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S1 Visual summary of the Probabilistic Duration Model (PDM)

Figure S1: Visual summary of the Probabilistic Duration Model (PDM). (a) Concentration data from an example
emission event. The identified naive event is highlighted by a green box, with the naive duration shown as an arrow.
Periods of information are shaded in gray, while periods of no information have a white background. Possible start
and end times based on the periods of information are marked in orange. (b) Result of applying the PDM to the
naive event in (a).

S2 The Gaussian puff atmospheric dispersion model

This study uses the Gaussian puff atmospheric dispersion model to simulate the transport of methane through air.
At a high level, the Gaussian puff model approximates a continuous release of some pollutant (in our case methane)
by simulating the movement of many small “puffs” of methane that are modeled as 3-dimensional Gaussian-like
distributions. The Gaussian puff model is used in the following steps of the Probabilistic Duration Model (PDM)
described in the main text: 1) estimate naive event source location, 2) estimate naive event emission rate, 3) estimate
periods of information.

Here we describe the Gaussian puff model in detail, its input parameters, and how we can tell when it is poorly
approximating actual transport. Note that this description of the Gaussian puff model is a concise summary of the
description provided in [1] and [2].

The first step of running the Gaussian puff model is to set the coordinate system so that the source is located at
(0, 0, 𝐻), where 𝐻 is the height of the source. The “puffs” of methane simulated by the model will all originate at
this point. New puffs are created at a given frequency, 𝑑𝑡, by default once per second, and the coordinates are rotated
for each puff so that the positive 𝑥-direction is pointed in the downwind direction at the time of puff creation. In
this rotated coordinate system, the methane concentrations produced by a single puff, 𝑝, at sensor location (𝑥, 𝑦, 𝑧)
and time from creation 𝑡 is modeled as

𝑐𝑝 (𝑥, 𝑦, 𝑧, 𝑡) =
𝑄

(2𝜋)3/2𝜎2
𝑦𝜎𝑧

exp

(
− (𝑥 − 𝑢𝑡)2 + 𝑦2

2𝜎2
𝑦

) [
exp

(
− (𝑧 − 𝐻)2

2𝜎2
𝑧

)
+ exp

(
− (𝑧 + 𝐻)2

2𝜎2
𝑧

)]
,

where 𝑄 is the mass of methane contained in puff 𝑝, 𝜎𝑦 and 𝜎𝑧 are the dispersion parameters in the 𝑦 and 𝑧

directions, respectively, and 𝑢 is the wind speed at the time of puff creation. The value of 𝑄 is determined by the
user specified emission rate, 𝑞, and the frequency of puff creation, 𝑑𝑡.

At each subsequent time step, a new puff is created at the release point and puffs already in existence are
advected based on the wind speed and direction at their respective creation times. This version of the Gaussian
puff model assumes zero advection in the vertical direction, as wind data in this dimension are hard to obtain in
practice. The total concentration at sensor location (𝑥, 𝑦, 𝑧) and time 𝑡 is then simply
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𝑐(𝑥, 𝑦, 𝑧, 𝑡) =
𝑃∑︁
𝑝=1

𝑐𝑝 (𝑥, 𝑦, 𝑧, 𝑡),

where 𝑃 is the number of puffs in existence at time 𝑡.
The dispersion parameters (𝜎𝑦 and 𝜎𝑧) control the width of each puff. We obtain 𝜎𝑦 and 𝜎𝑧 values using the

EPA parameterization of the Pasquill-Gifford-Turner dispersion scheme [3–5]. Under this parameterization, both
𝜎𝑦 and 𝜎𝑧 are functions of stability class and monotonically increase with distance traveled. This means that the
puffs grow larger (i.e., more diffuse) over time as they move further away from the source.

In summary, the input parameters required to run this version of the Gaussian puff dispersion model are as
follows:

• Source locations. Methane emission sources on oil and gas production sites are often well known and can
be identified via satellite imagery or through discussion with the oil and gas operator.

• Sensor locations. CMS technology vendors always keep a log of where their sensors are located.

• Wind speed and direction. These data are almost always obtained by anemometers attached to the CMS
sensors. High frequency wind data leads to better simulation fidelity. Ideally, the anemometers would obtain
one observation of wind speed and direction per second.

• Emission rate, 𝑞. The value of this parameter depends on the use-case of the Gaussian puff model. When
estimating the emission source and rate of each naive event, the emission rate provided to the Gaussian puff
model does not matter. This is because the output of the Gaussian puff model is a linear function of emission
rate, and the method for estimating emission source and rate (described in detail in [1]) does not depend on
the amplitude of the simulated concentrations (only their temporal pattern). Therefore, an arbitrary value of 1
g/s is used when estimating the emission source and rate for each naive event. When using the Gaussian puff
model to identify the periods of information, however, the overall amplitude of the simulated concentrations
does matter. This is because large enhancements in the simulated concentration time series (defined as a
background-correct amplitude of 0.75 ppm or larger) are taken as periods of information. Therefore, when
using the Gaussian puff model to identify periods of information for a given naive event, we run the simulation
using the estimated emission rate for that naive event. This scales the simulated concentrations to our best
estimate of the true emission rate during the naive event.

• Puff creation frequency, 𝑑𝑡. Higher simulation frequencies result in more accurate output, as there is more
overlap between the puffs and hence a better approximation of a continuous release. However, simulating
more puffs per second increases the computational cost of the dispersion model. This parameter is set to 1
puff per second by default, which has been found to be more than adequate fidelity for this application [2].

• Dispersion parameters, 𝜎𝑦 and 𝜎𝑧 . These values are obtained from a look-up table contained in [5].

Finally, we do not produce an emission rate estimate for a given naive event if we believe that the Gaussian
puff atmospheric dispersion model is not accurately representing actual transport during that naive event. The
Gaussian puff model may poorly approximate actual transport if there is a high degree of turbulence, which is not
included in the Gaussian puff model, or if the real methane plume is obstructed by a building or large piece of
equipment, as these types of blockage are also not included in the Gaussian puff model. For each naive event, we
test if the Gaussian puff model is decently approximating actual transport by counting the number of enhancements
in the simulated concentration time series that temporally align with enhancements in the CMS concentration
observations. If there are more than 4 instances of alignment, we say that the Gaussian puff model is providing a
good enough approximation of reality to estimate an emission rate. See [1] for a deeper discussion of this alignment
threshold.

3



S3 Discussion and sensitivity analysis of PDM parameters

Figure S2: Sensitivity of the PDM output to the fixed parameters that control the degree of smoothing of the
information mask. This sensitivity study was performed on the ADED 2023 controlled release data and only
analyzes PDM output using all 10 CMS sensors. Vertical red lines show the default values of the two parameters.
When one parameter is varied, the other is left at its default value. Horizontal blue lines show the value obtained
using the naive method. “Slope of best fit line” is the slope of the line fit to the duration estimates and the true
durations, with values less than 1 indicating underestimation. “R2 of best fit line” is the 𝑅2 value of the same best
fit line. “Percent of estimates within a factor of 2x error” is the percent of duration estimates that are within a factor
of 2x error from the true duration.

The PDM has two fixed parameters that control the amount of smoothing applied to the information mask: the
gap time and the length threshold. Both are parameters of the spike detection algorithm from [1] that is used to
identify and cluster spikes in the simulated concentration time series. These clusters of spikes are what determine
the periods of information or no information.

Spikes in the simulated concentration time series are combined if they are separated by “gap time” minutes or
less. This parameter can be used to smooth out short periods of time where the wind is blowing away from the
sensors, but then returns quickly. The default value for this parameter is 0 minutes, as we have found that even
extremely short periods of time when wind is blowing away from the sensors results in CMS non-detect times.

Clusters of spikes in the simulated concentration time series are discarded if their length is less than “length
threshold” minutes. This effectively removes short periods of enhancements that may be due to noisy data or errors
in the forward dispersion model. Occasionally, there will be large jumps in the wind data that result in a brief spike
in the simulated concentrations that is not seen in the actual concentration observations, and hence these short-lived
spikes are removed. This can again be thought of as smoothing out the information mask, as it removes short bursts
of information that are likely not realistic.

A sensitivity study of these two parameters is provided in Figure S2 using data from the ADED 2023 evaluation.
Note that the ADED 2022 evaluation, not the ADED 2023 evaluation, was used to set the default values for these
parameters. When the gap time is increased from its default value of zero minutes, all of the metrics trend toward
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their value when using the naive method. This makes sense, as increasing the gap time effectively eliminates short
periods of no information. In the limit when all of these periods are eliminated, the PDM returns the same duration
estimates as the naive method. When the length threshold is decreased from its default value of 15 minutes, the slope
of the best fit line decreases (i.e., the PDM duration estimates are shorter), and vice versa. This again makes sense,
as a shorter length threshold means that fewer clusters of spikes in the simulated concentration data are discarded,
and as a result, there are fewer periods of no information. When there are fewer periods of no information, the event
start and end times that are sampled by the PDM are closer to the start and end times of the naive events, and hence
the durations from the PDM are shorter. The opposite is true as well. When the length threshold is increased, more
clusters of spikes in the simulated concentration data are discarded, and as a result, there are more periods of no
information. This means that the start and end times sampled by the PDM are further from the start and end times
of the naive events, and hence the durations from the PDM are longer.

These results are promising, as we set the default parameters using completely different data (i.e., the data from
the 2022 ADED evaluation). Despite this, when evaluated on the new ADED 2023 data, the default values still
result in close to optimal model performance. That is, the default values result in best fit slopes close to parity.

Note that we do not include the precision of the methane sensors as a fixed parameter of the PDM, as current
commercially available CMS solutions with quantification capabilities have very precise instrumentation (on the
order of 1 ppm or less). Therefore, it is very unlikely that measurement error from the methane sensors will impact
the PDM results.

S4 Method for estimating emission frequency

Recall that we define the probability of combining a given naive event, 𝐸𝑖 , with a neighboring event, 𝐸 𝑗 , as

P𝑖, 𝑗 = 1 −
|𝑞𝑖 − 𝑞 𝑗 |

𝑃95(𝒒) − 𝑃5(𝒒)
, (1)

where 𝑞𝑖 and 𝑞 𝑗 are the estimated emission rates of naive events 𝐸𝑖 and 𝐸 𝑗 , 𝒒 is a vector of estimated emission
rates for all naive events, and 𝑃5() and 𝑃95() are functions returning the 5th and 95th percentiles.

Once P𝑖, 𝑗 has been computed for each pair of naive events, then estimating emission frequency within a given
time interval is straightforward. To do so, we simply count the number of naive events per emission source within the
given time interval, combining them with their neighbors with probability P𝑖, 𝑗 . If two naive events are combined,
they are only counted as one event in the emission frequency calculation. This process is repeated many times
within a Monte Carlo framework to provide many realizations of the possible event combination options, resulting
in a distribution of possible counts for each emission source. These distributions are then annualized to provide
source-level frequency estimates.

We now provide frequency estimates for the site shown in Figure 2(a) of the main text using the method
described above. The average number of emissions per year per source and 90% intervals are as follows: 235 [231,
241] production unit emissions per year, 423 [416, 431] wellheads1 emissions per year, 87 [87, 87] wellheads2
emissions per year, 256 [246, 262] separator emissions per year, and 390 [374, 405] tank emissions per year.
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S5 Additional details about computing the probability of combining naive events

Recall that we define the probability, P𝑖, 𝑗 , of combining a given naive event, 𝐸𝑖 , with another event, 𝐸 𝑗 , as

P𝑖, 𝑗 = 1 −
|𝑞𝑖 − 𝑞 𝑗 |

𝑃95(𝒒) − 𝑃5(𝒒)
, (2)

where 𝑞𝑖 and 𝑞 𝑗 are the estimated emission rates of naive events 𝐸𝑖 and 𝐸 𝑗 , 𝒒 is a vector of estimated emission
rates for all naive events, and 𝑃5() and 𝑃95() are functions returning the 5th and 95th percentiles.

If it is not possible to produce a rate estimate for 𝐸𝑖 or 𝐸 𝑗 , then we set P𝑖, 𝑗 = 0.5, which assigns equal probability
of combining and not combining the two events. A rate estimate is not produced when we determine that the Gaussian
puff atmospheric dispersion model is poorly representing actual atmospheric transport during a given event. This
determination is made by thresholding the degree of alignment between the simulated concentrations and the CMS
concentration observations (see Section S2 of the SI for details on the Gaussian puff atmospheric dispersion model).

We now describe the recursive sampling strategy used when more than two adjacent naive events have non-zero
probability of being combined. To describe this algorithm, assume that we apply the PDM to naive event 𝐸1,
which has non-zero probability of being combined with the two subsequent naive events, 𝐸2 and 𝐸3. While this
example only contains three events, the same logic can be applied to a situation with 𝑛 many events without loss of
generality.

First, we compute P1,2 and P1,3 using Equation 2, which is reproduced from the main text. Using this equation,
P1,2 and P1,3 can be thought of as the probability of directly combining 𝐸1 with either 𝐸2 or 𝐸3 without considering
the fact that 𝐸2 comes between 𝐸1 and 𝐸3. However, we impose the assumption that 𝐸1 and 𝐸3 can only be
combined in a given iteration of the Monte Carlo framework if 𝐸1 is also combined with 𝐸2 during that same
iteration. Therefore, we must compute an overall probability of combining 𝐸1 with 𝐸3 that takes into account the
probability of combining 𝐸1 with the intermediate event 𝐸2. As a first step in doing so, we compute the cumulative
product of the probabilities of combining 𝐸1 with the adjacent events. This results in the following vector:

{CP1, CP2, CP3} = {1, P1,2, P1,2P1,3}.
These values can be thought of as the probabilities of combining 𝐸1 with either itself, 𝐸2, or 𝐸3, accounting

for the fact that 𝐸1 can only be combined with 𝐸3 in a given sample if it is also combined with 𝐸2. The final step
of this algorithm incorporates the fact that if there is non-zero probability of combining 𝐸1 with 𝐸2 and 𝐸3, then
there is no longer 100% probability of drawing an end time sample for 𝐸1 from only the range of possible end times
for 𝐸1. We do this by recursively subtracting the cumulative probabilities from one another, starting with the last
possible event, 𝐸3, and working back towards 𝐸1. This results in the normalized vector of probabilities

{CP1 − (CP2 − CP3) − CP3, CP2 − CP3, CP3},
which sum to 1 and are the final probability values used to sample end times for 𝐸1. In other words, when sampling
end times for 𝐸1 in this example, there is a CP1 − (CP2 − CP3) − CP3 percent chance of drawing the sample from
the possible end times of 𝐸1, a CP2 −CP3 percent chance of drawing the sample from the possible end times of 𝐸2,
and a CP3 percent chance of drawing the sample from the possible end times of 𝐸3.

To make this example more concrete, let us now use hypothetical numbers. Let P1,2 = 0.8 and P1,3 = 0.6. This
gives us the cumulative probabilities

{CP1, CP2, CP3} = {1, 0.8, 0.48},
and ultimately a probability of sampling end times for 𝐸1 from naive events 𝐸1, 𝐸2, and 𝐸3 of

{0.2, 0.32, 0.48},
respectively. Note that this example involved combining a naive event with multiple adjacent events that come later
in time. The same logic is applied to situations where the adjacent events come earlier in time and the situations
where a naive event is combined with multiple events both preceding and following it.
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S6 ADED 2022 controlled release experiment

Figure S3: Satellite imagery of the Methane Emissions Technology Evaluation Center (METEC) during the ADED
2022 experiment. Potential emission sources are marked with colored boxes. CMS sensor locations are marked
with white pins and are denoted by their cardinal direction relative to the site. Pins with a gray interior indicate
sensors that measure wind speed and direction in addition to methane concentrations.

We performed a preliminary evaluation of the PDM on non-blinded controlled releases conducted as a part of
the 2022 Advancing Development of Emissions Detection (ADED) research program at the Methane Emissions
Technology Evaluation Center (METEC) in Fort Collins, Colorado.

We filtered the controlled releases to single-source releases only, as the PDM assumes a single emission source.
In doing so, we focused on roughly one month of the experiment, from April 17, 2022 to May 15, 2022, which
contained primarily single source releases. Any multi-source releases in this time frame were discarded, along
with any naive emission events that overlapped with the multi-source releases. This filtering included naive events
that were probabilistically recombined with neighboring naive events that overlapped with a multi-source release,
as including these events would artificially inflate the duration estimates from the PDM.

This filtering resulted in 85 single-source emissions for the 8-sensor case. Releases ranged from 0.50 to 8.25
hrs in duration and 0.18 to 6.39 kg/hr in size. Emissions could come from one of five potential emission sources
on the METEC site, marked with colored boxes in Figure S3.

The continuous monitoring system (CMS) sensors used in this evaluation are from Project Canary [6] and
are shown with white pins in Figure S3. Pins with a gray interior indicate sensors that measure wind speed and
direction in addition to methane concentrations. The CMS sensors were installed at a height of 2.4 m. Project
Canary used Near-IR Tunable Diode Laser Absorption Spectroscopy (TDLAS) methane sensors during these
releases. These sensors have an accuracy of ±2% and a precision of ≤ 0.125 ppm with 60 s averaging as reported
by the manufacturer (R. Mistry, personal communication, January 17, 2024). The anemometers used by Project
Canary have an accuracy of ±2% ±0.3 m/s for wind speed and ±2 degrees for wind direction and a resolution of
0.01 m/s for wind speed and 0.1 degrees for wind direction as reported by the manufacturer [7].

Results of the ADED 2022 experiment are shown in Figure S4 using the same parity plot structure as Figure
1 in the main text. We used the ADED 2022 evaluation to determine default values for the two fixed parameters
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Figure S4: (a) Parity plot of estimated and true durations for the ADED 2022 controlled releases. Solid and empty
points correspond to duration estimates from the PDM and naive methods, respectively, with vertical lines showing
the 90% interval from the PDM and color showing the true emission source. Dashed and dotted lines show the best
linear fit to the PDM and naive estimates, respectively. Gray shaded regions show three different error regimes. (b)
Factor of over or underestimation by the best linear fit to the PDM and naive estimates using different numbers of
sensors. Gray shaded regions show the 95% confidence interval on the estimated slope. Negative factor differences
indicate underestimation. Colored sections correspond to the three error regimes in (a). Note that the vertical scale
is limited to [-3.5x, 2x] for visual clarity.

of the PDM. These parameters control the degree of smoothing applied to the information mask and are discussed
in detail in Section S3. To avoid overfitting these parameters, we did not perform an exhaustive search through
their parameter space, but rather picked values that made intuitive sense and resulted in a visually well smoothed
information mask.

S7 ADED 2023 controlled release experiment

We performed a more robust evaluation of the PDM on blinded controlled releases conducted as a part of the 2023
ADED research program at METEC in Fort Collins, Colorado. This experiment spanned from February 2, 2023 to
April 28, 2023. The data were blinded using the following procedure. First, we split the author team into blinded
and non-blinded groups. The non-blinded group acquired the true release information from METEC, while the
blinded group acquired the raw concentration data from the CMS technology vendor. Next, without accessing
the true release information, the blinded group ran the PDM on the raw CMS concentration data and finalized the
results. After finalizing the PDM results, both the true release information and the PDM results were shared among
the entire author team.

After finalizing the PDM results and sharing the ground truth data among the full author team, we then removed
all multi-source releases from the truth data, along with any overlapping duration estimates in the finalized PDM
results. This was done because the PDM assumes a single emission source at any point in time, so we only
evaluate it on these scenarios. This filtering included naive events that were probabilistically recombined with
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Figure S5: Satellite imagery of the Methane Emissions Technology Evaluation Center (METEC) during the ADED
2023 experiment. Potential emission sources are marked with colored boxes. CMS sensor locations are marked
with white pins and are denoted by their cardinal direction relative to the site. Pins with a gray interior indicate
sensors that measure wind speed and direction in addition to methane concentrations.

neighboring naive events that overlapped with a multi-source release. Including these events would artificially
inflate the duration estimates from the PDM, as the events that overlapped with the multi-source releases would not
have existed if the multi-source releases were not conducted. We also discarded one controlled release on March
6, 2023 and the corresponding duration estimate, as it was from a source not included in the study (i.e., not one of
the five sources shown in Figure S5).

This filtering resulted in 79 single-source emissions for the 10 sensor case. Releases ranged from 0.02 to 9.0
hrs in duration and 0.01 to 7.1 kg/hr in size. Emissions could come from one of five potential emission sources on
the METEC site, marked with colored boxes in Figure S5.

The continuous monitoring system (CMS) sensors used in this evaluation are from Project Canary [6] and
are shown with white pins in Figure S5. Pins with a gray interior indicate sensors that measure wind speed and
direction in addition to methane concentrations. The CMS sensors were installed at a height of 2 m. Project Canary
used Near-IR Tunable Diode Laser Absorption Spectroscopy (TDLAS) methane sensors during these releases.
These sensors have an accuracy of ±2% and a precision of ≤ 0.125 ppm with 60 s averaging as reported by the
manufacturer (R. Mistry, personal communication, January 17, 2024). The anemometers used by Project Canary
have an accuracy of ±2% ±0.3 m/s for wind speed and ±2 degrees for wind direction and a resolution of 0.01 m/s
for wind speed and 0.1 degrees for wind direction as reported by the manufacturer [7].

Results of the ADED 2023 experiment are shown in Figure 1 in the main text.

S8 Stanford high emission rate controlled release experiment

We performed a third evaluation of the PDM on blinded controlled releases conducted in Arizona by Stanford
University. This experiment spanned from October 10, 2022 to November 30, 2022. Our procedure for blinding
these data is the same as the procedure used for the ADED 2023 evaluation. The Stanford controlled releases had
only a single emission source, so no filtering was required to satisfy the single source assumption of the PDM.

This experiment had 107 single-source emissions. Before any data filtering, the releases ranged from 0.02 to
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Figure S6: Satellite imagery of the location of the 2022 Stanford high emission rate controlled releases. The single
emission source is marked with a red pin. CMS sensor locations are marked with black pins.

4.14 hrs in duration and 0.8 to 1363.6 kg/hr in size. Emissions could come from one central release point, marked
with a red pin in Figure S6, at either a height of 3.0 m or 7.3 m. The Stanford releases were conducted such that
there were often very short periods of no emissions between two releases at different emission rates. Specifically,
there were 10 gaps less than 1 minute long, 44 gaps less than 5 minutes long, 56 gaps less than 10 minutes long,
and 66 gaps less than 15 minutes long. Neither the PDM nor the naive method discussed in the main text were
designed to identify periods of no emissions this short. In other words, two clusters of concentration enhancements
separated by a gap of 15 minutes or less are assumed to be the same emission event by both the PDM and the
naive method. Therefore, for the purpose of evaluating these methods, we combine the controlled releases that are
separated by 15 minutes or less. When combining controlled releases, we average the emission rates across the
releases that are being combined. Without taking this step, there would be 20 identified naive events that overlap
with more than one controlled release (because the controlled releases are separated by only a few minutes). This
case (i.e., one naive event overlapping with multiple controlled releases) is currently not plotted in the parity plot
structure used throughout the article. There are no cases of this happening with the ADED 2022 and ADED 2023
data. Combining the controlled releases in this way results in 41 single-source controlled releases. The combined
releases ranged from 0.2 to 6.8 hrs in duration and 9.0 to 1363.6 kg/hr in size. There were 25 releases with emission
rate greater than the EPA’s 100 kg/hr reporting threshold.

The CMS sensors used in this evaluation are from QUBE Technologies [8] and are shown with black pins in
Figure S6. All of the 6 CMS sensors measured wind speed and direction in addition to methane concentrations. The
CMS sensors were installed at a height of 2.2 m. QUBE used metal oxide methane sensors during these releases.
These sensors have an accuracy of ±1% and a precision of 1 ppm as reported by the manufacturer (E. Wen, personal
communication, September 27, 2024). The anemometers used by QUBE have a wind speed resolution of 1 km/hr
and a wind direction resolution of 1 degree as reported by the manufacturer (E. Wen, personal communication,
September 27, 2024), where resolution is defined as the smallest change in a quantity that can be detected by the
sensor.

Results of the Stanford experiment are shown in Figure S7 using the same parity plot structure as Figure 1 in
the main text. Both the PDM and the naive method exhibit a larger tendency to underestimate when evaluated on
the 2022 Stanford high emission rate releases. When all 6 CMS sensors are used, the slope of the best fit line to
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Figure S7: (a) Parity plot of estimated and true durations for the Stanford controlled releases. Solid and empty
points correspond to duration estimates from the PDM and naive methods, respectively, with vertical lines showing
the 90% interval from the PDM. Dashed and dotted lines show the best linear fit to the PDM and naive estimates,
respectively. Points with red outlines are naive event pairs that occurred during one controlled release but were
not recombined by the PDM. Gray shaded regions show three different error regimes. (b) Factor of over or
underestimation by the best linear fit to the PDM and naive estimates using different numbers of sensors. Gray
shaded regions show the 95% confidence interval on the estimated slope. Negative factor differences indicate
underestimation. Colored sections correspond to the three error regimes in (a).

the PDM estimates is 0.64 (R2 = 0.56, factor error = -1.56x) and the slope of the best fit line to the naive estimates
is 0.53 (R2 = 0.63, factor error = -1.88x). Almost all cases of extreme underestimation by the naive method (factor
error less than -2x) were the result of one controlled release being separated into two short naive events due to a
gap in the period of elevated methane concentrations. In these cases, we include the two short duration estimates
in the parity plot and attribute both to the same true duration that is much longer. This noticeably decreases the
slope of the best fit line. These events are outlined in red in Figure S7.

Unlike the ADED 2022 and 2023 experiments, the PDM did not recombine any of these naive event pairs, as
almost all of them were erroneously separated by periods of information (resulting in zero probability of being
combined). When these naive event pairs and the corresponding PDM estimates are removed, the slope of the best
fit line to the PDM estimates increases to 1.02 (R2 = 0.74, factor error = 1.02x) and the slope of the best fit line
to the naive estimates increases to 0.82 (R2 = 0.80, factor error = -1.22x). These best fit lines are shown in red in
Figure S7.

There are two potential causes for the PDM failing to recombine the naive event pairs that overlap with one
controlled release. First, the information mask was correct and there were no enhancements in the methane
concentration measurements between the two naive events, despite wind blowing from the source to the sensors.
Second, the information mask was incorrect, and the sensors measured no concentration enhancements because of
CMS non-detect times (i.e., the wind was blowing the methane away from the sensors). The first of these two options
is unlikely, as the concentration enhancements during the naive event pairs were often very large (between 20 and
60 ppm above background). Therefore, it is unlikely that the sensors failed to separate background concentrations
from the methane plume during the middle of these controlled releases, as there was clear separation between these
two signals during the time periods of the two naive events. Figure S8 shows an example of two naive events that
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Figure S8: Example showing two naive events that overlap with one controlled release. Black line shows the
minute-by-minute maximum taken across the concentration observations from all CMS sensors on the site. Orange
boxes show the time periods of the naive events.

overlapped with one controlled release. Due to the size of the concentration enhancements during the naive event
pairs, it is more likely that the information mask was incorrect and the naive event pairs were actually separated by
CMS non-detect times.

A likely cause of the incorrect information mask is the presence of plume rise. We use the Gaussian puff
atmospheric dispersion model to estimate the periods of information and no information, and this model does not
account for plume rise. Therefore, if in reality the methane plume rose notably from the release point, there would
be important differences in the concentration observations from the CMS sensors and the simulated concentrations
from the Gaussian puff model.

The relative heights of the sources and sensors matter when considering the specific impact of plume rise. In
this experiment, the release point was at a height of either 3.0 m or 7.3 m, while the sensors were all installed at
a height of 2.2 m. This means that the release points were always higher than the CMS sensors. Therefore, if
there was plume rise, the actual methane plume would have been farther away from (i.e., higher than) the CMS
sensors than the simulated plume from the Gaussian puff model, which assumes zero plume rise. This in turn
would have resulted in larger simulated concentrations at the sensor locations than if the Gaussian puff model had
incorporated plume rise. Since the information mask is a function of the amplitude of the simulated concentrations
at the sensor locations, this means that there could have been incorrect estimates of information due to the larger
simulated concentrations. In other words, the Gaussian puff model may have missed the CMS non-detect times
between these naive event pairs because it simulated the methane plume too low, closer to the CMS sensors than
the actual methane plume. Note that this effect could also be contributing to the high degree of underestimation in
the emission rate estimates from the technology vendors in Chen et al. [9].

There are two potential reasons why plume rise had a larger impact on the Stanford releases than the ADED
2022 and 2023 releases at METEC. First, the release point in the Stanford experiment was facing upwards, while
there is potentially more variability in the direction of the release point at METEC. This would have introduced
vertical velocity into the emitted methane during the Stanford releases. Second, the higher emission rate releases
potentially further increased the vertical velocity of the methane at the release point. If this was the case, then it
makes sense that this affected the Stanford releases more than the METEC releases, as the emission rates used in
the Stanford releases were much larger than what is possible at METEC.
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S9 Comparison of blinded and non-blinded PDM performance

Table 1 shows a general comparison of PDM performance on the two METEC experiments to highlight similarities
and differences between the blinded and non-blinded evaluations. Performance of the PDM is very similar between
the two evaluations. This is expected, as the PDM was not modified or altered between our initial evaluation on the
ADED 2022 data and the subsequent blinded evaluation on the ADED 2023 data.

Table 1: PDM performance on non-blinded (ADED 2022) and blinded (ADED 2023) evaluations. “Slope of best
fit line” is the slope of the line fit to the duration estimates and the true durations, with values less than 1 indicating
underestimation. “R2 of best fit line” is the 𝑅2 value of the same best fit line. “Percent of estimates within a factor
of 2x error” is the percent of duration estimates that are within a factor of 2x error from the true duration.

Non-blinded: ADED 2022 Blinded: ADED 2023

Number of
sensors

Slope of best
fit line

R2 of best
fit line

Percent of
estimates within

2x error

Slope of best
fit line

R2 of best
fit line

Percent of
estimates within

2x error
10 - - - 0.95 0.80 86.8
9 - - - 0.94 0.82 85.5
8 0.89 0.84 89.3 0.98 0.82 82.9
7 0.89 0.83 86.4 0.99 0.82 81.6
6 0.88 0.81 84.6 1.02 0.84 78.9
5 0.88 0.82 81.6 1.17 0.88 77.0
4 0.87 0.81 77.0 1.12 0.77 69.4
3 0.76 0.70 66.7 1.23 0.77 63.9
2 0.70 0.63 59.3 1.07 0.54 65.5
1 1.20 0.62 63.3 1.03 0.37 61.8

S10 Effect of sensor placement optimization on duration estimates

Figure 1 in the main text shows how the performance of the PDM and the naive method change as the number of
sensors installed on the METEC site decrease. For the subset of 𝑛 sensors, Figure 1 shows the PDM and naive
method results using the best possible arrangement of those 𝑛 sensors. We selected the best sensor arrangement as
follows. First, we created many different emission scenarios that were equally likely to occur on the METEC site.
This was done by sampling many times from historical wind data on the site, and using these samples to simulate
methane concentrations at all potential sensor locations from the different emission sources. Simulations were
performed using the Gaussian puff atmospheric dispersion model. With a set of simulated concentrations for each
emission scenario, we then tested the detection efficiency of all possible 𝑛-sensor subsets of the 10 sensor locations
shown in Figure S5. We say that a given sensor configuration can detect a given emission scenario if at least 20%
of the time steps during the emission had simulated concentration values over 0.5 ppm. The sensor configuration
that successfully detected the most emission scenarios was selected as the optimal 𝑛-sensor arrangement for the
METEC site.

In this section, we consider the performance of the PDM and naive method under sub-optimal sensor arrange-
ments, as it is possible that sensor deployments in practice will not be fully optimized on each site. To do this, we
employ the same optimization scheme described above, but instead of picking out the best 𝑛-sensor arrangement,
we pick out the average 𝑛-sensor arrangement (that produces the detection efficiency closest to the average across
all tested arrangements) and the worst 𝑛-sensor arrangement (that produces the worst detection efficiency across all
tested arrangements).

Figures S9 through S11 show the PDM and naive method results on the ADED 2023 controlled releases under
the best, average, and worst sensor arrangements. The same parity plot structure is used as in Figure 1 in the main
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text, except that subfigure (a) now shows the duration estimates when using only 4 sensors instead of using all 10
sensors as in the main text. This was done because the best, average, and worst arrangements of a 10-sensor subset
of 10 total sensors are all the same. Showing the 4-sensor subset in subfigure (a) highlights the differences in sensor
arrangement optimization.

When using only 4 sensors, the best fit line for the PDM estimates remains relatively consistent: slope = 1.12
for the best arrangement, slope = 1.22 for the average arrangement, and slope = 1.12 for the worst arrangement.
The best fit line for the naive method, however, drops quickly: slope = 0.63 for the best arrangement, slope = 0.57
for the average arrangement, and slope = 0.42 for the worst arrangement. This occurs because suboptimal sensor
arrangements result in fewer detections by the CMS network, which increases the amount of CMS non-detect times
that must be probabilistically addressed.

Figure S9: (a) Parity plot of estimated and true durations for the ADED 2023 controlled releases using the best
4-sensor arrangements. Solid and empty points correspond to duration estimates from the PDM and naive methods,
respectively, with vertical lines showing the 90% interval from the PDM and color showing the true emission
source. Dashed and dotted lines show the best linear fit to the PDM and naive estimates, respectively. Gray shaded
regions show three different error regimes. (b) Factor of over or underestimation by the best linear fit to the PDM
and naive estimates using different numbers of sensors and the best sensor arrangements. Gray shaded regions
show the 95% confidence interval on the estimated slope. Negative factor differences indicate underestimation.
Colored sections correspond to the three error regimes in (a). Note that the vertical scale is limited to [-2x, 2x] for
visual clarity.
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Figure S10: (a) Parity plot of estimated and true durations for the ADED 2023 controlled releases using the average
4-sensor arrangements. Solid and empty points correspond to duration estimates from the PDM and naive methods,
respectively, with vertical lines showing the 90% interval from the PDM and color showing the true emission
source. Dashed and dotted lines show the best linear fit to the PDM and naive estimates, respectively. Gray shaded
regions show three different error regimes. (b) Factor of over or underestimation by the best linear fit to the PDM
and naive estimates using different numbers of sensors and the average sensor arrangements. Gray shaded regions
show the 95% confidence interval on the estimated slope. Negative factor differences indicate underestimation.
Colored sections correspond to the three error regimes in (a). Note that the vertical scale is limited to [-2x, 2x] for
visual clarity.
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Figure S11: (a) Parity plot of estimated and true durations for the ADED 2023 controlled releases using the worst
4-sensor arrangements. Solid and empty points correspond to duration estimates from the PDM and naive methods,
respectively, with vertical lines showing the 90% interval from the PDM and color showing the true emission
source. Dashed and dotted lines show the best linear fit to the PDM and naive estimates, respectively. Gray shaded
regions show three different error regimes. (b) Factor of over or underestimation by the best linear fit to the PDM
and naive estimates using different numbers of sensors and the worst sensor arrangements. Gray shaded regions
show the 95% confidence interval on the estimated slope. Negative factor differences indicate underestimation.
Colored sections correspond to the three error regimes in (a). Note that the vertical scale is limited to [-4x, 2x] for
visual clarity.
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S11 Full detection, localization, and quantification results for AMI case study

Figures S12 and S13 show the full time series of detection, localization, and quantification results from the
framework presented in [1] on the production site used as a case study in the main text. See Figure 2 in the main
text for a schematic of this site. The gray line shows the minute-by-minute maximum of the background-removed
concentration time series from all CMS sensors installed on the site (left vertical axis). Colored rectangles indicate
naive events, with color representing the source estimate. Black points and vertical lines represent the estimated
emission rates and 90% bootstrapped confidence intervals (right vertical axis).

Figure S12: Time series of detection, localization, and quantification results on the site used as a case study in the
main text. Time range spans August through September, 2023.
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Figure S13: Time series of detection, localization, and quantification results on the site used as a case study in the
main text. Time range spans September through October, 2023.
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S12 Additional examples of bounding emission duration

In the main text, we demonstrate how the PDM can be used to bound the duration of a snapshot measurement.
Figures S14 and S15 show two additional examples. For the example shown in Figure S14, the naive duration
estimate (4.0 hrs) underestimates the mean (14.4 hrs) and maximum (20.5 hrs) duration estimates from the proposed
method by a factor of 3.6x and 5.2x, respectively. For the example shown in Figure S15, the naive duration estimate
(0.9 hrs) underestimates the mean (6.6 hrs) and maximum (11.4 hrs) duration estimates from the proposed method
by a factor of 7.6x and 13.2x, respectively.

Figure S14: (a) Example snapshot measurement (time indicated by black arrow) and the overlapping CMS
concentration data (spanning October 7, 2023 at 6:00pm to October 8, 2023 at 7:00pm). Enumerated boxes show
the naive events, with color indicating the source estimate (color corresponds to the schematic in Figure 2(a)). Gray
shaded regions mark periods of information. Percents indicate the probability of combining each event with the
naive event that overlaps the snapshot measurement. (b) Distribution of possible durations from the PDM for naive
event V and hence the overlapping snapshot measurement.

Figure S15: (a) Example snapshot measurement (time indicated by black arrow) and the overlapping CMS
concentration data (spanning September 13, 2023 at 10:00pm to September 14, 2023 at 2:00pm). Enumerated
boxes show the naive events, with color indicating the source estimate (color corresponds to the schematic in Figure
2(a)). Gray shaded regions mark periods of information. Percents indicate the probability of combining each event
with the naive event that overlaps the snapshot measurement. (b) Distribution of possible durations from the PDM
for naive event I and hence the overlapping snapshot measurement.
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S13 Exhaustive search through all possible snapshot measurement times

Figure S16: Result of exhaustive search through all possible snapshot measurement times on the oil and gas site
used as case study in the main text. (a)-(b) Distribution of underestimation by the naive method, expressed as a
factor, compared to the mean and maximum of the distribution of possible durations from the proposed method.
(c) Empirical cumulative distribution function of the two distributions shown in (a) and (b).

In the main text and in Section S12 of the SI, we give a number of examples of using the PDM to bound the
duration of snapshot measurements. As part of this analysis, we quantify the degree of underestimation from the
naive method compared to the PDM.

However, these three examples represent only three possible times in which a snapshot measurement may have
occurred. To more fully probe the extent of possible underestimation by the naive method, we consider all possible
snapshot measurement times. For each snapshot measurement time, we compare the duration of the overlapping
naive event to the mean and maximum of the distribution of possible durations from the PDM.

Figure S16 shows the results of this exhaustive search through all possible snapshot measurement times. Figures
S16(a) and S16(b) show the distribution of underestimation by the naive method, expressed as a factor, compared
to the mean and maximum of the distribution of possible durations from the PDM, respectively. For example, a
factor of 2x means the duration estimate from the PDM is twice as long as the duration estimate from the naive
method.

Figure S16(c) shows the empirical cumulative distribution function of the two distributions to better highlight
the differences between using the mean and the maximum of the PDM as a point estimate of duration.
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S14 Comparison of methods for estimating emission durations

Table 2: Strengths and weaknesses of various duration estimation methods.
Strengths Weaknesses

CMS
using PDM

- Near real time measurements provide granular
duration estimates.
- CMS can detect small emissions, which will be
useful if the EPA reporting threshold is lowered
in the future.
- The PDM addresses a key limitation of CMS:
non-detect times when wind blows emitted
methane between the sensors.

- Errors in location estimate can propagate to
duration estimates, resulting in events not
being combined.
- Quantification of CMS non-detect times is
subject to errors in the dispersion model.
- Assumes a single emission source, which is
unrealistic on complex sites with many
possible emission sources.

CMS
using naive

method
- No strengths over CMS using the PDM.

- Does not account for CMS non-detect times,
which can lead to large underestimation of
emission durations.

Aerial
survey-based
technologies

- Does not require installation of equipment on
each site, and therefore can measure many sites
relatively easily.
- Provides good coverage of the site, which
minimizes errors in the duration estimates
resulting from errors in the localization estimates

- Often long gaps between subsequent
measurements of a given source, meaning
that duration estimates are often a conservative
upper bound at the individual source-level.

Satellites

- Potential for relatively high frequency
measurements of individual sources (i.e., daily).
However, the measurement frequency is often
less in practice due to suboptimal retrieval
conditions.

- Can only detect very large emissions, and
therefore, can only bound the duration of these
very large emissions.
- Detection limits are still larger than the 100
kg/hr EPA reporting threshold.

SCADA
systems

- High frequency data, at the second- or minute-
level
- Many oil and gas operators already have these
systems installed on their sites.

- Duration estimates are not based on actual
measurements of methane, but rather on other
variables such as tank pressures and
temperatures. It is not yet clear if methane
emissions can always be seen in these data.

S15 PDM limitations and next steps

It is important to emphasize the limitations of the PDM as currently implemented. First, the PDM assumes a single
emission source for all detected emission events. This limits the accuracy of the PDM on complex sites where the
single source assumption breaks down, as errors in the source location estimates will impact the accuracy of the
information mask. We are currently developing a Bayesian model for localizing multi-source emissions, which
will significantly improve the accuracy of the PDM on complex sites. Second, the PDM assigns zero probability of
combining adjacent naive events if their source estimates are different, which again means that localization errors
can propagate to errors in the duration estimates. Addressing this limitation will require methods for quantifying
uncertainty in the localization estimates, which are currently under development. Finally, the information mask is
subject to errors in the Gaussian puff dispersion model, which can result in naive events that occur during periods
of no information (e.g., naive events I, III, and IV in Figure 3 in the main text). This could be improved by running
the Gaussian puff model in a stochastic manner by perturbing the wind data and dispersion parameters to provide a
measure of uncertainty in the resulting information mask.
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