col-
umn. Crosses are simulation results and bars are experimental data. The
parameters of simulated cluster size distributions in the two bottom rows
are: (in the order ’top’, ’bottom’, and in units of cc−1 where relevant): (left)
α = 1.7, β = 0.07 and α = 3.0, β = 0.01, (middle left) α = 0.7, β = 0.34 and
α = 1.2, β = 0.19, (middle right) α = 0.5, β = 0.08 and α = 1.0, β = 0.01,
(right) α = 0.95, β = 0.02 and α = 0.25, β = 0.27.
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Figure 5: Fitting model versions C.γ to distributions of cK cells in clus-
ters. (Top row) log-likelihood as function of fit parameters α and β for
model subversions C.γ.pow.m (left column), C.γ.pow.t (left middle column),
C.γ.exp.m (right middle column), C.γ.exp.t (right column). The heatmaps
show the log-likelihoods according to the adjacent colour scale bar. (Mid-
dle and bottom rows) Plots of cK-cell distributions in clusters for the pa-
rameter values with maximum likelihood of corresponding plots above in
same column. Crosses are simulation results and bars are experimental data.
The parameters of simulated cluster size distributions in the two bottom
rows are: (in the order ’top’, ’bottom’, and in units of cc−1 where rele-
vant): (left) α = 3.0, β = 0.0175 and α = 3.9, β = 0.005, (middle left)
α = 6.1, β = 0.45 and α = 4.0, β = 0.3, (middle right) α = 1.35, β = 0.004
and α = 1.6, β = 0.002, (right) α = 3.8, β = 0.008 and α = 4.7, β = 0.002.
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the performance of model version C, but with the additional constraint that
once the number of undergone cell divisions reaches m0, cK cells always
differentiate, to become cKD cells. We call this model version C−A. Here,
we use m0 = 5 as we do not observe any clusters with more than 24 = 16 cK
cells.

As in the previous section, we fitted the model for each of the 12 sub-
versions (distinguished for variated parameter, type of function, independent
variable, and r = 0.3, 0.5 for C-A.δ). The result is shown in Figure 6, for
all 12 model versions. Here, we only show the best-fit cK-cell distributions
for model version C-A.γ, since the other versions show a substantially lower
likelihood (The best fit distributions shown in the lowest panels are according
to the best fits from the log-likelihood function immediately above, respec-
tively). We see that, again, model version C-A.γ-pow-t shows the best fit –
which is better than the fit without cutoff – and has also a unique maximum
in its likelihood function.

4.2. Fitting cKD-cells

We now take the best fitting model version and parameters from fitting cK
cells, and include the distributions of cKD cells and associated parameters,
for computing model likelihoods. Hence, we take model C-A.γ.pow.t, i.e.
setting γK(t) = βKt

αK with αK = 5.0 and βK = 0.02cc−1, and we assume
a differentiation cutoff at m0 = 5. Based on these fixed parameters, we
will now use the same model versions as used in the previous section for cK
cell dynamics, but apply them to cKD cell dynamics parameters γD, δD, rD
instead.

We note that we do not use the joint cluster size distribution fnK ,nD
for

comparison with the data, since this distribution is too sparse and thus the
fitting is prone to noise. Instead, we use both the cluster size distributions
of cK-cells, only, D1 = {fnK

}, and that of cKD-cells, only, D2 = {fnD
}, and

compute the likelihoods as a Bayesian update: we use the Bayesian posterior
coming from D1,

P (θ|D1) =
L(θ|D1)

N(D1)
(18)

(where N(D1) is the Bayesian normalisation factor which depends only on
the data, and where we assume a flat prior) as prior for the Bayesian posterior
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Figure 6: Fitting model versions C-A.δ with r = 0.5 (top row) and r = 0.3
(top middle row) and model version C.γ (lower middle row) to distributions
of cK cells in clusters. The differentiation cutoff is upon 5 cell divisions,
when cK cells differentiate for sure, cK → cKD. The top three rows show
the log-likelihood as function of fit parameters α and β for the corresponding
model subversions. The heatmaps show the log-likelihoods according to the
adjacent colour scale bar. (Bottom rows) Plots of cK-cell distributions in
clusters for the model and the parameter values with maximum likelihood
immediately above in the same column (i.e. only for model C-A.γ). Crosses
are simulation results and bars are experimental data. The parameters of
simulated cluster size distributions in the two bottom rows are: (in the order
’top’, ’bottom’, and in units of cc−1 where relevant): (left) α = 1.7, β = 0.019
and α = 3.1, β = 0.004, (middle left) α = 4.0, β = 0.03 and α = 5.0, β =
0.02, (middle right) α = 0.7, β = 0.013 and α = 1.25, β = 0.002, (right)
α = 1.6, β = 0.009 and α = 2.3, β = 0.006. Plots of cK-cell distributions for
other models are not shown as the likelihoods are substantially smaller.22



of D2, i.e.

P (θ|D2, D1) =
L(θ|D2)P (θ)

N(D1)
=
L(θ|D2)L(θ|D1)

N(D1)N(D2)
(19)

Since N(D1)N(D2) only depends on the data, we can maximise the Bayesian
posterior by maximising the product of likelihoods, L(θ|D1, D2) = L(θ,D1)×
L(θ,D2). This is the log-likelihood function shown in Figure 7, top three
panels.

We note that model version C includes model versions A and B as special
cases:

• versions A.m and A.t corresponds to model version C.γ.exp.m and
C.γ.exp.t, respectively, when α → ∞ on the line β = e−αm and β =
e−αtc , respectively.

• versionsB.δ andB.γ correspond to model versions C.δ.exp.t and C.γ.exp.t,
respectively, when α = 0.

Hence, it is sufficient to fit model version C, applied to cKD cells. We
thus assume that δD(tc,m), γD(tc,m) follow the same functional form as
δK(tc,m), γK(tc,m), yet with possibly different parameters αD, βD. For cKD
cells, also the cell division rate λD could be different to that of cK cells. The
BrdU labelling experiments displayed in Table 2 (labelling frequency mea-
sured 2 hours after BrdU labelling) show that there is a significant difference
in labelling frequency of the two cell types, and that the labelling frequency
of cKD cells is 0.73 times that of cK cells. Thus, a best estimate for the
cKD cell division rate is λD = 0.73 × λK = 0.73cc−1, which we use in the
following.

We see that – when applied to cKD cell distributions – model versions C.δ
does not yield reasonable fits, as the likelihoods are greatly lower than those
of model version C.γ. Both model version C.γ.pow.t and C.γ.exp.t yield good
fits, whereby C.γ.pow.t is a slightly better match. For displaying the clone
size distributions we chose two values with highest likelihood, although there
is a complete line of equally well fitting parameters as visible in the plot,
hence the best fit parameters are not unique. Nonetheless, for the following
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cell type cK cKD
% BrdU+ 57.5 42.1

n 262 361

Table 2: BrdU labelling frequency (% BrdU+) of cK and cKD cells (percent-
age), together with sample sizes n. The p-value for the difference in BrdU+
percentage between cell types is 1.18 × 10−7, thus the difference is signifi-
cant. The ratio of the labelling frequency of cKD vs. cK cells, 57.5/41.1 =
0.73, provides a best estimate for the ratio of cell division rates, as labelling
frequencies are not saturated, thus λD/λK = 0.73.

analysis we chose manually the best fit parameters,

αK = 5.0cc−1 (20)

βK = 0.02cc−1

αD = 5.0cc−1

βD = 0.01cc−1

(21)

The majority of the distribution is matched well. However, deviations can
be seen in the very tail of the distribution and for small cKD-cell numbers.
This is generally expected for Markov models (see discussion in section 2
and a similar discussion in [4]). Deviations at small cKD cell numbers can be
attributed to the tendency of clusters to dissolve at the end of their lifetime,
upon which they are not counted for the data (bars): we observed that
clusters which consist only of cKD and cD cells tend to appear as non-
cohesive. These may still be cells in close proximity, and they do contain
cycling cells, but were not counted due to the lack of cell-cell contact. The
model, on the other hand, does not include the synchronous dissolution of
clusters. While it would in principle be possible to model such a situation,
this would require additional parameters which would render the fitting of
the model infeasible.

In Figure 9, we also see that model version C.γ.pow.t with the best fit
parameters produces an excellent fit of the expected proportions of cluster
types cK-only (TAP clusters), mixed cK-cKD clusters (TAP-pNB clusters),
and cKD-only clusters (pNB clusters).
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Notably, the best fits do not appear in the regions that correspond to
model versions A and B as described above, hence we can again reject those
model versions.

Given the high coherence of model and data in the bulk of the distribu-
tion, in particular for model C.γ.pow.t, we conclude that the differentiation
propensity increases with cluster age and differentiation is independent of
cell division (cKD → cKD + cKD and cKD → cD). The deviations of the
best model at small cell numbers, together with the experimental observa-
tion of disperse ’clusters’ which were not scored as clusters due to the lack
of cell-cell adhesion, suggests that this is due to a synchronous dissolution of
clusters which is missed by the model.

5. Estimation of the average cell cycle time

In the previous sections, we have expressed all times in terms of average
cell cycle times, “cc”, that is, the inverse of the cell division rate. This is
sufficient for simulations, as the time unit is arbitrary and can be chosen
freely in simulations, and the experimental situation is in a steady state,
as argued in section 1. Given the best fit parameters, we can now make
predictions for the mean lifetime of clusters – defined as the time after which
all its cells have exited the cell cycle – and by comparison with BrdU-tracing
data we can determine an estimate for the cell cycle time and thus the cell
division rate.

Simulating the best fit model, C-A.γ.pow.t for both cK and cKD cell
dynamics with the best fit parameters according to 20, we obtain a mean
lifetime of clusters of tl = 3.74cc. Figure 10 shows the corresponding pre-
dicted lifetime distribution. To estimate the real mean lifetime from the
data, we make use of the BrdU labelling experiments, where cells are la-
belled with BrdU at time point t0 = th−∆t where ∆t = 4 days and th is the
harvesting time (Figure 3F in the main text). Here we measured the pro-
portions pB+ ≈ 0.632 of clusters that contain at least one BrdU+ cell when
harvested, averaged over 3 harvesting times th. The fact that the variation
between harvesting times is not large consolidates that the system is in a
steady state with constant cluster birth rates, r (see also section 1). When
labelled 8h and 2h before harvesting we checked that almost all active pro-
liferative clusters become labelled with BrdU for at least one cell (see Figure
3F in the main text), hence any cluster being initiated before t0 is BrdU+
while any cluster initiated after that time point is BrdU-. Furthermore, only
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Figure 7: Fitting model versions C.δ and C.γ – applied to cKD cell dynamics
– to distributions of cK and cKD cells in clusters. All models displayed here
assume best fit parameters for cK cell parameters, according to model C-
A.γ.pow.t, i.e. δK = −1, γK = βKt

αK
c with αK = 5.0, βK = 0.02 (as in Figure

6.). Top three rows show log-likelihoods from joining the information from
cK-cell and cKD cell distributions as in section 4.2, as function of α and
β. The heatmaps show the log-likelihoods according to the adjacent colour
scale bar. The model subversions are applied to cKD cell parameters δD and
γD only. (Top row) model C.δ and r = 0.5,(Top middle row) model C.δ
and r = 0.3, (Lower middle row) model C.γ. (Bottom rows) Plots of cKD-
cell distributions in clusters for various best fit parameter values of model
C.γ (Plots of cKD-cell distributions for other models are not shown as the
likelihoods are substantially smaller). Crosses are simulation results and bars
are experimental data. The parameters of simulated cluster size distributions
in the two bottom rows are: (in the order ’top’, ’bottom’, and in units of
cc−1 where relevant): (left) αD = 11.0, βD = 0.65, αD = 23.0, βD = 1.15,
(middle left) αD = 5.0, βD = 0.01, αD = 6.0, βD = 0.003, (middle right)
αD = 0.3, βD = 2.0, αD = 1.5, βD = 0.5, (right) αD = 0.65, βD = 0.22,
αD = 1.5, βD = 0.02.
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Figure 8: Log-likelihood landscapes, with model and parameters as in Figure
7 third row, for model C-A.γ.power.t (left) and C-A.γ.exp.t (right), but with
higher parameter space resolution.
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Figure 9: Proportions of cluster types (cK cells only (cK), mixed clusters
(cKcKD), cKD cells only (cKD), as found in the data (bars), and as simu-
lated by model C.γ.pow.t applied for both cK and cKD cells, for the best
fit parameters according to (20) (points). Error bars are standard error of
mean of cluster counts in the data.
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Figure 10: Distribution of cluster lifetimes. The horizontal axis shows cluster
lifetimes, while the vertical axis shows frequencies.

clusters that have been actively proliferating until th can be measured, that
is, any cluster initiated after the time point tb = th−tl can be measured when
harvested, where tl is the lifetime of that cluster. Thus, the total number
of BrdU+ clusters, NB+ is the number of clusters initiated between tb and
t0, and the total number of BrdU- clusters, NB−, is the number of clusters
initiated between t0 and th. Denoting by t̄l the mean lifetime of a cluster, we
have then

NB+ = r(t0 − t̄b) = r(t̄l −∆t), NB− = r(th − t0) = r∆t (22)

=⇒ NB+

NB−
=
pB+

pB−
=
t̄l −∆t

∆t
=

t̄l
∆t
− 1 (23)

=⇒ t̄l = ∆t

(
pB+

1− pB+

+ 1

)
= 4 days× (

0.623

0.377
+ 1) = 10.6 days (24)

From this follows a mean cell cycle time of around tcc = t̄l[days]/t̄l[cc] ≈
2.83 days, and hence, the cell division rate λ = 1/tcc = 0.353 day−1.
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