Supplementary Appendix

This appendix has been provided by the authors to give readers additional information about their work.

Supplement to: Stanton A. Glantz, Nhung Nguyen, and Andre Luiz Oliveira da Silva. Population-Based Disease Odds for E-Cigarettes and Dual Use versus Cigarettes. NEJM Evid. DOI: 10.1056/EVIDoa2300229.

Population-based disease odds for e-cigarettes and dual use vs. cigarettes SUPPLEMENTAL MATERIALS

Stanton A. Glantz, PhD Nhung Nguyen, PhD Andre Luiz Oliveira da Silva, PhD

SUPPLEMENTARY METHODS 3

Search Strategy 3 Qualifications of searchers 4 Inclusion and exclusion criteria 5 Data extraction 5 Calculation of $OR_{ecig vs cig}$ and $OR_{dual vs cig}$ 6 E-cigarette vs cigarette OR 6 Dual use vs cigarette OR 6 Sensitivity analysis of assumption that OR_{ecig} and OR_{cig} are independent 7 Adjustment for multiple studies using the same sample 7

Monte Carlo estimates of odds ratio for the combined effects of sole e-cigarette and dual use 8

SUPPLEMENTARY RESULTS 8

Risk of bias assessment 8 Sensitivity analyses 9 Possible confounding by former smoking 9

CONFLICT OF INTEREST DISLOSURES 10

FUNDING 10

REFERENCES 10

FIGURES 14

- 1. PRISMA diagram 14
- 2. E-cigarette odds of disease 15
- 3. Dual use odds of disease 16
- 4. Cigarette odds of disease 17
- 5. Sensitivity of e-cigarette vs cigarette comparison to individual studies 18
- 6. Sensitivity of dual use vs cigarette comparison to individual studies 20
- 7. Funnel plots 22
- 8. Overall OR for e-cigarette use compared to cigarettes combining sole and dual use 23

TABLES24

- 1. Included studies 24
- 2. Characteristics and results from included studies 33
- 3. Confounders and risk of bias for included studies 72
- 4. Studies that used the same dataset to study the same outcome in the same year 90
- 5. Study Characteristics (number of ORs/total) 91
- 6. Unadjusted p values from sensitivity analysis of odds ratios to study characteristics controlling for outcome 92
- 7. Pooled adjusted odds ratios of disease (95% CI) based only on studies that reported odds ratios 93
- 8. Unadjusted p values from sensitivity analysis of odds ratios comparing adults and youth 93
- 9. Unadjusted p values for heterogeneity within disease outcomes 94

- 10. Sensitivity analysis of meta-analyses of assuming ORs for e-cigarettes and cigarettes are independent 95
- 11. Unadjusted p values for Begg and Egger tests for publication bias 95
- 12. Trim and fill analysis of publication bias 96
- 13. Summary of qualitative findings in other studies 97
- Explanation for GRADE level of confidence ratings for e-cigarette vs. cigarette and dual use vs cigarette OR 98
- 15. GRADE Level of Confidence Ratings 100

STATA DO FILES 101

SUPPLEMENTARY METHODS

Search strategy

Searches designed to capture a wide range of disease outcomes in population samples were conducted for peer-reviewed papers published January 1, 2005 through October 1, 2023.

PubMed:

(e-cigarette* OR ENDS OR "electronic nicotine delivery systems" OR "Electronic Nicotine Delivery Systems"[Mesh] OR vaping OR "Vaping"[Mesh]) AND (heart OR "Heart Diseases"[Mesh] OR cardiac OR cardiovascular OR stroke OR "Stroke"[Mesh] OR infarct* OR vascular OR "Vascular Diseases"[Mesh] OR lung OR "Lung Diseases"[Mesh] OR pulmonary OR asthma OR "Asthma"[Mesh] OR COPD OR "chronic obstructive pulmonary disease*" OR bronchitis OR cancer OR "Neoplasms"[Mesh] OR pregnancy OR "Pregnancy"[Mesh] OR pregnant OR dental OR oral OR periodont* OR "Periodontal Diseases"[Mesh] OR caries OR "Dental Caries"[Mesh] OR cavities OR "oral microbiome" OR tooth OR "Tooth Diseases"[Mesh] OR teeth OR "dry mouth" OR "Mouth Diseases"[Mesh] OR "Metabolic dysfunction"[Mesh]) AND (odds OR "Odds Ratio"[Mesh] OR "hazard ratio" OR "relative risk" OR "Risk"[Mesh] OR "Risk Factors"[Mesh] OR epidemiolog* OR "Epidemiology"[Mesh] OR "epidemiology"[Subheading]) NOT ("smoking cessation" OR "Smoking Cessation"[Mesh] OR EVALI OR addiction OR initiation OR gateway OR perception OR "Perception"[Mesh] OR attitude OR "Attitude"[Mesh] OR awareness OR "Awareness"[Mesh] OR telomere OR "Telomere"[Mesh])

Web of Science:

(e-cigarette* OR "electronic nicotine delivery systems" OR vaping) AND (heart OR cardiac OR cardiovascular OR stroke OR infarct* OR vascular OR lung OR pulmonary OR asthma OR COPD OR "chronic obstructive pulmonary disease*" OR bronchitis OR cancer OR neoplasm* OR pregnancy OR pregnant OR dental OR oral OR periodont* OR caries OR cavities OR "oral microbiome" OR tooth OR teeth OR "dry mouth" OR "metabolic dysfunction") AND (odds OR "hazard ratio" OR "relative risk" OR risk OR "risk factors" OR epidemiolog*) NOT ("smoking cessation" OR EVALI OR addiction OR initiation OR gateway OR perception OR attitude OR awareness OR telomere)

Embase (limit to articles/articles in press):

('electronic cigarette'/exp OR 'electronic cigarette' OR 'vaping'/exp OR 'vaping') AND ('heart'/exp OR 'heart' OR 'heart disease'/exp OR 'heart disease' OR 'cardiac'/exp OR 'cardiac' OR 'cardiovascular disease'/exp OR 'cardiovascular disease' OR 'cerebrovascular accident'/exp OR 'cerebrovascular accident' OR 'infarction'/exp OR 'infarction' OR vascular OR 'vascular disease'/exp OR 'vascular disease' OR 'lung'/exp OR 'lung' OR 'lung disease'/exp OR 'lung disease' OR pulmonary OR 'asthma'/exp OR 'asthma' OR 'chronic obstructive lung disease'/exp OR 'chronic obstructive lung disease' OR 'bronchitis'/exp OR 'bronchitis' OR 'malignant neoplasm'/exp OR 'malignant neoplasm' OR 'pregnancy'/exp OR 'pregnancy' OR pregnant OR 'dental'/exp OR 'dental' OR oral OR 'periodontal disease'/exp OR 'periodontal disease' OR periodont* OR 'dental caries'/exp OR 'dental caries' OR cavities OR 'oral microbiome'/exp OR 'oral microbiome' OR 'tooth'/exp OR 'tooth' OR 'tooth disease'/exp OR 'tooth disease' OR 'xerostomia'/exp OR 'xerostomia' OR 'mouth disease'/exp OR 'mouth disease' OR 'metabolic dysfunction') AND ('odds ratio'/exp OR 'odds ratio' OR odds OR 'hazard ratio'/exp OR 'hazard ratio' OR 'risk factor'/exp OR 'risk factor' OR 'risk'/exp OR 'risk' OR 'epidemiology'/exp OR 'epidemiology' OR epidemiolog*) NOT ('smoking cessation'/exp OR 'smoking cessation' OR evali OR 'addiction'/exp OR 'addiction' OR 'initiation'/exp OR initiation OR 'gateway'/exp OR gateway OR 'perception'/exp OR perception OR 'attitude'/exp OR attitude OR 'awareness'/exp OR awareness OR 'telomere'/exp OR telomere) AND [2005-2022]/py

PsycINFO (limit to peer review):

(e-cigarette* OR "electronic nicotine delivery systems" OR vaping) AND (heart OR cardiac OR cardiovascular OR stroke OR infarct* OR vascular OR lung OR pulmonary OR asthma OR COPD OR "chronic obstructive

pulmonary disease*" OR bronchitis OR cancer OR neoplasm* OR pregnancy OR pregnant OR dental OR oral OR periodont* OR caries OR cavities OR "oral microbiome" OR tooth OR teeth OR "dry mouth" OR 'metabolic dysfunction') AND (odds OR "hazard ratio" OR "relative risk" OR risk OR "risk factors" OR epidemiolog*) NOT ("smoking cessation" OR EVALI OR addiction OR initiation OR gateway OR perception OR attitude OR awareness OR telomere)

We also included studies identified in public comments submitted to FDA on August 1, 2022 on proposed flavored tobacco product standards^{1,2} in the screening set and studies cited in reviews identified in the searches above.

"Initiation," "gateway" and "addiction" were included as exclusion criteria because we wanted to capture studies on the association of disease with e-cigarette use among users, not factors that predicted e-cigarette initiation. Preliminary searches without these exclusion terms captured a large number of irrelevant studies.

"Telomere" is included as an exclusion term because "ENDS" captured many irrelevant papers on telomere ends. EVALI (e-cigarette and vaping associated lung injury) was excluded because it is acute syndrome primarily associated with cannabis vaping.

Metabolic dysfunction was not explicitly included in the original search done on September 12, 2022. It was added after metabolic dysfunction emerged from the original search. To check if the search strategy missed papers any relevant papers, we conducted additional searches for papers published January 1, 2005 through September 12, 2022, with "metabolic syndrome" ("metabolic syndrome[Mesh]" in PubMed) in place of the list of diseases in the searches above. Doing so did not identify any additional papers for inclusion.

Searches were updated from September 13, 2022 through October 1, 2023, including metabolic syndrome, using the searches listed above.

There was no limitation on language. None of the few non-English language papers identified in the searches were included in the final set of studies. Google Translate was used to translate abstracts for papers that did not include English language abstracts.

Qualifications of searchers

Dr. Glantz, a retired Professor of Medicine, has published several meta-analyses, including two on ecigarettes and smoking cessation,^{3,4} and reviewed meta-analyses for major journals as well as two textbooks on biostatistics. He served as an associate editor of Journal of American College of Cardiology for 10 years, where he was responsible for statistical review of papers. Dr. Nguyen, an epidemiologist, and Assistant Professor of Medicine, has published papers on epidemiology of tobacco use, including on e-cigarette use and dual tobacco use. Dr. Oliveira da Silva is a postdoctoral fellow and realized this work on his sabbatical leave from the Brazilian Health Regulatory Agency (ANVISA) where he is responsible for scientific, enforcement and registration issues related to regulation of tobacco products. (The statements and opinions expressed in the article are those of the authors and are based on current scientific evidence. They do not represent any institutional guideline and/or opinion of ANVISA, the Ministry of Health and/or the Brazilian Government.) Peggy Tahir, a Research & Copyright Librarian advised on structuring the literature searches. She has been providing research support for systematic reviews at UCSF since 2015 and, as of May 2023, was coauthor on 26 peer-reviewed systematic or scoping reviews and has provided many additional systematic review consultations, including mentoring students on how to conduct systematic reviews.

Inclusion and exclusion criteria

Inclusion criteria were: Population-based epidemiological studies of disease in current e-cigarette and dual users that permit comparison to cigarette smokers or nonusers among people using e-cigarettes as consumer products. Associations could be reported as OR, relative risks, hazard ratios, incident rate ratios, or prevalence ratios, taking into account cigarette and dual use (either in multivariate models or through stratification) if present. There were no age or language restrictions.

Exclusion criteria were: Studies that included smokers as well as e-cigarette users but did not account for dual use, studies that did not report adjusted ORs (or equivalent) that we need to do the analysis, non-peer reviewed studies, conference abstracts, prevalence and use pattern studies, cessation studies, initiation studies, determinants of e-cigarette use, addiction studies, mental health studies, mediation studies, studies where the independent variable was ever (as opposed to current) e-cigarette use, biomarker studies, studies of only e-cigarette users, EVALI, clinical trials or studies of disease in clinical settings, experimental studies and other studies used to elucidate pathophysiological mechanisms, reviews, meta-analyses and commentaries.

While included in the original PROSPERO protocol, studies of only ever e-cigarette and cigarette smokers were excluded from the final analysis based on feedback from peer reviewers.

Data extraction

Title and abstract screening, full text review, and data extraction were done independently by two reviewers using Covidence with differences resolved by consensus.

When studies included multiple measures of the same outcome (e.g., myocardial infarction and stroke or composite cardiovascular outcomes), we selected the one with the most similar to the other papers in that outcome category. Studies that reported more than one outcome (e.g., asthma and COPD) were categorized into both outcomes.

When studies reported results based on both ever and current use of e-cigarettes or cigarettes, we used the current use values. If a study reported frequency of use (e.g., non-daily and daily use), we used the highest level of exposure (e.g., daily use) reported for both e-cigarettes and cigarettes.

When studies presented models with different numbers of potential confounders, we selected the most highly adjusted model.

When studies reported both never e-cigarette users and non-current users as the reference group, we selected never users.

When studies presented results using both multivariate (including e-cigarette use and cigarette use as separate independent variables, with dual use indicated by both variables set to "yes") and stratified approaches (in which respondents were categorized as sole e-cigarette, sole cigarette, dual users and nonusers), we recorded results of both approaches and selected the ORs with the smallest magnitude (so that any biases are toward lowering the estimated effects). A few studies reported relative risk, hazard ratio, or incident rate ratio; these measures were treated as approximations of ORs.

The following characteristics of studies were recorded:

- design: longitudinal or cross-sectional
- modeling: multivariate or stratified, as defined above
- reference group: never or non-current use of each tobacco product

- outcome: current (past 12 month) or ever disease presence
- age group: adult (minimum age ≥ 18) or youth (minimum age < 18) samples
- sample size
- most recent year of data collection
- covariates (potential confounders)

When necessary to clarify methodology or reported results we emailed corresponding authors.

Calculation of $OR_{ecig \, vs \, cig}$ and $OR_{dual \, vs \, cig}$

E-cigarette vs cigarette OR

We compared odds of the health outcomes associated with e-cigarette use with those of cigarette use using

$$OR_{ecig \ vs \ cig} = \frac{OR_{ecig}}{OR_{cig}}$$

where the reference conditions for OR_{ecig} and OR_{cig} are people who do not use the product. When not directly reported, we calculated $OR_{ecig vs cig}$ by dividing reported OR_{ecig} by OR_{cig} . To calculate the 95% confidence interval for this odds ratio, we first took the logarithm of both sides of this equation:

$$\ln OR_{ecig \ vs \ cig} = ln OR_{ecig} - ln OR_{cig}$$

We computed the standard errors associated with each of these ORs from the associated 95% confidence intervals:

$$s = \frac{\ln OR_{upper} - \ln OR_{lower}}{2 \times 1.960}$$

To get the standard error for $\ln OR_{ecig vs cig}$ we used the formula for the variance of a difference of two independent variables:

$$s_{ecig vs cig} = \sqrt{s_{ecig}^2 + s_{cig}^2}$$

Dual use vs cigarette only OR

Because the odds associated with e-cigarette use and cigarette use compared to no product use are independent in the multivariate logistic regressions, the e-cigarette OR is the marginal OR of e-cigarette use over no product use, controlling for cigarette smoking. Therefore, it is also an estimate of the OR of dual use (e-cigarettes plus cigarettes) compared to smoking alone, because

$$OR_{ecig} = \frac{OR_{ecig} \times OR_{cig}}{OR_{cig}} = \frac{OR_{dual}}{OR_{cig}} = OR_{dual vs cig}$$

If $OR_{dual vs cig}$ was reported directly (in stratified models), we used that estimate. When it was not reported, we computed

$$OR_{dual\,vs\,cig} = \frac{OR_{dual}}{OR_{cig}}$$

as described above.

In studies that reported both multivariate and stratified results, we used the results with the smallest OR in the meta-analysis so that any biases are toward estimating smaller effects.

Sensitivity analysis of assumption that OR_{ecig} and OR_{cig} are independent

 OR_{ecig} and OR_{cig} are not independent because both use the same group of nonusers of either ecigarettes and cigarettes as the same reference group. When the two variables are correlated,

$$s_{ecig-cig} = \sqrt{s_{ecig}^2 + s_{cig}^2 - 2rs_{ecig}s_{cig}}$$

where r is the correlation of the estimates of the two ORs. The correlation, r, is not reported in the papers, so we conducted a sensitivity analysis assuming the actual standard error of the difference was ¹/₄ of the value computed assuming that the results estimates are independent, which corresponds to r around 0.9.

Adjustment for multiple studies using the same dataset

Forty-nine of the 124 (40%) of the ORs used in the meta-analysis came from studies in which different investigators published different papers using the same dataset (e.g., BRFSS) from the same year (e.g., 2017) to study the same outcome (e.g., asthma) (Table S4). Such multiple studies are not identical replicates due to differences in details of study design (including differences in covariates, analytical approach, or handling of missing data), as evidenced by different sample sizes and effect size estimates. Because these studies are not identical, we did not drop any of them from the meta-analysis. Nevertheless, when multiple studies are based on the same underlying dataset, the results are likely to be correlated to an unknown extent. Following advice for handling duplicate studies in meta-reviews⁵⁻⁷ and accounting for multiple comparisons analysis in an earlier meta-analysis,⁴ we inflated the standard errors (and, so, confidence intervals) for ORs using Bonferroni corrections to reduce the contribution of the individual studies to the pooled estimates in the meta-analyses. Specifically, we inflated (multiplied) the standard errors (resulting is corresponding increases in the width of the confidence intervals) by the ratio of Bonferroni-adjusted z values divided by z_{0.05}. For example, if there were 2 studies using the same dataset, the inflator (multiplier) is

$$\frac{z_{.05/2}}{z_{.05}} = \frac{z_{.025}}{z_{.05}} = \frac{2.393980}{1.959964} = 1.221441$$

Thus, the inflator (multiplier) is 1 if there is a single study using a dataset, 1.143594 if there are 2 studies using the same dataset, 1.221441 if there are 3 studies, 1.274363 if there are 4 studies, 1.314223 if there are 5 studies, and 1.346074 if there are 6 studies.

Studies that analyzed youth and adult subsamples separately in the same dataset were not considered overlapping. Several longitudinal studies reported results from PATH for different years and across different waves. We applied the procedure described above to these studies based on the latest year of data collection. We did not attempt to adjust for the fact that some of the respondents carry over between PATH waves for papers that used different time periods because attrition and recruitment of new respondents in the PATH cohort means that the specific sample is not constant over time.

Monte Carlo estimates of odds ratio for the combined effects of sole e-cigarette and dual use

Many e-cigarette users are dual users, including 39.1% (95% CI 36.8%-41.4%) of US e-cigarette users in 2018-2019⁸ and 66.7% (62.7%-70.9%) of Swedish e-cigarette users in 2016,⁹ making it important to consider dual use when assessing the overall population risks of e-cigarette use, including both sole and dual users.

Let *d* equal fraction of e-cigarette users who are dual users. The overall odds of the disease compared to cigarette use combining sole e-cigarette use and dual use is

$$OR_{all vs cig} = d OR_{dual vs cig} - (1 - d) OR_{ecig vs cig}$$

We estimated the distribution of $OR_{all vs cig}$ by doing 10,000 random draws of d from a normal distribution and $OR_{dual vs cig}$ and $OR_{ecig vs cig}$ from log normal distributions using the observed means and 95% confidence intervals (converted to standard errors) of the observed levels of dual use. d was drawn from a normal distribution because the values were all far from 0 and 1.

SUPPLEMENTARY RESULTS

Risk of bias assessment

The ROBINS-E protocol includes detailed questions about each study whose answers are combined using an algorithm to obtain the risk of bias scores. Following this protocol, all studies scored a having low risk of bias (Table S3), generally because they were well-established population samples designed to assess overall determinants of health.

Among prespecified potential confounders, all controlled for age and sex and most controlled for race/ethnicity (87/107=81%), education and/or socioeconomic status (94/107=88%), BMI (78/107=73%), comorbid conditions (84/107=79%), non-cigarette tobacco use (50/107=47%). Thirty percent (32/107) controlled for former smoking, either by stratifying on smoking status (current, former, never; 15/32=47%), as a categorical variable in a multivariate analysis (13/32=41%), by controlling for smoking duration (years or pack-years; 3/32=9%) or both as a categorical variable and as smoking duration (1/32=3%). Nine papers¹⁰⁻¹⁸ reporting OR of having an asthma attack controlled for previous diagnosis of asthma, which may have over-corrected the estimates of the association between product use and having had an asthma attack, biasing the results toward the null.

They used well-established and validated self-report questions to assess exposure (e-cigarette and cigarette use) and outcomes. Self-reported diagnosis of cardiovascular disease^{19,20} and COPD^{21,22} has been validated against medical records. Population prevalence estimates in PATH are similar to results in NHANES for cardiovascular²³ and oral diseases.²⁴

No respondents were excluded based on reported exposure (e-cigarette or cigarette use), either at baseline or, for the longitudinal studies, during follow-up. Except for PATH, which oversampled tobacco users, respondents were recruited independent of e-cigarette or cigarette use (and before it was measured) generally based on national probability samples. Studies using PATH used provided weights to adjust for oversampling tobacco users. Most studies had low levels of missing data and there was no evidence of bias presented regarding patterns of missing data. Most studies used listwise deletion; 11 used multiple imputation.^{17,25-34}

There was no evidence of selective reporting of results.

Sensitivity analyses

95% confidence intervals and associated p values in the sensitivity analyses were not adjusted for multiple comparisons. Doing so would have made confidence intervals wider and p values larger (i.e., less likely to be <0.05), so using uncorrected intervals and p values biases the analysis toward concluding sensitivity. As discussed below, even using unadjusted p values very few of the results suggested sensitivities.

Study design characteristics (Table S6) were unlikely to affect results. Only 4 of the unadjusted p values were less than 0.05, and the pattern of small uncorrected p values was not consistent across the study characteristics. The ORs for dual use vs. cigarettes and e-cigarettes vs. no product use fell by 3-4% per year (p=0.009), but not for other ORs. Whether the risks associated with e-cigarettes has changed over time warrants further research as new data accumulates.

Limiting the data only to studies that reported odds ratios changed a few numbers, but not the whether the 95% confidence intervals for pooled results included 1.00 or the directionality of the associations (compare Table S7 with Table 1).

About half (20/42) the studies of asthma and one-third of the oral disease (3/10) studies were of youth. There was no significant difference in odds ratios between youth and adults for asthma (unadjusted p \geq 0.376 for all outcomes) or oral disease studies (unadjusted p \geq 0.108 for all outcomes; Table S8). Studies for other outcomes only included adults.

There were not significant differences between the different detailed outcomes for cardiovascular disease, stroke, metabolic dysfunction, or oral disease for e-cigarette vs. cigarette use and dual use vs. cigarettes (unadjusted $p \ge 0.166$; Table S9). There was significant heterogeneity for asthma for e-cigarettes vs. cigarettes and for COPD for dual use vs cigarettes and dual use vs no product use for COPD diagnosis vs respiratory symptoms, but none of these heterogeneities led to a change in qualitative conclusions (footnotes in Table S9). The results were insensitive to deleting individual studies (Figures S5 and S6) suggest that this heterogeneity did not materially affect the conclusions.

Dropping individual studies did not materially affect the estimates of the pooled effects from the metaanalyses for e-cigarettes and dual use compared to cigarettes (Figures S5 and S6). There were only two cases, both oral disease studies of e-cigarettes compared to cigarettes,^{33,35} where the significance of the confidence intervals of the pooled estimates moved above or below 1.00. This may be due to the fact that the confidence interval for all the oral disease studies was close to 1.00.

Assuming independent estimates of OR_{ecig} and OR_{cig} when computing $OR_{ecig vs cig}$ did not materially affect the conclusions of the meta-analysis of $OR_{ecig vs cig}$ (Table S10). In addition, 13 studies provided both direct estimates of $OR_{dual vs cig}$ as well as information that allowed computing it from OR_{dual} and OR_{cig} . Twelve of the 13 estimates were within 1% of each other^{13,14,29,34,36-42} and the computed value for the other one was within the 95% confidence interval for the direct estimate.⁴³

Possible confounding by former smoking

Including former smoking in the analysis was not associated with the estimated ORs for any outcome (Table S6). In addition, 10 ORs for e-cigarettes vs. non-use were reported among former smokers (stroke,³⁷ asthma,⁴⁴⁻⁴⁶ COPD,^{44,47-49} and difficulty concentrating⁵⁰; Table S3). There was no differences in OR_{ecig} between the ORs determined from the entire sample and the ORs determined from former smokers and the values in the same studies based on the entire sample (p=0.274 by paired t-test).

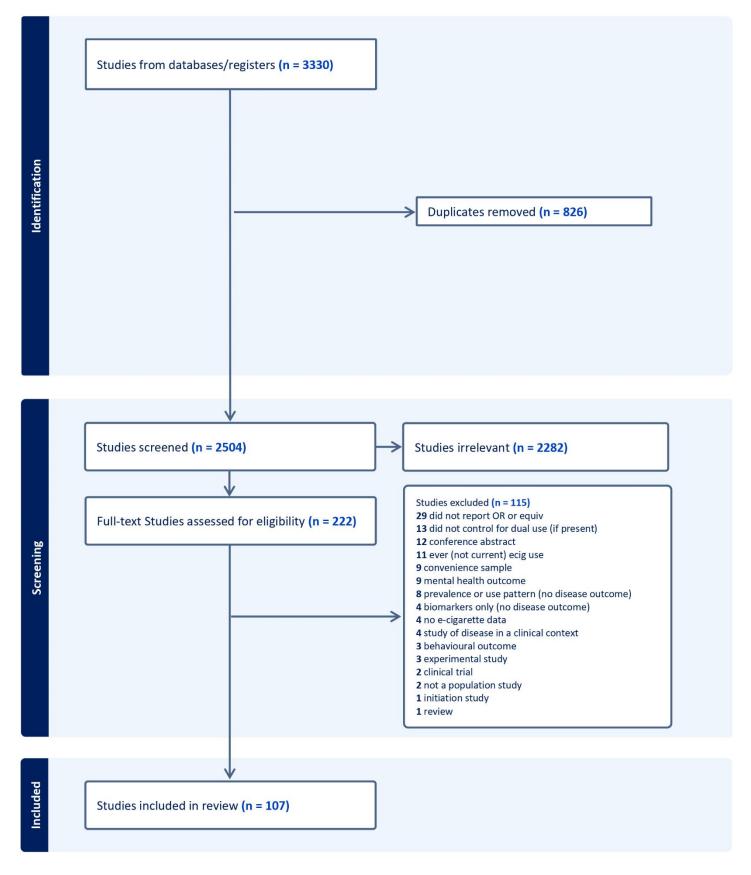
Studies of never smokers definitively exclude the possibility that OR_{ecig} is confounded by current or former smoking. Most (8/14) studies of asthma^{10-12,44-46,51-58} and COPD^{11,40,44,47,49,53,57,59} (6/8) found significantly elevated ORs associated with e-cigarette use among never smokers. Indeed, the pooled OR for asthma (OR=1.49; 95% CI 1.30-1.77) and COPD: (2.29; 1.52-3.46) were higher than the estimates based on the entire sample, which included current and former smokers (asthma: 1.24; 1.19-1.30; COPD: 1.46; 1.31-1.61; Table 1). A single study of metabolic dysfunction⁶⁰ reported a significant increase in OR of disease associated with e-cigarette use in never smokers, but single studies of cardiovascular⁶¹ or oral disease⁶² did not. In addition, two papers published after October 1, 2023 – one of asthma in youth⁶³ and one of myocardial infarction in adults⁶⁴ – reported significant associations between e-cigarette use and disease in never smokers.

CONFLICT OF INTEREST DISLOSURES

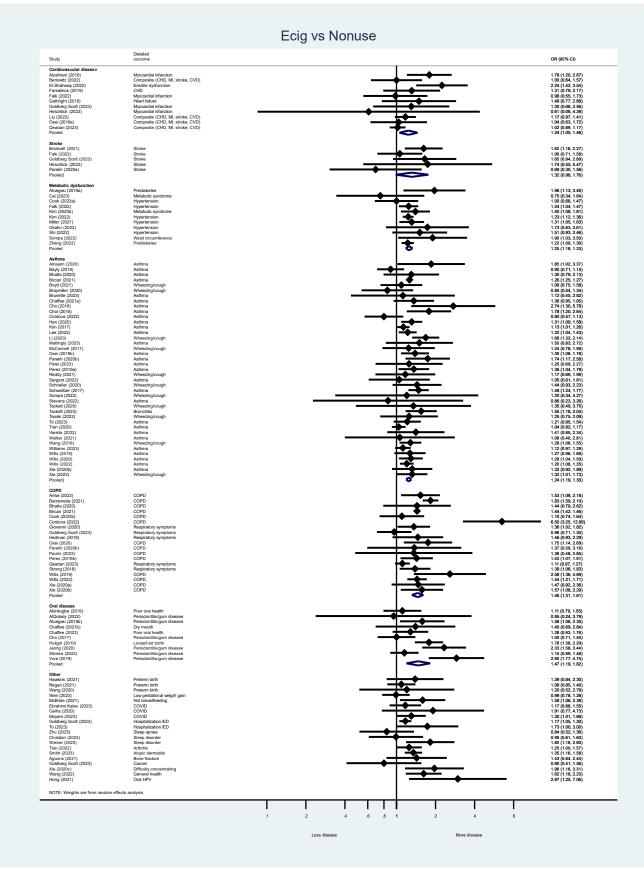
Dr Glantz reported receiving personal fees from the World Health Organization outside the submitted work. Dr. Oliveira da Silva realized this work on his sabbatical leave from the Brazilian Health Regulatory Agency (ANVISA). Dr. Nguyen has no disclosures to report. The statements and opinions expressed in the article are those of the authors and are based on current scientific evidence. They do not represent any institutional guideline and/or opinion of ANVISA, the Ministry of Health and/or the Brazilian Government.

FUNDING

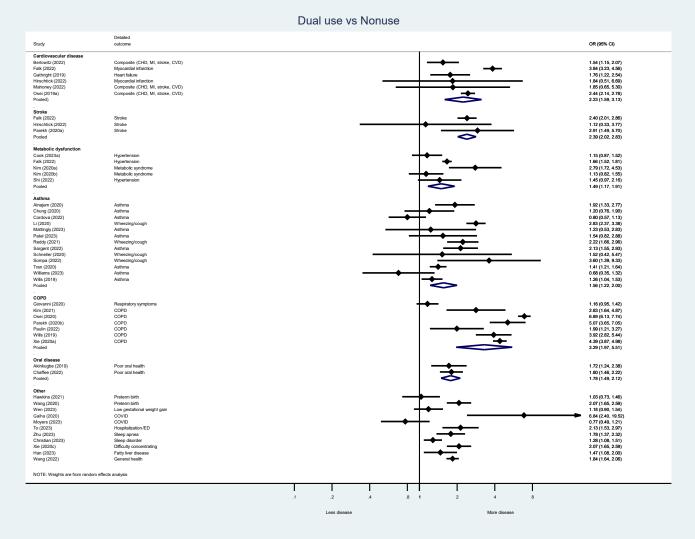
Nhung Nguyen was supported by the California Tobacco-Related Disease Research Program (grant T32KT5071) and the UCSF Clinical and Translational Science Institute (grant UL1 TR001872) funded by the National Center for Advancing Translational Sciences at the National Institutes of Health. Andre Luiz Oliveira da Silva was supported by the Briger Family International Postdoctoral Fellowship. This work was also supported by cooperative agreement U54HL147127 from the National Heart, Lung, and Blood Institute and the Food and Drug Administration Center for Tobacco Products. The funding agencies played no role in study design; collection, analysis, and interpretation of data; writing the report; or the decision to submit for publication. The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding agencies.

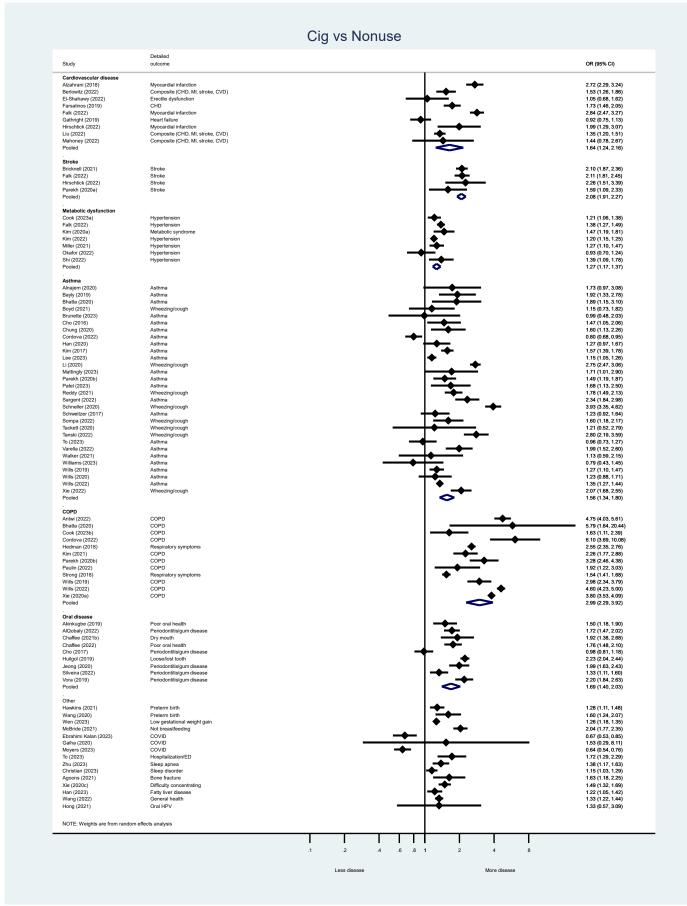

REFERENCES

- Glantz S, Nguyen N, Lempert L, et al. Actual human disease data contradicts the low assumed ecigarette risk FDA uses to justify an exception for "reduced risk" cigarettes in its product standard prohibiting menthol. Docket No. FDA-2021-N-1349 for "Tobacco Product Standard for Menthol in Cigarettes." August 1, 2022. 2022; <u>https://www.regulations.gov/comment/FDA-2021-N-1349-175350</u>. Accessed 2 Aug 2022.
- Glantz S, Nguyen N, Lempert L, et al. FDA should extend the scope of the proposed standard prohibiting characterizing flavors in cigars to include e-cigarettes. Docket No. FDA-2021-N-1309 for "Tobacco Product Standard for Characterizing Flavors in Cigars." August 1, 2022. 2022; <u>https://www.regulations.gov/comment/FDA-2021-N-1309-71779</u>. Accessed 2 Aug 2022.
- 3. Kalkhoran S, Glantz SA. E-cigarettes and smoking cessation in real-world and clinical settings: a systematic review and meta-analysis. *Lancet Respir Med.* 2016;4(2):116-128.
- 4. Wang RJ, Bhadriraju S, Glantz SA. E-Cigarette Use and Adult Cigarette Smoking Cessation: A Meta-Analysis. *Am J Public Health.* 2021;111(2):230-246.
- 5. Wood J. Methodology for Dealing With Duplicate Study Effects in a Meta-Analysis. *Organizational Res Methods*. 2008;11(1):79-95.
- 6. Hennessy EA, Johnson BT, Keenan C. Best Practice Guidelines and Essential Methodological Steps to Conduct Rigorous and Systematic Meta-Reviews. *Appl Psychol Health Well Being*. 2019;11(3):353-381.
- 7. Lunny C, Pieper D, Thabet P, Kanji S. Managing overlap of primary study results across systematic reviews: practical considerations for authors of overviews of reviews. *BMC Med Res Methodol*. 2021;21(1):140.


- 8. Mayer M, Reyes-Guzman C, Grana R, Choi K, Freedman ND. Demographic Characteristics, Cigarette Smoking, and e-Cigarette Use Among US Adults. *JAMA Network Open*. 2020;3(10):e2020694-e2020694.
- 9. Hedman L, Backman H, Stridsman C, et al. Association of Electronic Cigarette Use With Smoking Habits, Demographic Factors, and Respiratory Symptoms. *JAMA Netw Open.* 2018;1(3):e180789.
- 10. Cho JH, Paik SY. Association between Electronic Cigarette Use and Asthma among High School Students in South Korea. *PLoS One*. 2016;11(3):e0151022.
- 11. Cordova J, Pfeiffer RM, Choi K, et al. Tobacco use profiles by respiratory disorder status for adults in the wave 1-wave 4 population assessment of tobacco and health (PATH) study. *Prev Med Rep.* 2022;30:102016.
- 12. Lee SY, Shin J. Association between Electronic Cigarettes Use and Asthma in the United States: Data from the National Health Interview Survey 2016-2019. *Yonsei Med J.* 2023;64(1):54-65.
- 13. Li D, Sundar IK, McIntosh S, et al. Association of smoking and electronic cigarette use with wheezing and related respiratory symptoms in adults: cross-sectional results from the Population Assessment of Tobacco and Health (PATH) study, wave 2. *Tobacco Control.* 2020;29:140-147.
- 14. Reddy KP, Schwamm E, Kalkhoran S, Noubary F, Walensky RP, Rigotti NA. Respiratory Symptom Incidence among People Using Electronic Cigarettes, Combustible Tobacco, or Both. *Am J Respir Crit Care Med.* 2021;204(2):231-234.
- 15. Sargent JD, Halenar MJ, Edwards KC, et al. Tobacco use and respiratory symptoms among adults: Findings from the Longitudinal Population Assessment of Tobacco and Health (PATH) Study 2014-16. *Nicotine Tob Res.* 2022:doi: 10.1093/ntr/ntac1080.
- 16. Schneller LM, Quiñones Tavárez Z, Goniewicz ML, et al. Cross-Sectional Association Between Exclusive and Concurrent Use of Cigarettes, ENDS, and Cigars, the Three Most Popular Tobacco Products, and Wheezing Symptoms Among U.S. Adults. *Nicotine Tob Res.* 2020;22(Suppl 1):S76-s84.
- 17. Tanski S, Halenar MJ, Edwards KC, et al. Tobacco Product Use and Functionally Important Respiratory Symptoms Among US Adolescents/Young Adults. *Acad Pediatr*. 2022;7:S1876-2859(1822)00151-00156. doi: 00110.01016/j.acap.02022.00103.00001.
- 18. Varella MH, Andrade OA, Shaffer SM, et al. E-cigarette use and respiratory symptoms in residents of the United States: A BRFSS report. *PLoS One*. 2022;17(12):e0269760.
- 19. Tretli S, Lund-Larsen PG, Foss OP. Reliability of questionnaire information on cardiovascular disease and diabetes: cardiovascular disease study in Finnmark county. *J Epidemiol Community Health*. 1982;36(4):269-273.
- 20. Okura Y, Urban LH, Mahoney DW, Jacobsen SJ, Rodeheffer RJ. Agreement between self-report questionnaires and medical record data was substantial for diabetes, hypertension, myocardial infarction and stroke but not for heart failure. *J Clin Epidemiol.* 2004;57(10):1096-1103.
- 21. Barr RG, Herbstman J, Speizer FE, Camargo CA, Jr. Validation of self-reported chronic obstructive pulmonary disease in a cohort study of nurses. *Am J Epidemiol*. 2002;155(10):965-971.
- 22. Radeos MS, Cydulka RK, Rowe BH, Barr RG, Clark S, Camargo CA, Jr. Validation of self-reported chronic obstructive pulmonary disease among patients in the ED. *Am J Emerg Med.* 2009;27(2):191-196.
- 23. Mahoney MC, Rivard C, Hammad HT, et al. Cardiovascular Risk Factor and Disease Measures from the Population Assessment of Tobacco and Health (PATH) Study. *Int J Environ Res Public Health*. 2021;18(14).
- 24. Chaffee BW, Lauten K, Sharma E, et al. Oral Health in the Population Assessment of Tobacco and Health Study. *J Dent Res.* 2022:220345221086272.
- 25. Chaffee BW, Barrington-Trimis J, Liu F, et al. E-cigarette use and adverse respiratory symptoms among adolescents and Young adults in the United States. *Prev Med.* 2021;153:106766.
- 26. Chaffee BW, Halpern-Felsher B, Cheng J. E-cigarette, cannabis and combustible tobacco use: associations with xerostomia among California adolescents. *Community Dent Oral Epidemiol.* 2021:doi: 10.1111/cdoe.12721.

- 27. Gathright EC, Wu WC, Scott-Sheldon LAJ. Electronic cigarette use among heart failure patients: Findings from the Population Assessment of Tobacco and Health study (Wave 1: 2013-2014). *Heart Lung.* 2020;49(3):229-232.
- 28. Mahoney MC, Rivard C, Kimmel HL, et al. Cardiovascular Outcomes among Combustible-Tobacco and Electronic Nicotine Delivery System (ENDS) Users in Waves 1 through 5 of the Population Assessment of Tobacco and Health (PATH) Study, 2013-2019. *Int J Environ Res Public Health*. 2022;19(7):4137. doi: 4110.3390/ijerph19074137.
- 29. Paulin LM, Halenar MJ, Edwards KC, et al. Association of tobacco product use with chronic obstructive pulmonary disease (COPD) prevalence and incidence in Waves 1 through 5 (2013-2019) of the Population Assessment of Tobacco and Health (PATH) Study. *Respir Res.* 2022;23(1):273.
- 30. Silveira ML, Everard CD, Sharma E, et al. Tobacco Use and Incidence of Adverse Oral Health Outcomes Among US Adults in the Population Assessment of Tobacco and Health Study. *JAMA Netw Open*. 2022;5(12):e2245909.
- 31. Strong DR, Myers MG, Pulvers K, Noble M, Brikmanis K, Doran N. Marijuana use among US tobacco users: Findings from wave 1 of the population assessment of tobacco health (PATH) study. *Drug Alcohol Depend*. 2018;186:16-22.
- 32. Tackett AP, Keller-Hamilton B, Smith CE, et al. Evaluation of Respiratory Symptoms Among Youth e-Cigarette Users. *JAMA Netw Open.* 2020;3(10):e2020671.
- 33. Vora MV, Chaffee BW. Tobacco-use patterns and self-reported oral health outcomes: A cross-sectional assessment of the Population Assessment of Tobacco and Health study, 2013-2014. *J Am Dent Assoc*. 2019;150(5):332-344.e332.
- 34. Xie W, Tackett AP, Berlowitz JB, et al. Association of Electronic Cigarette Use with Respiratory Symptom Development among U.S. Young Adults. *Am J Respir Crit Care Med.* 2022;205(11):1320-1329.
- 35. Cho JH. The association between electronic-cigarette use and self-reported oral symptoms including cracked or broken teeth and tongue and/or inside-cheek pain among adolescents: A cross-sectional study. *PLoS One*. 2017;12(7):e0180506.
- 36. Berlowitz JB, Xie W, Harlow AF, et al. E-Cigarette Use and Risk of Cardiovascular Disease: A Longitudinal Analysis of the PATH Study (2013-2019). *Circulation*. 2022;145(20):1557-1559.
- 37. Parekh T, Pemmasani S, Desai R. Risk of Stroke With E-Cigarette and Combustible Cigarette Use in Young Adults. *Am J Prev Med.* 2020;58(3):446-452.
- 38. Wills TA, Pagano I, Williams RJ, Tam EK. E-cigarette use and respiratory disorder in an adult sample. *Drug Alcohol Depend*. 2019;194:363-370.
- 39. Wills TA, Choi K, Pagano I. E-Cigarette Use Associated With Asthma Independent of Cigarette Smoking and Marijuana in a 2017 National Sample of Adolescents. *J Adolesc Health*. 2020;67(4):524-530.
- 40. Xie Z, Ossip DJ, Rahman I, Li D. Use of Electronic Cigarettes and Self-Reported Chronic Obstructive Pulmonary Disease Diagnosis in Adults. *Nicotine Tob Res.* 2020;22(7):1155-1161.
- 41. Wang Y, Sung H-Y, Lightwood J, Yao T, Max WB. Healthcare utilisation and expenditures attributable to current e-cigarette use among US adults. *Tobacco Control.* 2022:tobaccocontrol-2021-057058.
- 42. Wen X, Thomas MA, Liu L, et al. Association between maternal e-cigarette use during pregnancy and low gestational weight gain. *Int J Gynaecol Obstet*. 2023.
- 43. Kim C-Y, Paek Y-J, Seo HG, et al. Dual use of electronic and conventional cigarettes is associated with higher cardiovascular risk factors in Korean men. *Scientific Reports*. 2020;10(1):5612.
- 44. Parekh T, Owens C, Fay K, Phillips J, Kitsantas P. Use of e-Cigarettes and Development of Respiratory Conditions in Women of Childbearing Age. *South Med J*. 2020;113(10):488-494.
- 45. Alnajem A, Redha A, Alroumi D, et al. Use of electronic cigarettes and secondhand exposure to their aerosols are associated with asthma symptoms among adolescents: a cross-sectional study. *Respir Res.* 2020;21(1):300.
- 46. Wang MP, Ho SY, Leung LT, Lam TH. Electronic Cigarette Use and Respiratory Symptoms in Chinese Adolescents in Hong Kong. *JAMA Pediatr.* 2016;170(1):89-91.


- 47. Antwi GO, Rhodes DL. Association between E-cigarette use and chronic obstructive pulmonary disease in non-asthmatic adults in the USA. *J Public Health (Oxf)*. 2022;44(1):158-164.
- 48. Giovanni SP, Keller TL, Bryant AD, Weiss NS, Littman AJ. Electronic Cigarette Use and Chronic Respiratory Symptoms among U.S. Adults. *Am J Respir Crit Care Med.* 2020;201(9):1157-1160.
- 49. Osei AD, Mirbolouk M, Orimoloye OA, et al. Association Between E-Cigarette Use and Chronic Obstructive Pulmonary Disease by Smoking Status: Behavioral Risk Factor Surveillance System 2016 and 2017. *Am J Prev Med.* 2020;58(3):336-342.
- 50. Xie Z, Ossip DJ, Rahman I, O'Connor RJ, Li D. Electronic cigarette use and subjective cognitive complaints in adults. *PLoS One*. 2020;15(11):e0241599.
- 51. McConnell R, Barrington-Trimis JL, Wang K, et al. Electronic Cigarette Use and Respiratory Symptoms in Adolescents. *Am J Respir Crit Care Med.* 2017;195(8):1043-1049.
- 52. Osei AD, Mirbolouk M, Orimoloye OA, et al. The association between e-cigarette use and asthma among never combustible cigarette smokers: behavioral risk factor surveillance system (BRFSS) 2016 & 2017. *BMC Pulm Med.* 2019;19(1):180. doi: 110.1186/s12890-12019-10950-12893.
- 53. Perez MF, Atuegwu NC, Oncken C, Mead EL, Mortensen EM. Association between Electronic Cigarette Use and Asthma in Never-Smokers. *Ann Am Thorac Soc.* 2019;16(11):1453-1456.
- 54. Stevens ER, Xu S, Niaura R, et al. Youth E-Cigarette Use and Functionally Important Respiratory Symptoms: The Population Assessment of Tobacco and Health (PATH) Study Waves 3 and 4. *Int J Environ Res Public Health*. 2022;19(22).
- 55. Tackett AP, Urman R, Barrington-Trimis J, et al. Prospective study of e-cigarette use and respiratory symptoms in adolescents and young adults. *Thorax.* 2023.
- 56. Williams RJ, Wills TA, Choi K, Pagano I. Associations for subgroups of E-cigarette, cigarette, and cannabis use with asthma in a population sample of California adolescents. *Addict Behav*. 2023;145:107777.
- 57. Wills TA, Choi K, Pokhrel P, Pagano I. Tests for confounding with cigarette smoking in the association of E-cigarette use with respiratory disorder: 2020 National-Sample Data. *Prev Med.* 2022;161:107137.
- Xie W, Kathuria H, Galiatsatos P, et al. Association of Electronic Cigarette Use With Incident Respiratory Conditions Among US Adults From 2013 to 2018. JAMA Netw Open. 2020;3(11):e2020816.
- 59. Barrameda R, Nguyen T, Wong V, et al. Use of E-Cigarettes and Self-Reported Lung Disease Among US Adults. *Public Health Rep.* 2020;135(6):785-795.
- 60. Kim SY, Jeong SH, Joo HJ, et al. High prevalence of hypertension among smokers of conventional and e-cigarette: Using the nationally representative community dwelling survey. *Front Public Health*. 2022;10:919585.
- 61. Liu X, Yuan Z, Ji Y. The association between electronic cigarettes, sleep duration, and the adverse cardiovascular outcomes: Findings from behavioral risk factor surveillance system, 2020. *Front Cardiovasc Med.* 2022;9:909383.
- 62. AlQobaly L, Abed H, Alsahafi Y, Sabbah W, Hakeem FF. Does smoking explain the association between use of e-cigarettes and self-reported periodontal disease? *J Dent.* 2022;122:104164.
- 63. Roh T, Uyamasi K, Aggarwal A, Obeng A, Carrillo G. Association between e-cigarette use and asthma among US adolescents: Youth Risk Behavior Surveillance System 2015-2019. *Prev Med.* 2023;175:107695.
- 64. Alzahrani T. Electronic Cigarette Use and Myocardial Infarction. *Cureus*. 2023;15(11):e48402.


Figure S1. PRISMA diagram. Papers that "did not report OR or equiv" either did not report ORs (or other risk estimates) or did not report estimates that could be used in this analysis.

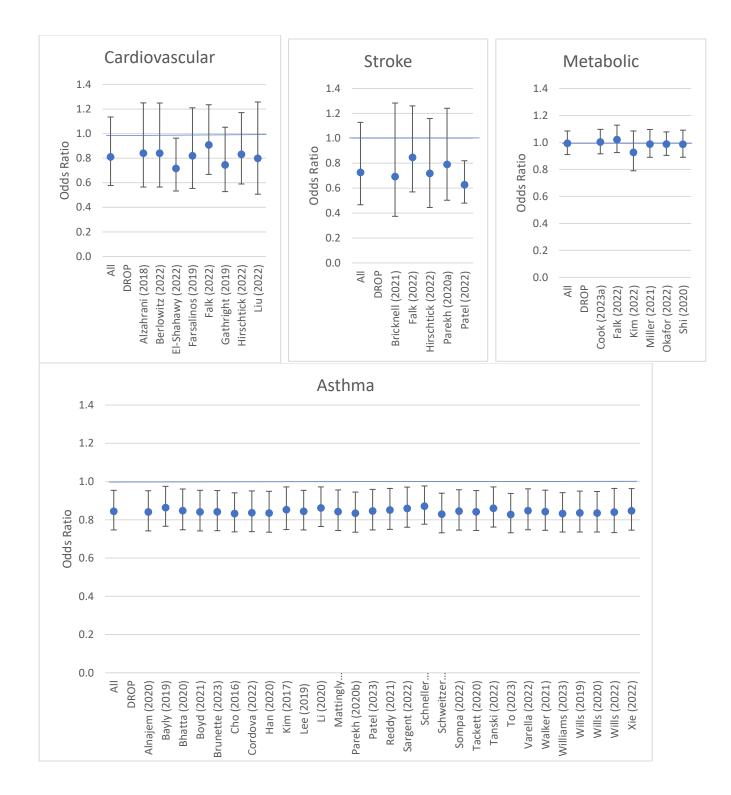

Figure S2. E-cigarette use is significantly associated with increased odds of disease compared to no product use for all outcomes (OR=1.31-1.54). Diamonds show point estimates and 95% confidence intervals for pooled ORs from random effects meta-analysis. Confidence intervals include Bonferroni adjustments. Results for "other" studies were not pooled.

Figure S3. Dual use vs. no product use. Diamonds show point estimates and 95% confidence intervals for pooled ORs from random effects meta-analysis. Confidence intervals include Bonferroni adjustments. Results for "other" studies were not pooled.

Figure S4. Cigarettes use vs. no product use. Diamonds show point estimates and 95% confidence intervals for pooled ORs from random effects meta-analysis. Confidence intervals include Bonferroni adjustments. Results for "other" studies were not pooled.

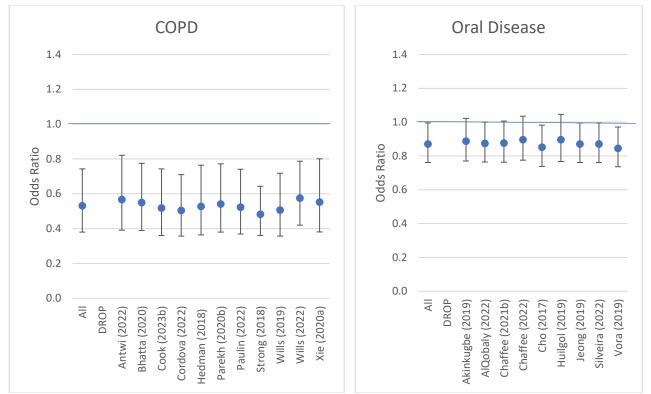
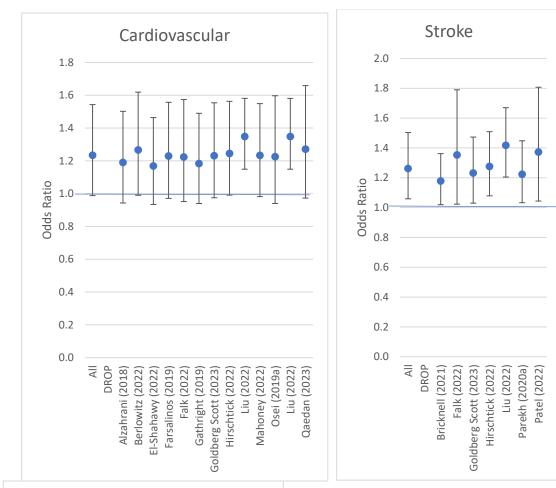
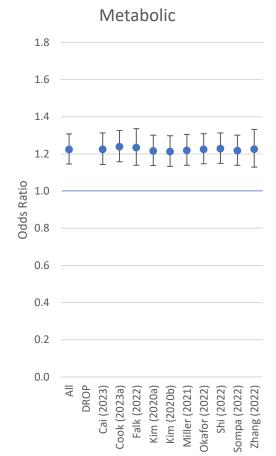




Figure S5. Dropping each study in turn and re-running the meta-analyses for the odds ratio of e-cigarette use to cigarette smoking has little effect on the pooled OR estimates.

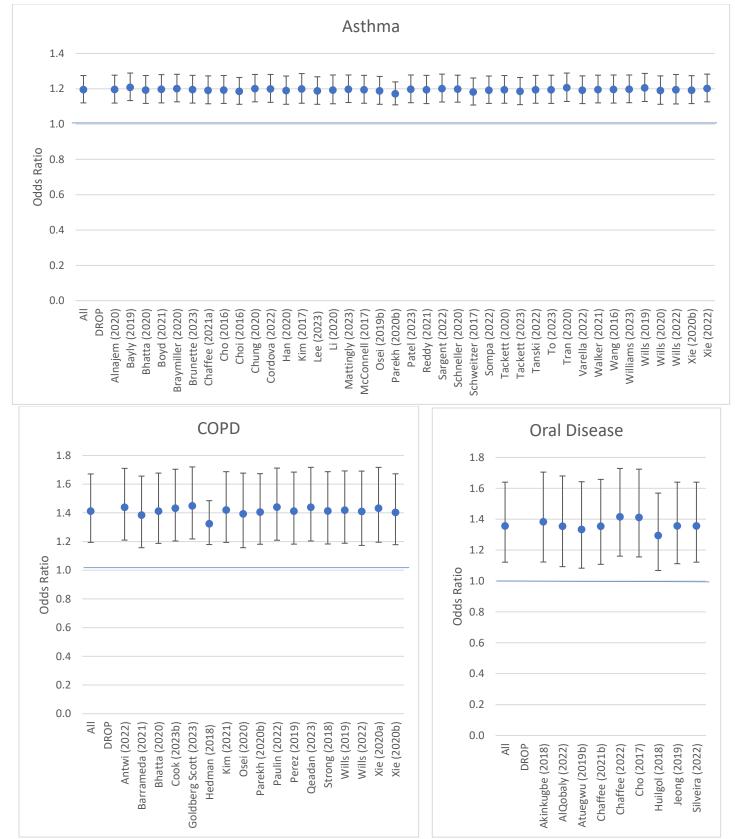
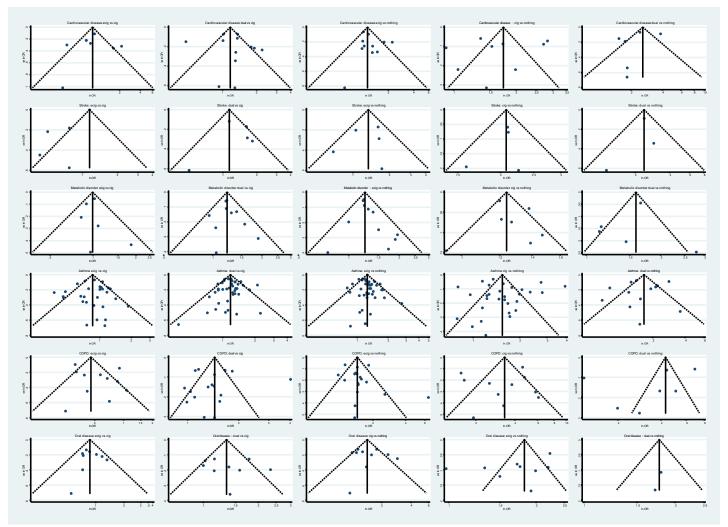
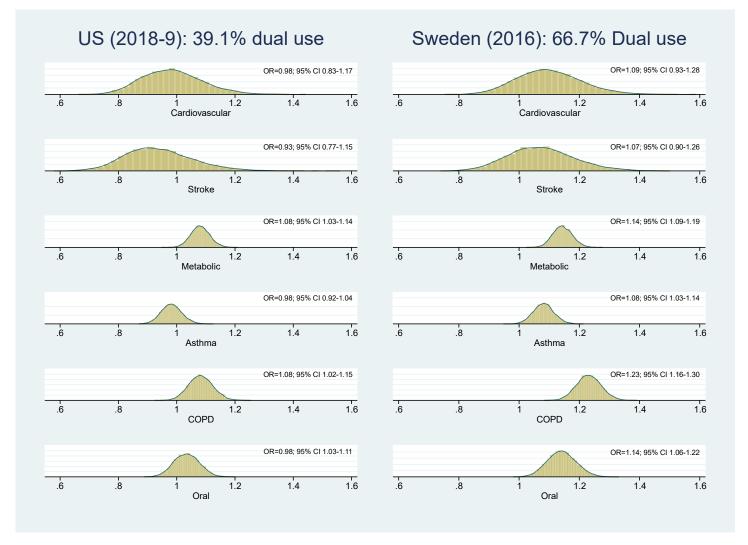




Figure S6. Dropping each study in turn and re-running the meta-analyses for the odds ratio of dual use to cigarette smoking has little effect on the pooled ORs estimates.

Figure S7. Funnel plots generally do not indicate publication bias, which is consistent with the results from Begg and Egger tests (Table S11). The funnel plot and Egger test suggested possible publication bias for dual use vs. cigarettes for cardiovascular disease. Funnel plots (but not Begg or Egger tests) suggested possible publication bias for cigarettes vs. nothing for cardiovascular disease and cigarettes vs nothing and dual use vs. nothing for asthma. Diagonal lines are pseudo 95% confidence limits for summary treatment effect in the absence of publication bias or other sources of heterogeneity. Trim and fill analysis did not suggest that accounting for possible publication bias affected the conclusions (Table S12).

Figure S8. The overall OR of sole e-cigarette and dual use compared to cigarettes alone is higher than for sole use. Combined. The results are sensitive to the level of dual use. With 39.1% dual use, the probabilities of OR>1 are 0.90 for cardiovascular disease, >0.99 for metabolic dysfunction. 0.44 for asthma, 0.12 for COPD and 0.87 for oral disease. These results are sensitive to the level of dual use. For 66.7% dual use, these probabilities increase to >0.99 for cardiovascular disease, metabolic dysfunction, asthma and oral disease and 0.97 for COPD.

Table S1. S	tudies
Agoons (2021)	Agoons DD, Agoons BB, Emmanuel KE, Matawalle FA, Cunningham JM. Association between electronic cigarette use and fragility fractures among US adults, American Journal of Medicine Open, Volumes 1–6, 2021, 100002, ISSN 2667-0364, https://doi.org/10.1016/j.ajmo.2021.100002.
Akinkugbe (2019)	Akinkugbe AA. Cigarettes, E-cigarettes, and Adolescents' Oral Health: Findings from the Population Assessment of Tobacco and Health (PATH) Study. JDR Clin Trans Res. 2019 Jul;4(3):276-283. doi: 10.1177/2380084418806870. Epub 2018 Oct 15. PMID: 30931714.
Alnajem (2020)	Alnajem A, Redha A, Alroumi D, Alshammasi A, Ali M, Alhussaini M, Almutairi W, Esmaeil A, Ziyab AH. Use of electronic cigarettes and secondhand exposure to their aerosols are associated with asthma symptoms among adolescents: a cross-sectional study. Respir Res. 2020 Nov 16;21(1):300. doi: 10.1186/s12931-020-01569-9. PMID: 33198741; PMCID: PMC7670675.
AlQobaly (2022)	AlQobaly L, Abed H, Alsahafi Y, Sabbah W, Hakeem FF. Does smoking explain the association between use of e-cigarettes and self-reported periodontal disease? J Dent. 2022 Jul;122:104164. doi: 10.1016/j.jdent.2022.104164. Epub 2022 May 14. PMID: 35580834.
Alzahrani (2018)	Alzahrani T, Pena I, Temesgen N, Glantz SA. Association Between Electronic Cigarette Use and Myocardial Infarction. Am J Prev Med. 2018 Oct;55(4):455-461. doi: 10.1016/j.amepre.2018.05.004. Epub 2018 Aug 22. Erratum in: Am J Prev Med. 2019 Oct;57(4):579-584. PMID: 30166079; PMCID: PMC6208321
Antwi (2022)	Antwi GO, Rhodes DL. Association between E-cigarette use and chronic obstructive pulmonary disease in non-asthmatic adults in the USA. J Public Health (Oxf). 2022 Mar 7;44(1):158-164. doi: 10.1093/pubmed/fdaa229. PMID: 33348361.
Atuegwu (2019a)	E-cigarette use is associated with a self-reported diagnosis of prediabetes iAtuegwu NC, Perez MF, Oncken C, Mead EL, Maheshwari N, Mortensen EM. E-cigarette use is associated with a self-reported diagnosis of prediabetes in never cigarette smokers: Results from the behavioral risk factor surveillance system survey. Drug Alcohol Depend. 2019 Dec 1;205:107692. doi: 10.1016/j.drugalcdep.2019.107692. Epub 2019 Oct 28. PMID: 31707269; PMCID: PMC6893144.
Atuegwu (2019b)	Atuegwu NC, Perez MF, Oncken C, Thacker S, Mead EL, Mortensen EM. Association between Regular Electronic Nicotine Product Use and Self-reported Periodontal Disease Status: Population Assessment of Tobacco and Health Survey. Int J Environ Res Public Health. 2019 Apr 9;16(7):1263. doi: 10.3390/ijerph16071263. PMID: 30970567; PMCID: PMC6479961.
Barrameda (2021)	Barrameda R, Nguyen T, Wong V, Castro G, Rodriguez de la Vega P, Lozano J, Zevallos J. Use of E-Cigarettes and Self-Reported Lung Disease Among US Adults. Public Health Rep. 2020 Nov/Dec;135(6):785-795. doi: 10.1177/0033354920951140. Epub 2020 Sep 24. PMID: 32972319; PMCID: PMC7649986.
Bayly (2019)	Bayly JE, Bernat D, Porter L, Choi K. Secondhand Exposure to Aerosols From Electronic Nicotine Delivery Systems and Asthma Exacerbations Among Youth With Asthma. Chest. 2019 Jan;155(1):88-93. doi: 10.1016/j.chest.2018.10.005. Epub 2018 Oct 22. PMID: 30359612; PMCID: PMC6688978.
Berlowitz (2022)	Berlowitz JB, Xie W, Harlow AF, Hamburg NM, Blaha MJ, Bhatnagar A, Benjamin EJ, Stokes AC. E-cigarette Use and Risk of Cardiovascular Disease: A Longitudinal Analysis of the PATH Study, 2013-2019. Circulation. 2022 May 6. doi: 10.1161/CIRCULATIONAHA.121.057369. Epub ahead of print. PMID: 35514292.
Bhatta (2020)	Bhatta DN, Glantz SA. Association of E-Cigarette Use With Respiratory Disease Among Adults: A Longitudinal Analysis. Am J Prev Med. 2020 Feb;58(2):182-190. doi: 10.1016/j.amepre.2019.07.028. Epub 2019 Dec 16. PMID: 31859175; PMCID: PMC6981012.
Bircan (2021)	Bircan E, Bezirhan U, Porter A, Fagan P, Orloff MS. Electronic cigarette use and its association with asthma, chronic obstructive pulmonary disease (COPD) and asthma-COPD overlap syndrome among never cigarette smokers. Tob Induc Dis. 2021 Oct 21;19:75. doi: 10.18332/tid/142579. Erratum in: Tob Induc Dis. 2021 Oct 21;19:74. PMID: 34720794; PMCID: PMC8530195.
Boyd (2021)	Boyd CJ, McCabe SE, Evans-Polce RJ, Veliz PT. Cannabis, Vaping, and Respiratory Symptoms in a Probability Sample of U.S. Youth. J Adolesc Health. 2021 Jul;69(1):149-152. doi: 10.1016/j.jadohealth.2021.01.019. Epub 2021 Mar 3. PMID: 33676824; PMCID: PMC8238794.

Table S1. S	tudies
Braymiller (2020)	Braymiller JL, Barrington-Trimis JL, Leventhal AM, Islam T, Kechter A, Krueger EA, Cho J, Lanza I, Unger JB, McConnell R. Assessment of Nicotine and Cannabis Vaping and Respiratory Symptoms in Young Adults. JAMA Netw Open. 2020 Dec 1;3(12):e2030189. doi: 10.1001/jamanetworkopen.2020.30189. PMID: 33351085; PMCID: PMC7756238.
Brunette (2023)	Brunette MF, Halenar MJ, Edwards KC, Taylor KA, Emond JA, Tanski SE, Woloshin S, Paulin LM, Hyland A, Lauten K, Mahoney M, Blanco C, Borek N, DaSilva LC, Gardner LD, Kimmel HL, Sargent JD. Association between tobacco product use and asthma among US adults from the Population Assessment of Tobacco and Health (PATH) Study waves 2-4. BMJ Open Respir Res. 2023 Feb;10(1):e001187. doi: 10.1136/bmjresp-2021-001187. PMID: 36750276; PMCID: PMC9906250.
Bricknell (2021)	Bricknell RAT, Ducaud C, Figueroa A, Schwarzman LS, Rodriguez P, Castro G, Zevallos JC, Barengo NC. An association between electronic nicotine delivery systems use and a history of stroke using the 2016 behavioral risk factor surveillance system. Medicine (Baltimore). 2021 Sep 10;100(36):e27180. doi: 10.1097/MD.00000000027180. PMID: 34516517; PMCID: PMC8428735.
Cai (2023)	Cai J, Bidulescu A. Associations between e-cigarette use or dual use of e-cigarette and combustible cigarette and metabolic syndrome: results from the National Health and Nutrition Examination Survey (NHANES). Ann Epidemiol. 2023 Sep;85:93-99.e2. doi: 10.1016/j.annepidem.2023.05.009. Epub 2023 May 16. PMID: 37201667.
Chaffee (2021a)	Chaffee BW, Barrington-Trimis J, Liu F, Wu R, McConnell R, Krishnan-Sarin S, Leventhal AM, Kong G. E-cigarette use and adverse respiratory symptoms among adolescents and Young adults in the United States. Prev Med. 2021 Dec;153:106766. doi: 10.1016/j.ypmed.2021.106766. Epub 2021 Aug 19. PMID: 34418439; PMCID: PMC8595821.
Chaffee (2021b)	Chaffee BW, Halpern-Felsher B, Cheng J. E-cigarette, cannabis and combustible tobacco use: associations with xerostomia among California adolescents. Community Dent Oral Epidemiol. 2021 Dec 20. doi: 10.1111/cdoe.12721. Epub ahead of print. PMID: 34927762.
Chaffee (2022)	Chaffee BW, Lauten K, Sharma E, Everard CD, Duffy K, Park-Lee E, Taylor E, Tolliver E, Watkins- Bryant T, Iafolla T, Compton WM, Kimmel HL, Hyland A, Silveira ML. Oral Health in the Population Assessment of Tobacco and Health Study. J Dent Res. 2022 Apr 11:220345221086272. doi: 10.1177/00220345221086272. Epub ahead of print. PMID: 35403466.
Cho (2016)	Cho JH, Paik SY. Association between Electronic Cigarette Use and Asthma among High School Students in South Korea. PLoS One. 2016 Mar 4;11(3):e0151022. doi: 10.1371/journal.pone.0151022. PMID: 26942764; PMCID: PMC4778916.
Cho (2017)	Cho JH. The association between electronic-cigarette use and self-reported oral symptoms including cracked or broken teeth and tongue and/or inside-cheek pain among adolescents: A cross-sectional study. PLoS One. 2017 Jul 11;12(7):e0180506. doi: 10.1371/journal.pone.0180506. PMID: 28700729; PMCID: PMC5507461
Choi (2016)	Choi K, Bernat D. E-Cigarette Use Among Florida Youth With and Without Asthma. Am J Prev Med. 2016 Oct;51(4):446-53. doi: 10.1016/j.amepre.2016.03.010. Epub 2016 Apr 13. PMID: 27085691; PMCID: PMC5030120.
Christian (2023)	Christian WJ, Valvi NR, Walker CJ. Investigating the Relation between Electronic Cigarette Use and Sleep Duration in Kentucky Using the BRFSS, 2016-2017. South Med J. 2023 Mar;116(3):326-331. doi: 10.14423/SMJ.0000000000001529. PMID: 36863057.
Chung (2020)	Chung SJ, Kim BK, Oh JH, Shim JS, Chang YS, Cho SH, Yang MS. Novel tobacco products including electronic cigarette and heated tobacco products increase risk of allergic rhinitis and asthma in adolescents: Analysis of Korean youth survey. Allergy. 2020 Jul;75(7):1640-1648. doi: 10.1111/all.14212. Epub 2020 Feb 19. PMID: 32003899.

Table S1. S	tudies
Cook (2023a)	Cook SF, Hirschtick JL, Fleischer NL, Arenberg DA, Barnes GD, Levy DT, Sanchez-Romero LM, Jeon J, Meza R. Cigarettes, ENDS Use, and Chronic Obstructive Pulmonary Disease Incidence: A Prospective Longitudinal Study. Am J Prev Med. 2023 Mar 6:S0749-3797(23)00048-X. doi: 10.1016/j.amepre.2023.01.038. Epub ahead of print. PMID: 36890083.
Cook (2023b)	Cook S, Hirschtick JL, Barnes G, Arenberg D, Bondarenko I, Patel A, Jiminez Mendoza E, Jeon J, Levy D, Meza R, Fleischer NL. Time-varying association between cigarette and ENDS use on incident hypertension among US adults: a prospective longitudinal study. BMJ Open. 2023 Apr 21;13(4):e062297. doi: 10.1136/bmjopen-2022-062297. PMID: 37085311; PMCID: PMC10124226.
Cordova (2022)	Cordova J, Pfeiffer RM, Choi K, Grana Mayne R, Baker L, Bachand J, Constantine K, Altekruse S, Reyes-Guzman C. Tobacco use profiles by respiratory disorder status for adults in the wave 1- wave 4 population assessment of tobacco and health (PATH) study. Prev Med Rep. 2022 Oct 12;30:102016. doi: 10.1016/j.pmedr.2022.102016. PMID: 36325251; PMCID: PMC9619025.
Ebrahimi Kalan (2023)	Ebrahimi Kalan M, Jebai R, Li W, Gautam P, Alemohammad SY, Mortazavizadeh Z, Kenneth DW, Chakraborty A, Dargahi Abbasabad G, Behaleh R, Bursac Z, Ben Taleb Z. COVID-19 and tobacco products use among US adults, 2021 National Health Interview Survey. Health Sci Rep. 2023 Aug 31;6(9):e1542. doi: 10.1002/hsr2.1542. PMID: 37662541; PMCID: PMC10469725.
El- Shahawy (2022)	EI-Shahawy O, Shah T, Obisesan OH, Durr M, Stokes AC, Uddin I, Pinjani R, Benjamin EJ, Mirbolouk M, Osei AD, Loney T, Sherman SE, Blaha MJ. Association of E-Cigarettes With Erectile Dysfunction: The Population Assessment of Tobacco and Health Study. Am J Prev Med. 2022 Jan;62(1):26-38. doi: 10.1016/j.amepre.2021.08.004. Epub 2021 Nov 30. PMID: 34922653.
Falk (2022)	Falk GE, Okut H, Vindhyal MR, Ablah E. Hypertension and Cardiovascular Diseases among Electronic and Combustible Cigarette Users. Kans J Med. 2022 Jul 21;15:226-230. doi: 10.17161/kjm.vol15.16752. PMID: 35899059; PMCID: PMC9311785.
Farsalinos (2019)	Farsalinos KE, Polosa R, Cibella F, Niaura R. Is e-cigarette use associated with coronary heart disease and myocardial infarction? Insights from the 2016 and 2017 National Health Interview Surveys. Ther Adv Chronic Dis. 2019 Sep 27;10:2040622319877741. doi: 10.1177/2040622319877741. PMID: 31632622; PMCID: PMC6767743.
Gaiha (2020)	Gaiha SM, Cheng J, Halpern-Felsher B. Association between youth smoking, electronic cigarette use, and COVID-19. J Adolesc Health. 2020;67:519–523. doi: 10.1016/j.jadohealth.2020.07.002
Gathright (2019)	Gathright EC, Wu WC, Scott-Sheldon LAJ. Electronic cigarette use among heart failure patients: Findings from the Population Assessment of Tobacco and Health study (Wave 1: 2013-2014). Heart Lung. 2020 May-Jun;49(3):229-232. doi: 10.1016/j.hrtlng.2019.11.006. Epub 2019 Dec 5. PMID: 31812280; PMCID: PMC7266714.
Giovanni (2020)	Giovanni SP, Keller TL, Bryant AD, Weiss NS, Littman AJ. Electronic Cigarette Use and Chronic Respiratory Symptoms among U.S. Adults. Am J Respir Crit Care Med. 2020 May 1;201(9):1157-1160. doi: 10.1164/rccm.201907-1460LE. PMID: 31922902; PMCID: PMC7193846.
Goldberg Scott (2023)	Goldberg Scott S, Feigelson HS, Powers JD, Clennin MN, Lyons JA, Gray MT, Vachani A, Burnett- Hartman AN. Demographic, Clinical, and Behavioral Factors Associated With Electronic Nicotine Delivery Systems Use in a Large Cohort in the United States. Tob Use Insights. 2023 Jan 5;16:1179173X221134855. doi: 10.1177/1179173X221134855. PMID: 36636234; PMCID: PMC9829996.
Han (2020)	Han YY, Rosser F, Forno E, Celedón JC. Electronic vapor products, marijuana use, smoking, and asthma in US adolescents. J Allergy Clin Immunol. 2020 Mar;145(3):1025-1028.e6. doi: 10.1016/j.jaci.2019.12.001. Epub 2019 Dec 9. PMID: 31830488; PMCID: PMC7062582.
Han (2023)	Han M, Jeong S, Song J, Park SJ, Min Lee C, Lee K, Park SM. Association between the dual use of electronic and conventional cigarettes and NAFLD status in Korean men. Tob Induc Dis. 2023 Feb 24;21:31. doi: 10.18332/tid/159167. PMID: 36844383; PMCID: PMC9951190.
Hawkins (2021)	Hawkins SS, Wylie BJ, Hacker MR. Associations between electronic nicotine delivery systems and birth outcomes. J Matern Fetal Neonatal Med. 2021 May 24:1-8. doi: 10.1080/14767058.2021.1929156. Epub ahead of print. PMID: 34030564.

Table S1. St	tudies
Hedman (2018)	Hedman L, Backman H, Stridsman C, Bosson JA, Lundbäck M, Lindberg A, Rönmark E, Ekerljung L. Association of Electronic Cigarette Use With Smoking Habits, Demographic Factors, and Respiratory Symptoms. JAMA Netw Open. 2018 Jul 6;1(3):e180789. doi: 10.1001/jamanetworkopen.2018.0789. PMID: 30646032; PMCID: PMC6324524.
Hirschtick (2022)	Hirschtick JL, Cook S, Patel A, Barnes GD, Arenberg D, Bondarenko I, Levy DT, Jeon J, Jimenez Mendoza E, Meza R, Fleischer NL. Longitudinal associations between exclusive and dual use of electronic nicotine delivery systems and cigarettes and self-reported incident diagnosed cardiovascular disease among adults. Nicotine Tob Res. 2022 Jul 30:ntac182. doi: 10.1093/ntr/ntac182. Epub ahead of print. PMID: 35907264.
Hong (2021)	Hong YR, Mainous AG 3rd. Electronic Cigarette Use and Oral Human Papillomavirus Infection Among US Adult Population: Analysis of 2013-2016 NHANES. J Gen Intern Med. 2021 May;36(5):1454-1456. doi: 10.1007/s11606-020-05874-3. Epub 2020 Jun 8. PMID: 32514893; PMCID: PMC8131464.
Huilgol (2019)	Huilgol P, Bhatt SP, Biligowda N, Wright NC, Wells JM. Association of e-cigarette use with oral health: a population-based cross-sectional questionnaire study. J Public Health (Oxf). 2019 Jun 1;41(2):354-361. doi: 10.1093/pubmed/fdy082. PMID: 29788415; PMCID: PMC6636695.
Jeong (2020)	Jeong W, Choi DW, Kim YK, Lee HJ, Lee SA, Park EC, Jang SI. Associations of electronic and conventional cigarette use with periodontal disease in South Korean adults. J Periodontol. 2020 Jan;91(1):55-64. doi: 10.1002/JPER.19-0060. Epub 2019 Aug 26. PMID: 31355936.
Kim (2017)	Kim SY, Sim S, Choi HG. Active, passive, and electronic cigarette smoking is associated with asthma in adolescents. Sci Rep. 2017 Dec 19;7(1):17789. doi: 10.1038/s41598-017-17958-y. PMID: 29259221; PMCID: PMC5736689.
Kim (2020a)	Kim CY, Paek YJ, Seo HG, Cheong YS, Lee CM, Park SM, Park DW, Lee K. Dual use of electronic and conventional cigarettes is associated with higher cardiovascular risk factors in Korean men. Sci Rep. 2020 Mar 27;10(1):5612. doi: 10.1038/s41598-020-62545-3. PMID: 32221375; PMCID: PMC7101350.
Kim (2020b)	Kim T, Choi H, Kang J, Kim J. Association between electronic cigarette use and metabolic syndrome in the Korean general population: A nationwide population-based study. PLoS One. 2020 Aug 21;15(8):e0237983. doi: 10.1371/journal.pone.0237983. PMID: 32822397; PMCID: PMC7442237.
Kim (2021)	Kim T, Kang J. Association between dual use of e-cigarette and cigarette and chronic obstructive pulmonary disease: an analysis of a nationwide representative sample from 2013 to 2018. BMC Pulm Med. 2021 Jul 13;21(1):231. doi: 10.1186/s12890-021-01590-8. PMID: 34256746; PMCID: PMC8278700.
Kim (2022)	Kim SY, Jeong SH, Joo HJ, Park M, Park EC, Kim JH, Lee J, Shin J. High prevalence of hypertension among smokers of conventional and e-cigarette: Using the nationally representative community dwelling survey. Front Public Health. 2022 Oct 17;10:919585. doi: 10.3389/fpubh.2022.919585. PMID: 36324451; PMCID: PMC9618945.
Lee (2023)	Lee SY, Shin J. Association between Electronic Cigarettes Use and Asthma in the United States: Data from the National Health Interview Survey 2016-2019. Yonsei Med J. 2023 Jan;64(1):54-65. doi: 10.3349/ymj.2022.0292. PMID: 36579380.
Li (2020)	Li D, Sundar IK, McIntosh S, Ossip DJ, Goniewicz ML, O'Connor RJ, Rahman I. Association of smoking and electronic cigarette use with wheezing and related respiratory symptoms in adults: cross-sectional results from the Population Assessment of Tobacco and Health (PATH) study, wave 2. Tob Control. 2020 Mar;29(2):140-147. doi: 10.1136/tobaccocontrol-2018-054694. Epub 2019 Feb 13. PMID: 30760629; PMCID: PMC6692241.

Table S1. S	tudies
Liu (2022)	Liu X, Yuan Z, Ji Y. The association between electronic cigarettes, sleep duration, and the adverse cardiovascular outcomes: Findings from behavioral risk factor surveillance system, 2020. Front Cardiovasc Med. 2022 Oct 6;9:909383. doi: 10.3389/fcvm.2022.909383. PMID: 36277785; PMCID: PMC9582666.
Mahoney (2022)	Mahoney MC, Rivard C, Kimmel HL, Hammad HT, Sharma E, Halenar MJ, Sargent J, Cummings KM, Niaura R, Goniewicz ML, Bansal-Travers M, Hatsukami D, Gaalema D, Fong G, Gravely S, Christensen CH, Haskins R, Silveira ML, Blanco C, Compton W, Stanton CA, Hyland A. Cardiovascular Outcomes among Combustible-Tobacco and Electronic Nicotine Delivery System (ENDS) Users in Waves 1 through 5 of the Population Assessment of Tobacco and Health (PATH) Study, 2013-2019. Int J Environ Res Public Health. 2022 Mar 31;19(7):4137. doi: 10.3390/ijerph19074137. PMID: 35409819; PMCID: PMC8998731
Mattingly (2023)	Mattingly DT, Cook S, Hirschtick JL, Patel A, Arenberg DA, Barnes GD, Levy DT, Meza R, Fleischer NL. Longitudinal associations between exclusive, dual, and polytobacco use and asthma among US youth. Prev Med. 2023 Apr 11;171:107512. doi: 10.1016/j.ypmed.2023.107512. Epub ahead of print. PMID: 37054989.
McBride (2021)	McBride M, Haile ZT. Association Between Electronic Nicotine Delivery Systems Use and Breastfeeding Duration. Breastfeed Med. 2021 Nov;16(11):886-893. doi: 10.1089/bfm.2021.0132. Epub 2021 Jul 22. PMID: 34297610.
McConnell (2017)	McConnell R, Barrington-Trimis JL, Wang K, Urman R, Hong H, Unger J, Samet J, Leventhal A, Berhane K. Electronic Cigarette Use and Respiratory Symptoms in Adolescents. Am J Respir Crit Care Med. 2017 Apr 15;195(8):1043-1049. doi: 10.1164/rccm.201604-0804OC. PMID: 27806211; PMCID: PMC5422647.
Miller (2021)	Miller CR, Shi H, Li D, Goniewicz ML. Cross-Sectional Associations of Smoking and E-cigarette Use with Self-Reported Diagnosed Hypertension: Findings from Wave 3 of the Population Assessment of Tobacco and Health Study. Toxics. 2021 Mar 9;9(3):52. doi: 10.3390/toxics9030052. PMID: 33803457; PMCID: PMC7999635.
Moyers (2023)	Moyers SA, Hartwell M, Chiaf A, Greiner B, Oliver JA, Croff JM. Associations of Combustible Cigarette, Electronic Cigarette, and Dual Use With COVID Infection and Severity in the U.S.: A Cross-sectional Analysis of the 2021 National Health Information Survey. Tob Use Insights. 2023 Jun 7;16:1179173X231179675. doi: 10.1177/1179173X231179675. PMID: 37324057; PMCID: PMC10262671.
Nguyen (2023)	Nguyen AX, Gaiha SM, Chung S, Halpern-Felsher B, Wu AY. Ocular Symptoms in Adolescents and Young Adults With Electronic Cigarette, Cigarette, and Dual Use. JAMA Ophthalmol. 2023 Aug 31:e233852. doi: 10.1001/jamaophthalmol.2023.3852. Epub ahead of print. PMID: 37651129; PMCID: PMC10472265.
Okafor (2022)	Okafor CN, Okafor N, Kaliszewski C, Wang L. Association between electronic cigarette and combustible cigarette use with cardiometabolic risk biomarkers among U.S. adults. Ann Epidemiol. 2022 Jul;71:44-50. doi: 10.1016/j.annepidem.2022.02.002. Epub 2022 Feb 20. PMID: 35196553.
Osei (2019a)	Osei AD, Mirbolouk M, Orimoloye OA, Dzaye O, Uddin SMI, Benjamin EJ, Hall ME, DeFilippis AP, Stokes A, Bhatnagar A, Nasir K, Blaha MJ. Association Between E-Cigarette Use and Cardiovascular Disease Among Never and Current Combustible-Cigarette Smokers. Am J Med. 2019 Aug;132(8):949-954.e2. doi: 10.1016/j.amjmed.2019.02.016. Epub 2019 Mar 8. PMID: 30853474.
Osei (2019b)	Osei AD, Mirbolouk M, Orimoloye OA, Dzaye O, Uddin SMI, Dardari ZA, DeFilippis AP, Bhatnagar A, Blaha MJ. The association between e-cigarette use and asthma among never combustible cigarette smokers: behavioral risk factor surveillance system (BRFSS) 2016 & 2017. BMC Pulm Med. 2019 Oct 16;19(1):180. doi: 10.1186/s12890-019-0950-3. PMID: 31619218; PMCID: PMC6796489.

Table S1. S	tudies
Osei (2020)	Osei AD, Mirbolouk M, Orimoloye OA, Dzaye O, Uddin SMI, Benjamin EJ, Hall ME, DeFilippis AP, Bhatnagar A, Biswal SS, Blaha MJ. Association Between E-Cigarette Use and Chronic Obstructive Pulmonary Disease by Smoking Status: Behavioral Risk Factor Surveillance System 2016 and 2017. Am J Prev Med. 2020 Mar;58(3):336-342. doi: 10.1016/j.amepre.2019.10.014. Epub 2020 Jan 2. PMID: 31902685.
Parekh (2020a)	Parekh T, Pemmasani S, Desai R. Risk of Stroke With E-Cigarette and Combustible Cigarette Use in Young Adults. Am J Prev Med. 2020 Mar;58(3):446-452. doi: 10.1016/j.amepre.2019.10.008. Epub 2020 Jan 7. PMID: 31924460.
Parekh (2020b)	Parekh T, Owens C, Fay K, Phillips J, Kitsantas P. Use of e-Cigarettes and Development of Respiratory Conditions in Women of Childbearing Age. South Med J. 2020 Oct;113(10):488-494. doi: 10.14423/SMJ.00000000001158. PMID: 33005962.
Patel (2022)	Patel U, Patel N, Khurana M, Parulekar A, Patel A, Ortiz JF, Patel R, Urhoghide E, Mistry A, Bhriguvanshi A, Abdulqader M, Mehta N, Arumaithurai K, Shah S. Effect Comparison of E- Cigarette and Traditional Smoking and Association with Stroke-A Cross-Sectional Study of NHANES. Neurol Int. 2022 May 27;14(2):441-452. doi: 10.3390/neurolint14020037. PMID: 35736618; PMCID: PMC9227824.
Patel (2023)	Patel A, Cook S, Mattingly DT, Barnes GD, Arenberg DA, Levy DT, Meza R, Fleischer NL, Hirschtick JL. Longitudinal Association Between Exclusive and Dual Use of Cigarettes and Electronic Nicotine Delivery Systems and Asthma Among U.S. Adolescents. J Adolesc Health. 2023 Sep;73(3):437-444. doi: 10.1016/j.jadohealth.2023.04.009. Epub 2023 Jun 10. PMID: 37306645.
Paulin (2022)	Paulin LM, Halenar MJ, Edwards KC, Lauten K, Stanton CA, Taylor K, Hatsukami D, Hyland A, MacKenzie T, Mahoney MC, Niaura R, Trinidad D, Blanco C, Compton WM, Gardner LD, Kimmel HL, Lauterstein D, Marshall D, Sargent JD. Association of tobacco product use with chronic obstructive pulmonary disease (COPD) prevalence and incidence in Waves 1 through 5 (2013- 2019) of the Population Assessment of Tobacco and Health (PATH) Study. Respir Res. 2022 Oct 1;23(1):273. doi: 10.1186/s12931-022-02197-1. PMID: 36183112; PMCID: PMC9526897.
Perez (2019a)	Perez MF, Atuegwu NC, Oncken C, Mead EL, Mortensen EM. Association between Electronic Cigarette Use and Asthma in Never-Smokers. Ann Am Thorac Soc. 2019 Nov;16(11):1453-1456. doi: 10.1513/AnnalsATS.201904-338RL. PMID: 31404509; PMCID: PMC6945466.
Perez (2019b)	Perez MF, Atuegwu NC, Mead EL, Oncken C, Mortensen EM. Adult E-Cigarettes Use Associated with a Self-Reported Diagnosis of COPD. Int J Environ Res Public Health. 2019 Oct 16;16(20):3938. doi: 10.3390/ijerph16203938. PMID: 31623202; PMCID: PMC6843470.
Qeadan (2023)	Qeadan F, Nicolson A, Barbeau WA, Azagba S, English K. The association between dual use of electronic nicotine products and illicit drugs with adverse cardiovascular and respiratory outcomes in a longitudinal analysis using the Population Assessment of Tobacco and Health (PATH) survey. Drug Alcohol Depend Rep. 2023 May 6;7:100166. doi: 10.1016/j.dadr.2023.100166. PMID: 37228861; PMCID: PMC10205457.
Reddy (2021)	Reddy KP, Schwamm E, Kalkhoran S, Noubary F, Walensky RP, Rigotti NA. Respiratory Symptom Incidence among People Using Electronic Cigarettes, Combustible Tobacco, or Both. Am J Respir Crit Care Med. 2021 Jul 15;204(2):231-234. doi: 10.1164/rccm.202012-4441LE. PMID: 33857396; PMCID: PMC8650793.
Regan (2021)	Regan AK, Bombard JM, O'Hegarty MM, Smith RA, Tong VT. Adverse Birth Outcomes Associated With Prepregnancy and Prenatal Electronic Cigarette Use. Obstet Gynecol. 2021 Jul 1;138(1):85-94. doi: 10.1097/AOG.00000000004432. PMID: 34259468.
Sargent (2022)	Sargent JD, Halenar MJ, Edwards KC, Woloshin S, Schwartz L, Emond J, Tanski S, Taylor KA, Pierce JP, Liu J, Goniewicz ML, Niaura R, Anic G, Chen Y, Callahan-Lyon P, Gardner LD, Thekkudan T, Borek N, Kimmel HL, Cummings KM, Hyland A, Brunette M. Tobacco use and respiratory symptoms among adults: Findings from the Longitudinal Population Assessment of Tobacco and Health (PATH) Study 2014-16. Nicotine Tob Res. 2022 Apr 2:ntac080. doi: 10.1093/ntr/ntac080. Epub ahead of print. PMID: 35366322.

Table S1. St	tudies
Schneller (2020)	Schneller LM, Quiñones Tavárez Z, Goniewicz ML, Xie Z, McIntosh S, Rahman I, O'Connor RJ, Ossip DJ, Li D. Cross-Sectional Association Between Exclusive and Concurrent Use of Cigarettes, ENDS, and Cigars, the Three Most Popular Tobacco Products, and Wheezing Symptoms Among U.S. Adults. Nicotine Tob Res. 2020 Dec 15;22(Suppl 1):S76-S84. doi: 10.1093/ntr/ntaa199. PMID: 33320256; PMCID: PMC8224835.
Schweitzer (2017)	Schweitzer RJ, Wills TA, Tam E, Pagano I, Choi K. E-cigarette use and asthma in a multiethnic sample of adolescents. Prev Med. 2017 Dec;105:226-231. doi: 10.1016/j.ypmed.2017.09.023. Epub 2017 Sep 28. PMID: 28964850; PMCID: PMC5653431.
Shi (2022)	Shi H, Leventhal AM, Wen Q, Ossip DJ, Li D. Sex Differences in the Association of E-cigarette and Cigarette Use and Dual Use with Self-reported Hypertension Incidence in US Adults. Nicotine Tob Res. 2022 Jul 21:ntac170. doi: 10.1093/ntr/ntac170. Epub ahead of print. PMID: 35863748.
Silveira (2022)	Silveira ML, Everard CD, Sharma E, Lauten K, Alexandridis AA, Duffy K, Taylor EV, Tolliver EA, Blanco C, Compton WM, Kimmel HL, Iafolla T, Hyland A, Chaffee BW. Tobacco Use and Incidence of Adverse Oral Health Outcomes Among US Adults in the Population Assessment of Tobacco and Health Study. JAMA Netw Open. 2022 Dec 1;5(12):e2245909. doi: 10.1001/jamanetworkopen.2022.45909. PMID: 36484986.
Smith (2023)	Smith B, Engel P, Collier MR, Devjani S, Javadi SS, Maul JT, Wu JJ. Association between electronic-cigarette use and atopic dermatitis among United States adults. J Am Acad Dermatol. 2023 Jul;89(1):163-165. doi: 10.1016/j.jaad.2023.02.027. Epub 2023 Feb 25. PMID: 36842506.
Sompa (2022)	Sompa SI, Zettergren A, Ekström S, Upadhyay S, Ganguly K, Georgelis A, Ljungman P, Pershagen G, Kull I, Melén E, Palmberg L, Bergström A. Predictors of electronic cigarette use and its association with respiratory health and obesity in young adulthood in Sweden; findings from the population-based birth cohort BAMSE. Environ Res. 2022 May 15;208:112760. doi: 10.1016/j.envres.2022.112760. Epub 2022 Jan 20. PMID: 35065933.
Stevens (2022)	Stevens ER, Xu S, Niaura R, Cleland CM, Sherman SE, Mai A, Karey E, Jiang N. Youth E- Cigarette Use and Functionally Important Respiratory Symptoms: The Population Assessment of Tobacco and Health (PATH) Study Waves 3 and 4. Int J Environ Res Public Health. 2022 Nov 19;19(22):15324. doi: 10.3390/ijerph192215324. PMID: 36430043; PMCID: PMC9690418.
Strong (2018)	Strong DR, Myers MG, Pulvers K, Noble M, Brikmanis K, Doran N. Marijuana use among US tobacco users: Findings from wave 1 of the population assessment of tobacco health (PATH) study. Drug Alcohol Depend. 2018 May 1;186:16-22. doi: 10.1016/j.drugalcdep.2017.12.044. Epub 2018 Mar 3. PMID: 29529455.
Tackett (2020)	Tackett AP, Keller-Hamilton B, Smith CE, Hébert ET, Metcalf JP, Queimado L, Stevens EM, Wallace SW, McQuaid EL, Wagener TL. Evaluation of Respiratory Symptoms Among Youth e- Cigarette Users. JAMA Netw Open. 2020 Oct 1;3(10):e2020671. doi: 10.1001/jamanetworkopen.2020.20671. PMID: 33048131; PMCID: PMC8094411.
Tackett (2023)	Tackett AP, Urman R, Barrington-Trimis J, Liu F, Hong H, Pentz MA, Islam TS, Eckel SP, Rebuli M, Leventhal A, Samet JM, Berhane K, McConnell R. Prospective study of e-cigarette use and respiratory symptoms in adolescents and young adults. Thorax. 2023 Aug 15:thoraxjnl-2022-218670. doi: 10.1136/thorax-2022-218670. Epub ahead of print. PMID: 37582630.
Tanski (2022)	Tanski S, Halenar MJ, Edwards KC, Emond J, Woloshin S, Brunette M, Schwartz L, Taylor KA, Goniewicz ML, Niaura R, Anic G, Chen Y, Callahan-Lyon P, Gardner LD, Thekkudan T, Borek N, Kimmel HL, Cummings KM, Hyland A, Sargent J. Tobacco Product Use and Functionally Important Respiratory Symptoms Among US Adolescents/Young Adults. Acad Pediatr. 2022 Mar 7:S1876- 2859(22)00151-6. doi: 10.1016/j.acap.2022.03.001. Epub ahead of print. PMID: 35263656.
Tian (2022)	Tian Y, Jiao Z, Mao Y, Zhang Z. E-Cigarette Usage and Arthritis in the United States, a Nationwide Cross-Sectional Survey. Front Pharmacol. 2022 May 24;13:883550. doi: 10.3389/fphar.2022.883550. PMID: 35685635; PMCID: PMC9170919.

Table S1. S	tudies
To (2023)	To T, Borkhoff CM, Chow CW, Moraes TJ, Schwartz R, Vozoris N, Van Dam A, Langlois C, Zhang K, Terebessy E, Zhu J. Vaping and Health Service Utilization: A Canadian Health Survey and Health Administrative Data Study. Ann Am Thorac Soc. 2023 Mar 15. doi: 10.1513/AnnalsATS.202207-578OC. Epub ahead of print. PMID: 36920751.
Tran (2020)	A cross-sectional analysis of electronic cigarette use in US adults by asthmTran L, Tran P, Tran L. A cross-sectional analysis of electronic cigarette use in US adults by asthma status. Clin Respir J. 2020 Oct;14(10):991-997. doi: 10.1111/crj.13231. Epub 2020 Jul 12. PMID: 32592339.a status
Varella (2022)	Varella MH, Andrade OA, Shaffer SM, Castro G, Rodriguez P, Barengo NC, Acuna JM. E-cigarette use and respiratory symptoms in residents of the United States: A BRFSS report. PLoS One. 2022 Dec 1;17(12):e0269760. doi: 10.1371/journal.pone.0269760. PMID: 36454742; PMCID: PMC9714717.
Vora (2019)	Vora MV, Chaffee BW. Tobacco-use patterns and self-reported oral health outcomes: A cross- sectional assessment of the Population Assessment of Tobacco and Health study, 2013-2014. J Am Dent Assoc. 2019 May;150(5):332-344.e2. doi: 10.1016/j.adaj.2018.12.004. Epub 2019 Mar 25. PMID: 30922519; PMCID: PMC6487222.
Walker (2021)	Walker CJ, Christian WJ. Estimating the Population Attributable Fraction of Asthma Due to Electronic Cigarette Use and Other Risk Factors Using Kentucky Behavioral Risk Factor Survey Data, 2016-2017. Subst Use Misuse. 2021;56(3):353-358. doi: 10.1080/10826084.2020.1868002. Epub 2021 Jan 17. Erratum in: Subst Use Misuse. 2021;56(4):575. PMID: 33459123.
Wang (2016)	Wang MP, Ho SY, Leung LT, Lam TH. Electronic Cigarette Use and Respiratory Symptoms in Chinese Adolescents in Hong Kong. JAMA Pediatr. 2016 Jan;170(1):89-91. doi: 10.1001/jamapediatrics.2015.3024. PMID: 26551991.
Wang (2020)	Wang X, Lee NL, Burstyn I. Smoking and use of electronic cigarettes (vaping) in relation to preterm birth and small-for-gestational-age in a 2016 U.S. national sample. Prev Med. 2020 May;134:106041. doi: 10.1016/j.ypmed.2020.106041. Epub 2020 Feb 24. PMID: 32105682.
Wang (2022)	Wang Y, Sung HY, Lightwood J, Yao T, Max WB. Healthcare utilisation and expenditures attributable to current e-cigarette use among US adults. Tob Control. 2022 May 23:tobaccocontrol-2021-057058. doi: 10.1136/tobaccocontrol-2021-057058. Epub ahead of print. PMID: 35606163.
Wen (2023)	Wen X, Thomas MA, Liu L, Moe AA, Duong PH, Griffiths ME, Munlyn AL. Association between maternal e-cigarette use during pregnancy and low gestational weight gain. Int J Gynaecol Obstet. 2023 Jan 13. doi: 10.1002/ijgo.14672. Epub ahead of print. PMID: 36637259.
Wiener (2020)	Wiener RC, Waters C, Bhandari R, Trickett Shockey AK, Alshaarawy O. The Association of Sleep Duration and the Use of Electronic Cigarettes, NHANES, 2015-2016. Sleep Disord. 2020 Feb 29;2020:8010923. doi: 10.1155/2020/8010923. PMID: 32190389; PMCID: PMC7072117.
Williams (2023)	Williams RJ, Wills TA, Choi K, Pagano I. Associations for subgroups of E-cigarette, cigarette, and cannabis use with asthma in a population sample of California adolescents. Addict Behav. 2023 Oct;145:107777. doi: 10.1016/j.addbeh.2023.107777. Epub 2023 Jun 12. PMID: 37336095; PMCID: PMC10330693.
Wills (2019)	Wills TA, Pagano I, Williams RJ, Tam EK. E-cigarette use and respiratory disorder in an adult sample. Drug Alcohol Depend. 2019 Jan 1;194:363-370. doi: 10.1016/j.drugalcdep.2018.10.004. Epub 2018 Nov 7. PMID: 30472577; PMCID: PMC6312492.
Wills (2020)	Wills TA, Choi K, Pagano I. E-Cigarette Use Associated With Asthma Independent of Cigarette Smoking and Marijuana in a 2017 National Sample of Adolescents. J Adolesc Health. 2020 Oct;67(4):524-530. doi: 10.1016/j.jadohealth.2020.03.001. Epub 2020 Apr 24. PMID: 32336559; PMCID: PMC8248447.

Table S1. S	tudies
Wills (2022)	Wills TA, Choi K, Pokhrel P, Pagano I. Tests for confounding with cigarette smoking in the association of E-cigarette use with respiratory disorder: 2020 National-Sample Data. Prev Med. 2022 Aug;161:107137. doi: 10.1016/j.ypmed.2022.107137. Epub 2022 Jul 9. PMID: 35820496; PMCID: PMC9328844.
Xie (2020a)	Xie Z, Ossip DJ, Rahman I, Li D. Use of Electronic Cigarettes and Self-Reported Chronic Obstructive Pulmonary Disease Diagnosis in Adults. Nicotine Tob Res. 2020 Jun 12;22(7):1155- 1161. doi: 10.1093/ntr/ntz234. PMID: 31830263; PMCID: PMC7291797.
Xie (2020b)	Xie W, Kathuria H, Galiatsatos P, Blaha MJ, Hamburg NM, Robertson RM, Bhatnagar A, Benjamin EJ, Stokes AC. Association of Electronic Cigarette Use With Incident Respiratory Conditions Among US Adults From 2013 to 2018. JAMA Netw Open. 2020 Nov 2;3(11):e2020816. doi: 10.1001/jamanetworkopen.2020.20816. PMID: 33180127; PMCID: PMC7662143.
Xie (2020c)	Xie Z, Ossip DJ, Rahman I, O'Connor RJ, Li D. Electronic cigarette use and subjective cognitive complaints in adults. PLoS One. 2020 Nov 2;15(11):e0241599. doi: 10.1371/journal.pone.0241599. PMID: 33137145; PMCID: PMC7605645.
Xie (2022)	Xie W, Tackett AP, Berlowitz JB, Harlow AF, Kathuria H, Galiatsatos P, Fetterman JL, Cho J, Blaha MJ, Hamburg NM, Robertson RM, DeFilippis AP, Hall ME, Bhatnagar A, Benjamin EJ, Stokes AC. Association of Electronic Cigarette Use with Respiratory Symptom Development among U.S. Young Adults. Am J Respir Crit Care Med. 2022 Jun 1;205(11):1320-1329. doi: 10.1164/rccm.202107-1718OC. PMID: 35089853.
Zhang (2022)	Zhang Z, Jiao Z, Blaha MJ, Osei A, Sidhaye V, Ramanathan M Jr, Biswal S. The Association Between E-Cigarette Use and Prediabetes: Results From the Behavioral Risk Factor Surveillance System, 2016-2018. Am J Prev Med. 2022 Jun;62(6):872-877. doi: 10.1016/j.amepre.2021.12.009. Epub 2022 Mar 3. PMID: 35597566.
Zhu (2023)	Zhu H, Wu M. A cross-sectional study on the relationship between electronic cigarette and combustible cigarette use with obstructive sleep apnea among U.S. adults: result from NHANES 2015-2018. Arch Public Health. 2023 Apr 13;81(1):54. doi: 10.1186/s13690-023-01083-6. PMID: 37055806; PMCID: PMC10099817.

Table S2. Ch	naracteristics and	d results fror	m included stud	ies (v	alues use	d in me	ta-anal	ysis ap	opear	in <i>bold</i>	italics; all are OR unless ot	herwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	es of	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Cardiovascu	rdiovascular disease															
Alzahrani (2018)	Myocardial infarction	NHIS	69046	А	2014, 2016	E	С	N	1	М	Daily e-cigarette use vs. never ecig use =1.79 (1.20-2.66)Some day vs. never =1.16 (0.83 - 1.62)¶Former vs. never=1.06 (0.86 - 1.30)	Daily smokers vs. never smokers = 2.72 (2.29-3.24) current vs. never= 2.64 (2.24 - 3.12) Some day smokers vs. Never smokers= 2.36 (1.80 - 3.09) Former smokers vs. Never smokers = 1.70 (1.51 - 1.91)			Table 2	
Berlowitz (2022)	Incident CVD (people with no CVD history)	PATH	24027	А	2013- 2019	с	L	NC	3	S	sole ENDS vs. nonusers = 1.00 (0.69 - 1.45)	sole cig vs. nonusers = 1.53 (1.30 - 1.79)	DU vs. nonuse=1.54 (1.21 - 1.96) DU vs. sole cig=1.01 (0.81 - 1.26)	sole ENDS vs. sole Cig = 0.66 (0.46 - 0.94)	Table (no number)	Hazard ratio
El- Shahawy (2022)	Erectile dysfunction (age 20-65; no CVD)	PATH	13711	А	2016- 2018	С	С	N	2	М	Daily vs. never = 2.24 (1.50 - 3.34) Some day vs. never=1.43 (0.88 - 2.31) Former vs never: 1.12 (0.87 - 1.45)	<i>Current vs. never=1.05 (0.72 - 1.53)</i> Former vs. never= 0.84 (0.60 - 1.19)	DU vs. never users of both ENDS and cig= 1.68 (1.05 - 2.69) among people without CVD diagnosis	Current ENDS users who were former smokers vs. Never users of both=1.85 (1.06 - 3.24) among people without CVD diagnosis	Tables 2-4	We used age- restricted CVD-free sample (i.e., aged <65 years with no reported CVD; n=11,207). There were many sensitivity analyses.
Falk (2022)	coronary artery disease, myocardial infarction	NHIS	84,553	0	2014, 2016, 2017, 2018	1	0	1	1	2	Coronary artery disease: 0.86 (0.52-1.41) <i>Myocardial infarction: 0.98 (0.56-1.75)</i>	Coronary artery disease: 1.86 (1.61-2.15) Myocardial infarction: 2.84 (2.44-3.29)	Coronary artery disease: 2.21 (1.82-2.14) Myocardial infarction: 3.84 (3.23-4.56)		Table 1	MI selected at random from two outcomes.

Table S2. Ch	ble S2. Characteristics and results from included studies (values used in meta-analysis appear in bold italics; all are OR unless otherwise noted)															
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Farsalinos (2019)	Coronary Heart Disease	PATH	59770	A	2016- 2017	E	С	N	1	Μ	For CHD: Daily use vs. never = 1.31 (0.79 - 2.17) Some days vs. never = 1.13 (0.70 - 1.83) Former vs. never= 1.03 (0.83-1.28) For MI: Daily use vs. never = 1.35 (0.80-2.27) Some days vs. never = 1.22 (0.78 - 1.91) Former vs. never=0.96 (0.77 - 1.20)	For CHD: Daily use vs. never =1.73 (1.46 - 2.05) Some days vs. never = 1.75 (1.32 - 2.32) Former<=6 years vs. never= 1.96 (1.58 - 2.44) Former > 6 year vs. never = 1.43 (1.28 - 1.60) For MI: Daily use vs. never =3.13 (2.63 - 3.73) some days vs. never = 2.47 (1.79 - 3.40) Former<=6 years vs. never= 2.82 (2.22 - 3.57) Former > 6 year vs. never = 1.51 (1.32 - 1.74)			Tables 2-3	
Gathright (2019)	Heart failure	PATH	32320	A	2013- 2014	E	С	NC	1	S	Current (y vs. n)= 1.49 (0.77-2.88)	current (y vs. n) = 0.92 (0.75 – 1.14)	Current (y vs. n)= 1.76 (1.22 – 2.54)		text	Conducted three separate logistic regressions through which cigarette use, e- cigarette use, and dual use were the outcomes. HF was the independent variable in each

Table S2. Ch	aracteristics and	d results from	m included studi	ies (v	alues use	d in me	ta-anal	ysis ap	oear	in <i>bold</i>	italics; all are OR unless ot	herwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Goldberg Scott (2023)	myocardial infarction	Kaiser Permanen te Research Bank	96,148	0	2015- 2019	0	1	1	1	1	Longitudinal [cross- sectional in brackets]: <i>Myocardial infarction:</i> <i>1.30 (0.66-2.55)</i> [1.22; 0.90-1.66] Additional cross-sectional: Hypertension (diagnosis + medication): 0.99 (0.87- 1.14) Hypertension (diagnosis + no medication): 1.09 (0.84-1.42) Non-stroke cerebrovascular disease: 1.55 (1.21-1.99)				Table 3 (longitud inal) and Table 2 (cross- sectional)	Hazard ratios (HR) for longitudinal results OR for cross-sectional results Longitudinal results used in meta- analysis. Cross sectional results (based on larger sample sizes) also reported (Table 2). People with history of heart attack, stroke or cancer prior to survey excluded.
Hirschtick (2022)	Incident first MI (age 40+)	PATH	11031	А	2013- 2019	С	L	NC	3	S	combined: 1.22 (0.48- 5.49) MI: exclusive ecig vs. non- current use: 0.61 (0.12- 3.04) exclusive ENDS vs. exclusive cig = 0.3 (0.06- 1.59) stroke: exclusive ecig vs. non- current use: 1.74 (0.55- 5.49) exclusive ENDS vs. exclusive ENDS vs. exclusive cig = 0.77 (0.25-2.38)	<i>combined: 2.10 (1.61-2.74)</i> MI: exclusive cig vs. non- current use: 1.99 (1.40-2.84) stroke: 2.26 (1.51-3.39)	combined: 1.49 (0.67- 3.31) MI: dual vs. non-current use: 1.84 (0.64-5.30) dual vs. exclusive cig = 0.93 (0.35-2.48) stroke: dual vs. non-current use: 1.12 (0.33-3.79) dual vs. exclusive cig = 0.50 (0.15-1.60)		Table 4 and text	Hazard ratio Excluded people who had MI or stroke at baseline computed time varying HR (not OR) MI selected at random
Liu (2022)	Composite	BRFSS	253561	А	2020	E	С	N	1	В	Current ecig vs never user: Multivariable: 1.17 (0.97- 1.412) Stratified: 1.25 (0.80- 1.95)	Current cig smoker vs never smoker: Multivariable: 1.45 (1.33-1.58) Stratified: 1.35 (1.20-1.51)	Current dual user vs never user of either product: Stratified: 1.79 (1.37- 2.34)	Current user vs never user of either product: Stratified: ecig: 1.25 (0.80-1.95) cig: 1.35 (1.20-1.51)	Table 2 and Figure 2A	Multivariable estimates also include sleep duration as covariate. Also present data on former users and age- stratified results.

										italics; all are OR unless oth					
Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%CI)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
incident CVD (age 40+; no CVD history)	PATH	7820	А	2013- 2019	с	L	NC	3	S	NA (due to very small sample size)		DU vs. never users= 1.85 (0.78 - 4.37)	sole combustible tob vs. never users=1.44 (0.87 - 2.39) tob quitters vs. never users= 1.18 (0.33 - 4.26)	Table 2	ORs for exclusive combustible tobacco included cigarettes, cigars, hookah.
Composite of coronary heart disease, myocardial infarction, or stroke	BRFSS	449092	A	2016- 2017	E	С	Ν	1	S	Among never smokers: <i>current vs. never</i> = 1.04 (0.63 - 1.72) Daily vs. never= 1.35 (0.74 - 2.46) occasional use vs. never = 0.95 (0.50 - 1.82) Among current smokers: <i>current vs. never</i> = 1.36 (1.18 - 1.56) Daily vs. never= 1.59 (1.20 - 2.08) Occasional use vs. never = 1.30 (1.12 - 1.52)		DU vs. current smoker with never use of ENDS=1.36 (1.18 - 1.56) DU vs. never use of both = 2.44 (2.14 - 2.78) DU with daily use of ENDS vs. current smokers with never use of ENDS= 1.59 (1.20 - 2.08)		Table 2 and text	
aggregate measure cardiovascula r disease	PATH	18,893	0	2014- 2018	0	1	0	2	1	Adverse cardiovascular conditions: 1.02 (0.90- 1.15)				Table 3	Adverse cardiovascular condition: high blood pressure, high cholesterol, stroke, heart attack (i.e., myocardial infarction) and/or need for bypass surgery, congestive heart failure, or other heart condition "Dual use" in the paper is dual use of e- cigs and illicit drug (not nicotine cigarette), so was not extracted
	incident CVD (age 40+; no CVD history) Composite of coronary heart disease, myocardial infarction, or stroke	incident CVD (age 40+; no CVD history) PATH Composite of coronary heart disease, myocardial infarction, or stroke BRFSS BRFSS BRFSS	incident CVD (age 40+; no CVD history)PATH7820Composite of coronary heart disease, myocardial infarction, or strokeBRFSS449092aggregate measure cardiovasculaPATH18,893	incident CVD (age 40+; no CVD history)PATH7820AComposite of coronary heart disease, myocardial infarction, or strokeBRFSS449092Aaggregate measure cardiovasculaPATH18,8930	incident CVD (age 40+; no CVD history)PATH7820A2013- 2019Composite of coronary heart disease, myocardial infarction, or strokeBRFSS449092A2016- 2017aggregate measure cardiovasculaPATH18,89302014- 2018	OutcomeSampleSample sizeturn of tree sizetur	OutcomeSampleSample size $\frac{1}{400}$ $\frac{1}{900}$ $\frac{1}{9000}$ $\frac{1}{90000}$ $\frac{1}{900000000000000000000000000000000000$	OutcomeSampleSample sizetro tipso pictro siceso pic	OutcomeSampleSample sizeit ip <br< td=""><td>OutcomeSampleSample sizeit it inpit it inpit it it inpit it it it inpit it<br <="" td=""/><td>OutcomeSampleSample sizeis b ty tyis b ty<</br></td><td>OutcomeSampleSample sizein in in in in in in in indert CVD (age 40:: no CVD history)Sample sizein in in in in in in in in in indert CVD (age 40:: no coronary heart disease, my corradial infarction, or infarction, orSample sizein in in in in in in in in in in in infarction, or infarction, orSample sizein in in in in infarction, or infarction, or infarction, orSample sizein in in in in infarction, or infarction, or infarc</td><td>Outcome Sample Sample size is is<td>Outcome Sample Sample size $\frac{1}{20}$ $\frac{1}{200}$ $\frac{1}{200}$</td><td>Outcome Sample ize Sample ize Supple ize</td></td></td></br<>	OutcomeSampleSample sizeit it inpit it inpit it it inpit it it it inpit <td>OutcomeSampleSample sizeis b ty tyis b ty<</br></td> <td>OutcomeSampleSample sizein in in in in in in in indert CVD (age 40:: no CVD history)Sample sizein in in in in in in in in in indert CVD (age 40:: no coronary heart disease, my corradial infarction, or infarction, orSample sizein in in in in in in in in in in in infarction, or infarction, orSample sizein in in in in infarction, or infarction, or infarction, orSample sizein in in in in infarction, or infarction, or infarc</td> <td>Outcome Sample Sample size is is<td>Outcome Sample Sample size $\frac{1}{20}$ $\frac{1}{200}$ $\frac{1}{200}$</td><td>Outcome Sample ize Sample ize Supple ize</td></td>	OutcomeSampleSample sizeis b ty tyis 	OutcomeSampleSample sizein in in in in in in in indert CVD (age 40:: no CVD history)Sample sizein in in in in in in in in in indert CVD (age 40:: no coronary heart disease, my corradial infarction, or infarction, orSample sizein in in in in in in in in in in in infarction, or infarction, orSample sizein in in in in infarction, or infarction, or infarction, orSample sizein in in in in infarction, or infarction, or infarc	Outcome Sample Sample size is is <td>Outcome Sample Sample size $\frac{1}{20}$ $\frac{1}{200}$ $\frac{1}{200}$</td> <td>Outcome Sample ize Sample ize Supple ize</td>	Outcome Sample Sample size $\frac{1}{20}$ $\frac{1}{200}$	Outcome Sample ize Sample ize Supple ize

Table S2. Ch	aracteristics an	d results from	n included studi	ies (v	alues use	d in me	ta-anal	ysis ap	pear	in <i>bold</i>	italics; all are OR unless ot	herwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Bricknell (2021)	Stroke	BRFSS	465,594	0	2016	1	0	1	1	1	Every day vs never=1.62 (1.18-2.31) Some days vs never = 1.28 (1.02-1.61) Former vs never = 1.09 (0.98-1.23)	<i>Every day vs never</i> = 2.1 (1.9- 2.4) Some day vs never = 1.8 (1.6- 2.1) Former vs never = 1.3 (1.2-1.4)			Tables 2-3	
Falk (2022)	stroke	NHIS	84,553	0	2014, 2016, 2017, 2018	1	0	1	1	2	Stroke: 1.06 (0.59-1.91)	Stroke: 2.11 (1.82-2.46)	Stroke: 2.40 (2.01-2.86)		Table 1	
Goldberg Scott (2023)	stroke	Kaiser Permanen te Research Bank	96,148	0	2015- 2019	0	1	1	1	1	Longitudinal [cross- sectional in brackets]: Stroke: 1.65 (0.94-2.89) [1.16; 0.77-1.66] Additional cross-sectional: Non-stroke cerebrovascular disease: 1.55 (1.21-1.99)				Table 3 (longitud inal) and Table 2 (cross- sectional)	Hazard ratios (HR) for longitudinal results OR for cross-sectional results Longitudinal results used in meta- analysis. Cross sectional results (based on larger sample sizes) also reported (Table 2). People with history of heart attack, stroke or cancer prior to survey excluded.
Hirschtick (2022)	Incident first stroke (age 40+)	PATH	11031	0	2013- 2019	0	1	0	1	2	exclusive ecig vs. non- current use: 1.74 (0.55- 5.49) exclusive ENDS vs. exclusive cig = 0.77 (0.25-2.38)	exclusive cig vs. non-current use: 2.26 (1.51-3.39)	dual vs. non-current use: 1.12 (0.33-3.79) dual vs. exclusive cig = 0.50 (0.15-1.60)		Table 4 and text	Excluded people who had MI or stroke at baseline computed time varying HR (not OR)
Parekh (2020a)	Stroke (age 18-44)	BRFSS	161529	0	2016- 2017	1	0	1	2	2	Stratified current sole ecig use vs never use both: 0.69 (0.34–1.42) Among former smokers: 2.54 (1.16-5.56)	Stratified Current sole cig vs never use both: 1.59 (1.14-2.22)	Stratified Dual use vs never use both: 2.91 (1.62-5.25) Dual use vs smokers: 1.83 (1.06-3.17)	Stratified Sole ecig users vs never use both: 0.69 (0.34-1.42) Sole e-cig users vs sole cig users: 0.43 (0.20-0.93)	Text and Figure 1	Results are based on full multivariant model (model 3)

Table S2. Ch	naracteristics and	d results from	n included studi	es (v	alues use	d in me	ta-anal	ysis ap	pear	in <i>bold</i>	italics; all are OR unless oth	nerwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Patel (2022)	Stroke	NHANES	79825	0	2015- 2018	1	0	0	1	2	<i>Current e-cig vs cig:</i> 1.15 (1.15-1.16) Current ecig vs non- current ecig: 1.60 (1.60- 1.61)		Dual vs cig: 1.14 (1.14- 1.15)		Table 3	
Metabolic dy	vsfunction		[[Dorticipanto who were
Atuegwu (2019a)	Prediabetes	BRFSS	71,541	A	2017	E	С	Ν	1	S	Among never smokers: Current vs never: 1.96(1.13 - 3.40)				Table 2	Participants who were current or former smokers of conventional cigarettes or who had a history of diabetes, gestational prediabetes or gestational diabetes excluded. Including history of prediabetes as independent variable may over-specify model and bias results toward the null.

Table S2. Ch	aracteristics an	d results from	m included studi	ies (v	alues use	d in me	ta-anal	ysis app	bear i	n <i>bold</i>	italics; all are OR unless ot	herwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Cai (2023)	metabolic syndrome	NHANES	5121	0	2015- 2018	0	0	1	2	3	Multivariate: 1.30 (1.13- 1.50) Stratified: 0.75 (0.3849)		Stratified: Dual vs never users: 1.35 (1.15-1.58) [Table 6] Dual vs cigs: 1.21 (1.00- 1.46) [Table 6] Current ecig among current cig: 1.53 (1.22- 1.91) [Table 4]	Sole e-cig (Stratified): 0.75 (0.38-1.49)	(Tables 3 [multivari ate], 4 [stratifie d] and 6 [dual use])	Report Prevalence Ratios (PR) using Poisson regression. MetS was defined when any of following conditions were present: (1) abdominal obesity, (2) elevated triglycerides, (3) elevated fasting glucose, (4) reduced high-density lipoprotein (HDL) cholesterol, (5) elevated blood pressure. Also present results for former e-cig users and former smokers.
Cook (2023a)	Incident hypertension	PATH	17,539	A	2013- 2019	С	L	N	1	S	current e-cig vs never: 1.00 (0.68 - 1.47)	current cig vs. never:. 121 (1.06 - 1.38)	current dual vs never use of either product: 1.15 (0 .87 - 1.52)		Table 4	HR, with exposures lagged one wave respondents had no self-reported heart condition (congestive heart failure, heart attack, or stroke) at baseline Due to skip pattern in Waves 4 and 5, classified respondents who did not report seeing a doctor during the past year as not having hypertension
Falk (2022)	hypertension, diabetes mellitus	NHIS	84,553	0	2014, 2016, 2017, 2018	1	0	1	1	2	Hypertension: 1.24 (1.05-1.48) Diabetes: 1.11 (0.97-1.26)	<i>Hypertension: 1.38 (1.28-1.50)</i> Diabetes: 1.14 (1.02-1.27)	Hypertension: 1.66 (1.52- 1.81) Diabetes: 1.22 (1.11-1.34)		Table 1	Hypertension selected at random from two outcomes.

Table S2. Ch	aracteristics an	d results from	m included studi	es (v	alues used	d in me	ta-anal	ysis a	opear	in <i>bold</i>	italics; all are OR unless oth	nerwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Kim (2020a)	Metabolic syndrome (Korea)	KNHANE S	7505	А	2013- 2017	С	С	N	1	S			DU vs. never smokers without past-month use of ENDS= 2.79 (1.72 - 4.53) DU vs. cigarette-only smokers = 1.57 (1.03 - 2.40)	sole cig vs. never smokers without past-month use of ENDS = 1.47 (1.20 - 1.82)	Table 4	Other outcomes included waist circumference (WC); blood pressure; high- density lipoprotein; Elevated fasting glucose; Elevated triglycerides.
Kim (2020b)	Metabolic syndrome	KNHANE S	14,738	A	2013- 2015	С	С	N	1	Μ	current e-cig vs never: 1.40 (1.08 - 1.81)		Dual current vs never: 1.13 (0.82 - 1.55)		Tables 4 (Model 4; multivari ate) and Table 5 (among current active smokers; to get direct estimate of dual use)	Also report ever user results and details for MetS components: abdominal obesity, high triglyceride, high fasting glucose, low HDL, high blood pressure
Kim (2022)	Hypertension	Korea Communit y Health Survey	275,762	A	2019	С	С	N	1	S	<i>Current e-cig user vs</i> <i>never user:</i> <i>All: 1.23 (1.03 - 1.48)</i> Male: 1.22 (1.02 - 1.48) Female: 1.41 (0.74 - 2.70)	<i>Current smoker vs never</i> <i>smoker:</i> <i>All: 1.20 (1.15 - 1.25)</i> Male: 1.16 (1.11 - 1.22) Female: 1.35 (1.24 - 1.48)	<i>Current dual user vs</i> <i>never user:</i> <i>All: 1.25 (1.13 - 1.40)</i> Male: 1.24 (1.11 - 1.39) Female: 1.44 (0.96 - 2.16)	Sole ecig vs nothing: All 1.23 (1.03 - 1.48) Male: 1.22 (1.02 - 1.48) Female: 1,41 (0.74 - 2.70)	Tables 2 and 3	Separate male and femal estimates combined with fixed effects meta-analysis/ Direct measurement of blood pressure. Also report results stratifying smoking by pack-years and age of initiation.

Table S2. Cl	aracteristics and	d results fror	n included studi	ies (v	alues use	d in me	ta-anal	ysis ap	pear	in <i>bold</i>	italics; all are OR unless ot	herwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Miller (2021)	Hypertension (age 18-55)	PATH	19147	A	2015- 2016	С	С	Z	1	В	Current ecig vs not current: 1.31 (1.05-1.63)	Current cig vs not current: 1.27 (1.10-1.47) Versus never smokers Former smoker 1.28 (1.05 - 1.57) Exclusive smoker 1.36 (1.15 - 1.62) Versus former smoker Exclusive smoker: 1.06 (0.87 - 1.30)	Dual use vs never smoker 1.77 (1.32 - 2.39) DU vs. sole cig= 1.30 (0.99 - 1.71)	Versus never smokers Exclusive vaper (never smoker) : 1.32 (0.50-3.53) Exclusive vaper (former smoker): 1.42 (0.98 - 2.06) Versus former smokers Exclusive vaper (never smoker): 1.03 (0.38 - 2.83) Exclusive vaper (former smoker): 1.11 (0.74 - 1.66) Versus exclusive smokers Exclusive vaper (never smoker): 0.96 (0.37 - 2.57) Exclusive vaper (former smoker): 1.30 (0.99 - 1.71)	Table 2 and Figure 2	

Table S2. Ch	aracteristics and	d results from	m included studi	ies (v	alues used	d in me	ta-anal	ysis ap	opear	in <i>bold</i>	italics; all are OR unless ot	herwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Okafor (2022)	Hypertension	NHANES	7940	A	2015- 2018	С	С	N	2	S	High blood pressure: 1.73 (0.91-3.30) HDL-C: 1.33 (0.79 - 2.26) LDL: 0.52 (0.22 - 1.22) Triglycerides: 1.03 (0.40 - 2.64) Fasting blood glucose: 1.41 (0.56 - 3.51)	High blood pressure: 0.93 (0.73 - 1.20) HDL-C: 1.89 (1.56 - 2.29) LDL: 1.16 (0.84 - 1.58) Triglycerides: 1.58 (1.04 - 2.38) Fasting blood glucose: 0.88 (0.63 - 1.22)	High blood pressure: 0.98 (0.51-1.89) HDL-C: 1.73 (1.06 - 2.82) LDL: 1.16 (0.84 - 1.58) Triglycerides: 1.54 (0.67 - 3.55) Fasting blood glucose: 0.99 (0.61 - 1.59)	E-cig vs smoking: <i>High blood</i> <i>pressure: 1.85 (0.88- 3.89)</i> HDL-C: 0.70 (0.43 - 1.15) LDL: 0.45 (0.52 - 1.98) Triglycerides: 0.65 (0.23 - 1.81) Fasting blood glucose: 1.59 (0.62 - 4.09) Dual use vs smoking: <i>High blood</i> <i>pressure: 1.05 (0.52- 2.11)</i> HDL-C: 0.91 (0.54 - 1.53) LDL: 1.02 (0.52 - 1.98) ¶Triglycerides: 0.97 (0.39 - 2.43) Fasting blood glucose: 1.11 (0.63 - 1.98)	Table 2 (adjuste d model, including former smokers)	Excluded people with history of cardiovascular disease, stroke or diabetes
Shi (2022)	Hypertension	PATH	16,434	A	2013- 2018	С	L	NC	1	S	Both: 1.51 (0.93 - 2.46) Male: 1.17 (0.56 - 2.46) Female: 1.84 (0.96 - 3.52)	Both: 1.39 (1.08 - 1.77) Male: 1.10 (0.77 - 1.58) Female: 1.69 (1.21 - 2.36)	Both: 1.45 (0.97 - 2.16) Male: 1.18 (0.65 - 2.14) Female: 1.71 (1.00 - 2.93)		Table 2, consiste nt users	Hazard ratio Incident hypertension Cox model lagged one year Male and female results pooled with fixed effects meta- analysis

Table S2. Cl	naracteristics an	d results from	n included studi	ies (v	alues use	d in me	ta-anal	ysis ap	opear	in <i>bol</i> c	l italics; all are OR unless ot	herwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Sompa (2022)	Waist circumferenc e (age around 24; Sweden)	Swedish BAMPSE	2265	A	2018- 2020	С	С	NC	1	М	Current ecig use vs non- current use controlling for smoking: Waist circumference (≥80 cm for women and ≥93 cm for men): 1.9 (1.0 - 3.4) BMI (≥25 kg/m ²): 1.8 (1.0 - 3.2) Body fat (≥33% for women and ≥20% for men): 2.6 (1.4 - 4.6) Multivariate, including				Table 6	Also considered snus and other tobacco products. Those results and dual use with those products not included.
Zhang (2022) Asthma	Prediabetes	BRFSS	600,046	А	2016- 2018	E	С	N	1	В	cig use as a covariate: Current e-cig: 1.22 (1.10 - 1.37) Stratified: current ecig among never smokers: 1.54 (1.17 - 2.04)		Stratified: current dual: 1.14 (0.97 - 1.34)		Tables 3 and 4	
		school-									Current ecig vs never ecig & never smoker:		Oursent days large as			Prevalence ratio The paper also contains on current wheeze and current uncontrolled asthma symptoms. There are
Alnajem (2020)	Asthma (age 16-19; Kuwait)	based cross- sectional study in Kuwait	1565	Y	2019	С	С	N	1	S	1.85 (1.03 – 3.41) Current ecig in former smokers: 1.71 (1.05– 2.78)	Current smoker vs never ecig & never smoker: 1.73 (1.01 – 3.21)	Current dual use vs never ecig never smoker: 1.92 (1.33 – 2.76)		Table 2	Also other combinations of current and former ecig and cig use Also shows significant asthma risk associated with secondhand aerosol (1.56 (1.13–2.16))

Table S2. Cl	haracteristics an	d results fro	m included stud	ies (v	alues use	d in me	ta-anal	ysis a	opear	in <i>bold</i>	italics; all are OR unless ot	herwise noted)		-		
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Bayly (2019)	Asthma (Age 11-17)	Florida Youth Tobacco survey	11830	Y	2016	с	С	NC	1	М	risk for asthma attack: <i>current vs. never= 0.90</i> <i>(0.71 - 1.15)</i> former vs. never=1.01 (0.81 - 1.25) secondhand ENDS aerosol exposure (y/n)= 1.27 (1.11 - 1.47)	Risk for asthma attack: <i>current vs. never=1.92 (1.28- 2.68)</i> former vs. never=1.23 (0.99 - 1.52) secondhand exposure=1.19 (1.05 - 1.35)			Table 2	
Bhatta (2020)	Incident asthma (age 18-65)	PATH	20531	А	2013- 2016	с	L	NC	3	М	Wave 3: current vs. never = 1.30 (0.87 - 1.95) Wave 2: current vs. never = 1.56 (1.10 - 2.22) former vs. never = 1.23 (0.90 - 1.69)	Wave 3: current vs. never = 1.89 (1.26 - 2.83) Wave 2: current vs. never =1.57 (1.02 - 2.42) former vs. never =0.87(0.53 - 1.42)			Appendi x Table 6	
Bircan (2021)	Asthma	BRFSS	8736	A	2016- 2018	E	С	N	2	S	Current vs never ecigs (among never smokers) asthma (OR=1.26, 95% CI: 1.25 - 1.27) ACOS (OR=2.27; 95% CI: 2.23 - 2.31)				Figure 3	All are never smokers
Boyd (2021)	Wheezing	PATH	14,798	A	2016- 2018	с	С	NC	6	М	Wheezing or whistling in chest: 1.09 (0.830 - 1.44) Sleep disturbed by wheezing: 1.33 (0.752 - 2.36) Speech limited because of wheezing: 1.24 (0.686 - 2.25) Wheezy during or after exercise: 1.07 (0.802 - 1.44) Dry cough at night: 1.09 (0.885 - 1.36)	Wheezing or whistling in chest: 1.15 (0.82 - 1.62) Sleep disturbed by wheezing: 0.739 (0.405 - 1.34) Speech limited because of wheezing: 0.820 (0.433 - 1.55) Wheezy during or after exercise: 1.09 (0.773 - 1.54) Dry cough at night: 1.27 (0.947 - 1.71)			Table 2, fully adjusted models	Including history of asthma as independent variable may over-corrected the model and so underestimated risks of ecigs and cigs

Table S2. Ch	aracteristics an	d results from	m included studi	ies (v	alues use	d in me	ta-anal	ysis ap	opear	in <i>bold</i>	italics; all are OR unless otl	nerwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Braymiller (2020)	wheezing	Southern California Happines s and Health Study	2396	A	2018- 2019	с	с	N	1	М	Used ecigs >= 3 of past 30 days vs never: <i>Wheeze: 0.85 (0.54 -</i> <i>1.35)</i> Shortness of breath: 0.96 (0.64 - 1.42) Bronchitis symptoms: 0.96 (0.63 - 1.46)				Table 3, full adjustm ent	Results controlled for cigarette smoking but smoking results not presented. Also reports 1-2 d in past 30 days; past 6 mo but not past 30 days, lifetime but not in past 6 mo.
Brunette (2023)	Incident asthma in people without COPD	PATH	10,267	A	2014- 2017	С	L	Ν	2	Μ	Current e-cig vs. non- current=1.12 (0.50 - 2.51)	Current cigarette vs. non- current=0.99 (0.53 - 1.86)			Table 3	Adjusted risk ratio Use longitudinal results rather than cross-sectional results at baseline. Also present regression analysis for Asthma Control Test (ACT). Did complete case analysis, with multiple imputation as a sensitivity analysis. MI results were similar to complete case analysis."

Table S2. Ch	aracteristics and	d results from	m included studi	ies (v	alues use	d in me	ta-anal	lysis ap	pear i	n <i>bold</i>	italics; all are OR unless ot	nerwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Chaffee (2021a)	Adverse respiratory symptoms: bronchitis, asthma , and shortness of breath (age 13-21)	Pooled data from 4 ongoing studies	10483	Y	2018- 2020	С	С	NC	1	М	Risk for Asthma 6-30 days vs. never= 1.36 (0.95-1.95) 1-5 days vs. never = 1.27 $(0.91 - 1.77)$ ever vs. never = 0.99 $(0.85 - 1.15)$ Risk for Bronchitis 6-30 days vs. never = 1.56 $(1.37 - 1.77)$ 1-5 days vs. never = 1.11 $(0.94 - 1.31)$ ever vs. never = 1.07 $(0.93 - 1.22)$ Risk for Shortness of Breath: 6-30 days vs. never = 1.27 $(0.95 - 1.17)$ ever vs. never = 1.28) 1-5 days vs. never = 1.27 $(0.95 - 1.17)$ ever vs. never = 1.08 $(0.93 - 1.26)$				Figure 1	
Cho (2016)	Asthma (10th-12th graders; Korea)	KYRBS	35904	Y	2014	С	С	N	1	В	<i>current vs. never</i> = 2.77 (1.31 - 5.85) former vs. never = 0.96 (0.42 - 2.19)	Multivariate: <i>current vs. never</i> = 2.77 (1.31 - 5.85) former vs. never = 0.96 (0.42 - 2.19) Stratified: <i>Current ecig vs never ecig</i> <i>among never smokers</i> 2.74 (1.30 - 5.78)	DU vs. sole smokers = 1.30 (0.86 - 1.96)		Table 5- 6	
Choi (2016)	Asthma (9th-12th graders)	Pooled data from 4 ongoing studies	36085	Y	2012	С	с	NC	1	М	Risk for asthma attack: <i>current (y/n)= 1.78 (1.20</i> - 2.64)				Figure 1	

Table S2. Ch	aracteristics an	d results from	n included studi	es (v	alues used	d in me	ta-anal	ysis ap	opear	in <i>bold</i>	italics; all are OR unless ot	herwise noted)		-	•	
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Chung (2020)	Asthma (age 13-18, Korea)	KYRBS	60040	Y	2018	С	С	NC	1	S	Asthma na Allergic Rhinitis Current ecig never cig vs nothing: 1.0 (0.4 - 2.2)	Asthma Current cig vs never cig never ecig: 1.6 (1.1 - 2.2) Allergic rhinitis Current cig vs never cig never ecig: 1.3 (1.1 - 1.6)	Asthma Current dual vs never ecig never cig: 1.2 (0.80 - 2.0) Allergic rhinitis Current dual use vs never cig never ecig: 1.6 (1.2 - 2.2)		Table 4 (asthma) and Table 3 (allergic rhinitis) Model 2 results Data for never HTP users	Report all combinations of current and former use. Also report HTP results
Cordova (2022)	Asthma	PATH	26072	A	2013- 2018	С	L	N	6	S	<i>Current ENDS vs never:</i> <i>Asthma: 0.8 (0.6 - 1.0)</i> Bronchitis: 0.8 (0.5 - 1.6)	<i>Current cig vs never:</i> <i>Asthma: 0.8 (0.7 - 0.9)</i> Bronchitis: (1.7 (1.3 - 2.2)	<i>Current ENDS plus cig vs never:</i> <i>Asthma: 0.8 (0.6 - 1.0)</i> Bronchitis: 2.3 (1.6 - 3.5)	Current ENDS only vs never use among never smokers: Asthma: 0.8 (0.6 - 1.0) Bronchitis: 0.8 (0.5 - 1.6)	Table 2	Used extremely conservative Bonferroni correction when interpreting results (Required p<.0017=.05/30 to call something significant; 30 = 6 models x 5 parameters). Polyproduct users considered a separate group.
Han (2020)	Asthma (9th-12th graders)	YRBSS	21532	Y	2015, 2017	С	С	N	2	М	In model including ecigs, cigs, marijuana ≥10 days/mo cigs vs none:1.31 (1.11 - 1.54) <10 days/mo vs none: 1.13 (0.97 - 1.31) In model just including ecigs ≥10 days/mo cigs vs none:1.25 (1.09 - 1.45) <10 days/mo vs none: 125 (1.09 - 1.45)	In model including ecigs, cigs, marijuana ≥10 days/mo cigs vs none:1.27 (1.00 - 1.61) <10 days/mo vs none: 1.03 (0.85 - 1.25) In model just including cigs ≥10 days/mo cigs vs none: 1.65 (1.31 - 2.08) <10 days/mo vs none: 124 (1.05 - 1.47)			Table 1 (Model 4)	Multivariate model (Model 4) include ecigs and cigs in the same model (as well as marijuana) so e-cig OR is also OR for dual use vs cigs.

Table S2. Ch	aracteristics an	d results from	m included studi	ies (v	alues used	d in me	ta-anal	ysis ap	pear	in <i>bold</i>	italics; all are OR unless ot	herwise noted)			-	
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Kim (2017)	Asthma (age 12-18)	KYBWS	216056	Y	2011- 2013	С	с	NC	1	М	current (yes vs. no)= 1.13 (1.01 - 1.26)	≥20 days/month = 1.57 (1.38 – 1.77) 6–19 day/month = 1.32 (1.08 – 1.61) 1–5 days/month = 1.39 (1.20 – 1.62)			Table 3 (Model 3)	
Lee (2023)	Asthma	NHIS	218911	А	2016- 2019	С	с	NC	1	В	Current e-cig vs. non- current: Asthma attack: 1.22 (1.04 - 1.43) ER visit due to asthma: 1.14 (0.85 - 1.54)	Current cig smokers vs. never smoker: Asthma attack: 1.15 (1.05 - 1.26) ER visit due to asthma: 1.13 (0.96 - 1.34)	Ecig risk among current smokers: Asthma attack: 1.11 (0.89 - 1.39) ER visit for asthma: 1.24 (0.85 - 1.80)	Ecig risk among never smokers: Asthma attack: 1.96 (1.34 - 2.87) ER visit for asthma: 1.73 (0.83 - 3.63)	Tables 2, 4 and 5	Also report risks for former smokers. Including history of COPD might bias results toward null.
Li (2020)	Wheezing	PATH	28171	А	2014- 2015	С	с	NC	1	S	current vapers vs nonusers: 1.68 (1.32 – 2.14) Current vapers vs. current smokers: 0.61 (0.48 – 0.77) Current vapers who were ex-Smokers vs. Ex- smokers: 1.54 (1.20 - 1.98)	current smokers vs nonusers: 2.75 (2.47 - 3.06) current smokers vs never smokers: 3.33 (2.87 - 3.85) Ex-smokers vs. Never- Smokers: 1.43 (1.26 - 1.63)	dual users vs nonusers: 2.83 (2.37 - 3.38) dual users vs current smokers: 1.03 (0.88 – 1.20)	Current vapers who never smoked vs. Never-Smokers: 1.49 (0.84 - 2.67)	Table 2 and Table 3	The nonusers group was defined as adult respondents who has both "no" values in the current established cigarette smoker variable and the current established e- cigarette user variable.
Mattingly (2023)	Incident asthma	PATH	9141	Y	2013- 2019	С	L	Ν	3	S	Current vs never: 1.50 (0.92 - 2.44)	Current vs never: 1.71 (1.11 - 2.64)	Current vs never: 1.23 (0.62 - 2.43)		Table 3	HR lagged one wave Excluded youth with asthma at baseline Due to sample size limitations, collapsed dual cigarette and ENDS and dual ENDS and OC categories to represent dual combustibles and ENDS use Dividing dual use into so many categories may have diluted e- cigarette effect

Table S2. Ch	aracteristics and	d results from	m included studi	ies (v	alues use	d in me	ta-anal	ysis a	ppear	in <i>bol</i> a	<i>italics</i> ; all are OR unless ot	nerwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
McConnell (2017)	Wheezing (high school students)	Southern California Children's Health Study	2086	Y	2014	С	С	Ν	1	В	Risk for wheeze: current vs. never= 1.24 (0.78 - 1.98) Risk for bronchitis: current vs. never= 1.41 (0.92 - 2.17) former vs. never = 1.71 (1.20 - 2.43) 1-2 days vs. never = 1.37 (0.79 - 2.37) >= 3 days vs. never= 1.64 (0.88 - 3.05)			wheeze: among never smokers: current vs. never ENDS=1.52 (0.89 - 2.61) Bronchitis: among never smokers: current vs. never ENDS=1.52 (0.89 - 2.61) former vs. never ENDS= 1.70 (1.11 - 2.59)	Wheeze: Figure 4 and text Bronchiti s: Figure 1-3 Table E1	
Osei (2019b)	Asthma	BRFSS	402822	А	2016, 2017	с	с	N	5	М	current vs. never = 1.39 (1.15 - 1.68) among never-smokers				text	
Parekh (2020b)	Asthma (women age 18–44)	BRFSS	131965	A	2016- 2017	С	С	N	5	S	Current e-cigarette users with history of combustible cigarette smoking vs never users of anything: 1.33 (0.95 – 1.86) Current e-cigarette users without history of combustible cigarette smoking vs never users of anything = 1.74 (1.29 – 2.35)	Current combustible cigarette smokers without history of e-cigarette use vs never users of anything: 1.49 (1.25 – 1.77)	Current dual users (e- cigarette + combustible cigarette) vs never users of anything: 2.11 (1.72 – 2.59)	Current e-cigarette users without history of combustible cigarette smoking vs never users of anything: 1.74 (1.29 – 2.35) Former e-cigarette users without history of combustible cigarette smoking vs never users of anything: 1.14 (0.98 – 1.32)	Table 4	
Patel (2023)	incident asthma	PATH	9141	1. 0	2013- 2019	0	1	0	3	2	1.25 (0.77-2.04)	1.68 (1.21-2.32)	1.54 (0.92-2.57)	1.02	Table 4	Report Hazard Ratio (HR)

Table S2. Cl	naracteristics and	d results from	m included studi	ies (v	alues use	d in me	ta-anal	lysis ap	opear	in <i>bold</i>	italics; all are OR unless ot	herwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Perez (2019a)	Asthma	BRFSS	373,860	A	2016- 2017	E	С	N	5	S	Among never smokers: <i>Current ecig user: 1.36</i> <i>(1.11 - 1.68)</i> Daily e-cig vs never: 1.81 (1.23 - 2.66) Someday e-cig vs never: 1.26 (0.99 - 1.60) Former ecig vs never: 1.11 (1.00 - 1.23)				Text and Table 2	Never smokers
Reddy (2021)	Wheezing or cough (age 12+)	РАТН	20882	Y	2015- 2018	С	L	NC	6	S	Daily vs. someday= 0.88 (0.52 – 1.50) sole ENDS vs. noncurrent use= 1.17 (0.79 - 1.74)	sole smokers vs. noncurrent use=1.78 (1.56 - 2.03) Daily vs. someday=1.81 (1.46 - 2.26)	DU vs. none current use= 222 (1.79 - 2.75) DU vs. sole cig= 1.24 (1.00 - 1.55). DU vs. sole ENDS= 1.90 (1.23 - 2.93)	sole ENDS vs. noncurrent use= 1.17 (0.79 - 1.74)	Table 2	
Sargent (2022)	Asthma (adults without COPD)	PATH	19295	A	2014- 2016	С	С	N	3	S	Cross-sectional association (Tab 2): Sole ENDS vs. never=1.05 (0.67 - 1.63); ORs were attenuated by adjustment for cigarette pack-years from unadjusted OR=1.53 (0.98 - 2.40) to adjusted OR=1.05 (0.67 - 1.63); There was also an increase in respiratory symptoms with higher intensity of e-cigarette use, but the trend did not reach statistical significance (p = 0.12) Longitudinal association (Tab 3): Sole ENDS vs. never= 1.58 (0.84 - 2.96)	Cross-sectional association (Tab 2): Sole cig vs. never=2.34 (1.92 - 2.85) There was a significant linear increase in % with functionally- important respiratory symptoms (at a cutoff of ≥3) with higher intensity of smoking. Each additional 5 pack-years: aOR= 1.13 (1.09 - 1.16) Longitudinal association (Tab 3): Sole cig vs. never= 2.80 (2.08 - 3.76)	Cross-sectional association (Tab 2): DU vs. never= 2.13 (1.64, 2.77) post hoc testing indicated that risk ratios for dual use of cigarettes+e- cigarettes were never different compared to exclusive cigarette use Longitudinal association (Tab 3): Dual use vs. never= 2.64 (1.88 - 3.70)	Sole cig vs. never=2.34 (1.92 - 2.85)	Table 2	Relative risk There were many types of analyses for other outcomes in Tab 3-4. This study contrasts with increased risk of dual use in the analyses of PATH data reported by Reddy et al.

Table S2. Ch	aracteristics an	d results from	n included studi	es (v	alues use	d in me	ta-ana	lysis a	ppear	in <i>bol</i> a	italics; all are OR unless ot	herwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current		Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Schneller (2020)	Wheezing	PATH	28,082	A	2015- 2016	С	С	NC	3	S	Wheezing: 1.44 (1.01 - 2.06) Speech limited by wheezing: 1.44 (0.73 - 2.83) Wheezy during exercise: 1.04 (0.73 - 1.48)	Wheezing: 3.93 (3.45 - 4.49) Speech limited by wheezing: 2.17 (1.08 - 2.80) Wheezy during exercise: 1.04 2.80 (2.37 - 3.32)	Wheezing: 1.52 (0.53- 4.32) Speech limited by wheezing: 0.63 (0.04 - 10.31) Wheezy during exercise: 2.32 (0.53 - 10.04)		Figure 1 and Table 1	Fact that asthma is a covariate may over- correct model and bias results toward null. Also reported sleep disturbed by wheezing, but divided based on how many nights per week.
Schweitzer (2017)	Asthma (9th-12th graders)	Hawaii YRBSS	6089	Y	2015	С	с	NC	1	м	Risk for current asthma (vs. never have asthma) <i>current (y/n) =1.48 (1.24</i> - 1.78) ever (y/n)= 1.22 (1.01 - 1.47)	Risk for current asthma (vs. never have asthma) <i>current (y/n) =1.23 (0.92 -</i> <i>1.64)</i> ever (y/n)= 1.25 (1.05 - 1.54)			Table 3	
Sompa (2022)	Wheezing (age 22-25; Sweden)	Swedish BAMPSE	2270	A	2018- 2020	С	с	NC	1	s	Sole e-cig current use vs. non-current users of ecig-cig-snus= 1.2 (0.3 - 3.8)	Current sole smoking vs. non-current users of ecig-cig- snus= 1.6 (1.2 - 2.2)	Dual use ecigs+cigs vs. non-current users of ecig-cig-snus: 3.6 (1.4 - 9.4)		Table 4	Also considered snus and other tobacco products. Those results and dual use with those products is not included.
Stevens (2022)	Functionally important respiratory symptoms	PATH	3899	Y	2016- 2018	с	L	N	6	S	Current e-cig use among never combustible tobacco users: 0.86 (0.32 - 2.32)			Sole e-cig use among never combustible tobacco users: 0.86 (0.32-2.32)	Table 2	Require presence of two symptoms for "yes". Also report results among ever combustible tobacco product users.
Tackett (2020)	Wheezing (age 12-17; no asthma at baseline)	PATH	7049	Y	2015- 2018	С	L	NC	6	М	Ecig use within past vs no ecig use in the past year or never use: Past 30 d 1.35 (0.63 - 2.88) Past 7 d 0.74 (0.28 - 1.97) Pat year 1.37 (0.91 - 2.05)	Combustible tobacco use in past 30 days vs not: 1.21 (0.65 - 2.25) combustible tob included cigarettes, traditional cigars, cigarillos, filtered cigars, pipes, hookahs, bidis, and kreteks			Table 2	Use of e-cigarettes was assessed at wave 3. Categories are mutually exclusive.

Table S2. Ch	aracteristics and	d results from	m included studi	ies (v	alues used	d in me	ta-anal	lysis a	opear	in <i>bold</i>	italics; all are OR unless ot	nerwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Tackett (2023)	wheeze, bronchitic symptoms, shortness of breath	Southern California Children's Health Study	2094	1	2014- 2018	0	0	0	1	1	Concurrent wave e-cig use (lag 0): Wheeze: 1.41 (0.99-2.01) Bronchitic symptoms: 1.55 (1.18-2.05) Shortness of breath: 1.48 (1.01-2.18) Prior wave e-cig use (lag 1): Wheeze: 1.77 (1.14-2.74) Bronchitic symptoms: 1.23 (0.86-1.74) Shortness of breath: 1.41 (0.96-2.09)			E-cig use with no past 30 day cig or cannabis use (lag 0): Wheeze: 2.92 (0.85- 10.10) Bronchitic symptoms: 1.86 (0.83-4.19) Shortness of breath: 1.53 (0.65-3.63)	Table 3 (Model 2, lag 0) and 4 (No past 30 day cig or cannabis use, lag 0)	Used lag 0 results because immediate irritating effects of e- cigs probably important; some may have stopped or started between waves, which would create misclassification errors. Selected bronchitis at random from among three possibilities. Authors conducted several sensitivity analyses
Tanski (2022)	Wheezing or cough (age 12-24)	PATH	21054	Y	2016- 2017	С	С	N	2	М	Current noncombustible use only vs never use of anything: 0.87 (0.67 - 1.13) Daily use vs. never use=1.25 (0.80 - 1.96)	Current combustible use only vs never use of anything: 1.52 (1.29 - 1.80) Daily use vs. never use=2.80 (2.25 - 3.47)			Table 2 Model 1 Table 2 Model 2	Treated diagnosis with asthma as a covariate, which may have over-corrected results
To (2023)	Asthma	ссня	2700	A	2015- 2018	С	С	NC	1	Μ	Current e-cig vs non- current: 1.21 (0.95 - 1.54)	Current cigarette vs. non- current: 0.96 (0.73 - 1.27)			Table 3	Analyses included 2,700 matched CCHS participants, 505 (2.4% of 20,725 participants) EC users propensity score matched to 2,195 nonusers. Also looked at interactions with sex and several other variables

Table S2. Cl	haracteristics and	d results from	m included studi	ies (v	alues used	d in me	ta-anal	ysis ap	pear	in <i>bold</i>	italics; all are OR unless of	nerwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Tran (2020)	Asthma	BRFSS	186,036	А	2016- 2018	С	С	NC	2	Μ	Every day e-cig: 1.04 (0.93 - 1.15) Someday e-cig: 1.18 (1.10 - 1.27)		Every day e-cig/ Smokes every day 1.41 (1.23 - 1.61) Some days e-cig/ Smokes every day 2.01(1.86 - 2.16) Every day e-cig/ Smokes some days 3.64(3.17 - 4.17) Some days e-cig/ Smokes some days 2.73 (2.52 - 2.97) Every day e-cig/ Former smoker 7.20 (6.42 - 8.06) Some days e-cig// Former smoker 1.17 (1.07 - 1.27)		Table 3	
Varella (2022)	Asthma	BRFSS	18079	A	2017	с	С	N	5	Μ	Current e-cig user vs never user: Daily: 1.41 (0.96 - 2.08) Some days: 1.49 (1.06 - 2.11)	Current smoker vs never smoker: 1.99 (1.62 - 2.44)			Table 2	Include asthma and COPD history likely biases result toward null. Also data on former ecig users and former smokers
Walker (2021)	Asthma	BRFSS	2387	A	2016- 2017	С	с	NC	5	М	Current ecig vs noncurrent: 1.06 (0.50 - 2.21)	Current smoker vs not: 1.13 (0.69 - 1.84)			Table 2	Kentucky BRFSS
Wang (2016)	Cough or phlegm (adolescents in Hong Kong)	Chinese adolescen ts in Hong Kong	45128	Y	2012- 2013	С	С	NC	1	В	Multivariate <i>current (y/n)</i> = 1.28 (1.06 - 1.56) Stratified among ever smoker: 1.39 (1.14 - 1.70) <i>among former smoker:</i> 1.40 (1.02 - 1.91) among experimental smoker: 1.09 (0.66 - 1.80)		Stratified DU vs. sole smoker = 1.15 (0.81-1.62)	Stratified sole ENDS vs. never tob user = 2.06 (1.24 - 3.42)	Table (no number) aOR for ENDS reported by smoking status	

Table S2. Ch	aracteristics and	d results from	m included studi	es (v	alues used	d in me	ta-anal	ysis ap	opear	in <i>bold</i>	italics; all are OR unless ot	nerwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Williams (2023)	asthma	California Student Tobacco Survey	113,922	1	2019- 2020	0	0	0	1	2	1.12 (0.97-1.28)	0.79 (0.43-1.45)	0.68 (0.35-1.32)	E-cig: 1.12 (0.97- <i>1.28)</i> Cig: 0.79 (0.43-1.45)	Table 3	Multinomial regression including all combinations of e- cigarette, cigarette and cannabis use. Only odds of recent asthma associated with e-cigarette only and dual (e- cigarette+cigarette) extracted
Wills (2019)	Asthma	Hawaii BRFSS	8087	А	2016	С	С	NC	2	S	<i>current (y/n)=</i> 1.27 (0.96 – 1.67) <i>among total</i> <i>sample</i> current (y/n)=1.33 (1.00 - 1.77) among nonsmokers current (y/n)= 0.92 (0.73 - 1.15) among smokers	current (y/n) = 1.27 (1.10 – 1.47) among overall sample current cig vs. current ENDS=1.00 (0.74 - 1.35)	DU vs. neither = 1.26 (1.04 - 1.53) DU vs. sole cig = 0.99 (0.80 - 1.22) DU vs. sole ENDs =1.00 (0.73 - 1.35)		Table 2	
Wills (2020)	Asthma (9th-12th graders)	YRBSS	14765	Y	2017	E	С	NC	2	В	current ENDS (y/n, Tab 3)= 1.30 (1.10 - 1.53) sole ENDS vs. neither (Tab 4)=1.29 (1.07 - 1.55) ever (y/n)=1.16 (1.01 - 1.33)	current Cig (y/n)= 1.24 (1.03 - 1.51) Sole cig vs. neither=1.23 (0.92 - 1.64) ever (y/n)= 1.01 (0.81 - 1.25)	Current vs. neither= 1.62 (1.32 - 1.99) ever vs. neither = 1.13 (0.97 - 1.31) DU vs. sole Cig=1.32 (0.95 - 1.84)	sole ENDS. vs. sole Cig=1.06 (0.76 - 1.46)	Tables 3-4 and text	
Wills (2022)	Asthma	BRFSS	116,585	A	2020	С	с	Z	1	Μ	Current daily e-cig vs never ecig or cig (Tab 3): 1.20 (1.06 - 1.35)	Current daily cig vs never ecig or cig (Tab 3): 1.35 (1.27 - 1.44)		Current daily ecig vs nothing among nonsmokers: 1.48 (1.14 - 1.90)	Tables 3 and 5A	Table 5B uses ever smoking, not current smoking, so could not be used to get dual use risk.
Xie (2020b)	Incident asthma (no respiratory conditions at baseline)	PATH	21618	А	2013- 2018	С	L	N	6	М	<i>current vs. never: IRR=</i> 1.32 (1.01 - 1.72) for <i>asthma</i> ever vs. never=1.24 (1.01 - 1.53) former vs. never= 1.19 (0.95 - 1.50)				Table 2 (Model d; fully adjusted model)	There were other analyses restricted among health participants in Tab 3-4

Table S2. Ch	aracteristics an	d results from	n included studi	ies (v	alues used	d in me	ta-anal	ysis ap	pear	in <i>bold</i>	italics; all are OR unless ot	herwise noted)		•		
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Xie (2022)	wheezing or cough (age 18-24; no respiratory disease at baseline)	РАТН	6378	A	2014- 2019	С	L	NC	3	В	Among the total sample: <i>current vs. never=1.32</i> (1.06 - 1.65) former vs. never=1.20 (1.04 - 1.39) Among never smokers: <i>current vs. never= 1.86</i> (1.35 - 2.58) former vs. never= 1.22 (1.00 - 1.49)	sole cig vs. none=2.07 (1.75 – 2.46)	DU vs. none current use of both= 1.88 (1.41 – 2.51) DU vs. sole cig= 0.91 (0.67 – 1.23)	sole ENDS vs. none= 1.62 (1.23 – 2.12) sole cig vs. none=2.07 (1.75 – 2.46) sole ENDS vs. sole cig= 0.78 (0.58 – 1.05)	Tables 2-3 Figure 2A	
COPD/respin	atory		1	, , ,							Multingui-1- 84- 1-1			1		
Antwi (2022)	COPD (no asthma history)	BRFSS	177209	A	2018	E	С	Ν	2	В	Multivariate Model ecig use controlling for cig use vs never ENDS use: Daily user 1.53 (1.11 – 2.03) Some days 1.43 (1.13 – 1.80) Former user 1.46 (1.28 – 1.67) Among former smokers: 1.90 (1.25-2.88)	Multivariate model Current smokers vs never controlling for ecig use: 4.75 (4.11 - 5.49)	Stratified Daily ecig vs never among current smokers: 0.99 (0.67 – 1.46) Some day ecig vs never among current smokers: 1,22 (0.92 – 1.61)	Stratified Among never smokers: Daily ecig use vs never: 3.17 (1.04 – 9.63) Some days vs never 1.61 (0.87 – 3.09) Former vs never: 1.55 (1.01 – 2.38)	Tables 2 and 3	
Barrameda (2021)	COPD, emphysema, or chronic bronchitis	BRFSS	459098	A	2016	E	С	Ν	1	В	Single multivariable model including ecigs and cigs Every day vs never: 1.83 (1.59 - 2.10) Some-day vs never: 2.33 (2.07 - 2.62) Former vs never: 1.92 (1.82 - 2.03) Among former smokers Every day vs never: 1.46 (1.23-1.88) Some-day vs never: 2.05 (1.42 - 2.94) Former vs never: 2.05 (1.78 - 2.37)		Among current smokers <i>Every day ecig vs never:</i> 1.47 (1.13-1.92) Some-day vs never: 1.82 (1.56 - 2.14) Former vs never: 1.65 (1.48 - 1.84)	Among never smokers Every day vs never: 4.36 (1.76 - 10.77) Some-day vs never: 1.27 (0.77 - 2.08) Former vs never: 1.58 (1.24 - 2.02)	Tab 3	Table 2 presents multivariate model including ecigs and cigs in the same model, so ecig effect is also marginal effect of ecigs over cigs, i.e., dual use. In addition, Table 3 includes results stratified by cig use so ecig risks among cig smokers is also a direct estimate of dual use risk

Table S2. Ch	naracteristics an	d results from	n included studi	ies (v	values use	d in me	ta-anal	lysis a	ppear	in <i>bold</i>	italics; all are OR unless ot	herwise noted)			-	
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Bhatta (2020)	Incident COPD	PATH	23760	A	2013- 2016	с	L	NC	1	М	Risk at Wave 2 current vs, never = 1.44 (0.79 - 2.62) former vs. never = 1.82 (1.23 - 2.69) Risk at Wave 3 current vs, never = 1.41 (0.86 - 2.33)	Risk at Wave 2 current vs. never=5.79 (1.64 - 20.44) former vs. never=1.47 (0.42 - 5.20) Risk at Wave 3 current vs. never=14.59 (5.34 - 39.90)			Appendi x Table 6	
Bircan (2021)	COPD	BRFSS	8736	A	2016- 2018	E	с	N	2	S	Current vs never ecigs (among never smokers) COPD (OR=1.44; 95% CI: 1.42 - 1.46) ACOS (OR=2.27; 95% CI: 2.23 - 2.31)				Figure 3	All are never smokers
Cook (2023b)	Incident COPD	PATH	9861	A	2013- 2019	с	L	N	S	М	Current vs. never e-cig: 1.1 (0.78 - 1.56)	<i>Current vs. never smoking:</i> 1.63 (1.16 - 2.27) Former smoking vs. never smoking: 0.85 (0.59 - 1.23)			Table 3	Hazard ratio Independent variable is ENDS use, not specifically e- cigarettes. People with existing COPD at baseline excluded
Cordova (2022)	Incident COPD	PATH	26072	A	2013- 2018	с	L	N	2	S	Current ENDS vs never: COPD: 6.5 (3.7 - 11.5)	Current cig vs never: COPD: 6.1 (4.0 - 9.1)	Current ENDS plus cig vs never: COPD: 5.4 (3.4 - 8.7)	Current ENDS only vs never use among never smokers: COPD: 6.5 (3.7 - 11.5)	Table 2	Used extremely conservative Bonferroni correction when interpreting results (Required p<.0017=.05/30 to call something significant; 30 = 6 models x 5 parameters). Polyproduct users considered a separate group

Table S2. Ch	aracteristics and	d results fror	n included studi	es (v	alues use	d in me	ta-anal	ysis ap	opear	in <i>bold</i>	italics; all are OR unless ot	herwise noted)		-	•	
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%CI)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Giovanni (2020)	Chronic respiratory symptoms: daily cough, sputum production, or breathlessnes s	BRFSS	87,067	A	2017	с	С	NC	4	S	Prevalence ratio Age 18-35: 1.36 (1.08 - 1.70) Age 36-54: 1.16 (0.67 - 2.01) Age >=55: 1.00 (0.69 - 1.46) Among former smokers: 0.89 (0.57-1.40)		Age 18-35: 1.16 (0.99 - 1.36) Age 36-54: 1.03 (0.91 - 1.17) Age >=55: 0.98 (0.89 - 1.09)		Table 2	Prevalence ratio Including cardiac and respiratory disease as covariates may over- corrected results Also reported results for remote and recent former smokers.
Goldberg Scott (2023)	influenza, pneumonia	Kaiser Permanen te Research Bank	96,148	0	2015- 2019	0	1	1	1	1	Longitudinal: Influenza: 0.96 (0.71- 1.31) Pneumonia: 1.02 (0.74- 1.40) Additional cross-sectional: COPD: 2.16 (1.77-2.63) Asthma: 0.94 (0.78-1.14)				Table 3 (longitud inal) and Table 2 (cross- sectional)	Hazard ratios (HR) for longitudinal results OR for cross-sectional results Longitudinal results used in meta- analysis. Cross sectional results (based on larger sample sizes) also reported (Table 2). People with history of heart attack, stroke or cancer prior to survey excluded.
Hedman (2018)	Cough, sputum production, chronic productive cough, wheeze (Sweden)	Obstructiv e Lung Disease in Northern Sweden study and West Sweden Asthma Study	30272	A	2016	С	С	N	1	S	sole ENDS vs. none=1.46 (0.93 - 2.29) ENS with former smoking vs. none= 1.47 (0.91 - 2.37)	<i>sole smokers vs. none= 2.55</i> <i>(2.36 - 2.77)</i> Former smoker without ENDS vs. non= 1.27 (1.19 - 1.36)	DU vs. none= 4.03 (3.23 - 5.02)		Table 3 and Supplem ent doc	
Kim (2021)	Spirometry- defined COPD (age 40+; Korea)	KNHANE S	12919	А	2013- 2018	С	С	N	1	S		Current sole smokers vs never users of both: 2.26 (1.77 – 2.88) Former smokers vs never smokers: 1.67 (1.31 – 2.12)	Dual users vs never users of both: 2.83 (1.64 – 4.86)		Table 3	

Table S2. Ch	naracteristics an	d results from	n included studi	es (v	alues used	d in me	ta-anal	ysis ap	pear i	n <i>bold</i>	italics; all are OR unless otl	nerwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Osei (2020)	COPD, bronchitis, or emphysema	BRFSS	705159	A	2016- 2017	E	С	Z	4	S	Among never smokers: current vs. never=1.75 (1.25 - 2.45) daily vs. never=2.64 (1.43 - 4.89) occasionally vs. never=1.51 (1.03 - 2.23) Among former smokers: current vs. never= 2.13 (1.82 - 2.50) daily vs. never=2.05 (1.72 - 2.44) occasionally vs. never= 2.30 (1.71 - 3.08)		DU vs. never tob=6.89 (6.29 - 7.55) DU vs. sole cig= 1.66 (1.50 - 1.84) DU with daily vaping vs. sole cig= 1.64 (1.34 - 2.00) DU with occasional vaping vs. sole cig = 1.67 (1.50 - 1.86)		Table 2 and main text	
Parekh (2020b)	COPD (woman age 18-44)	BRFSS	131965	A	2016- 2017	ш	С	Z	4	S	Current e-cigarette users without history of combustible cigarette smoking vs never users of anything: 1.37 (0.71 – 2.63) Former smokers: 2.65 (1.53-4.58) Current e-cigarette users with history of combustible cigarette smoking vs never users of anything: 2.65 (1.53 – 4.58) Former e-cigarette users without history of combustible cigarette smoking vs never users of anything: 1.67 (1.21 – 2.30)	Current combustible cigarette smokers without history of e-cigarette use vs never users of anything: 3.28 (2.62 – 4.12)	Current dual users (e- cigarette + combustible cigarette) vs never users of anything: 5.07 (3.91 – 6.56)		Table 4	

Table S2. Ch	aracteristics and	d results fro	m included studi	es (v	alues used	d in me	ta-analy	/sis ap	opear	in <i>bold</i>	italics; all are OR unless ot	herwise noted)			•	
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Paulin (2022)	Incident COPD	РАТН	13752	А	2013- 2019	E	L	N	1	S	Current ecig use vs nothing: Never tobacco use as reference: Longitudinal: 1.36 (0.55 - 3.39) Cross-sectional at Wave 1: 2.22 (1.44 - 3.42) Exclusive cigarette as reference group: Longitudinal: 0.71 (0.26 - 1.92) Cross-sectional at Wave 1: 0.74 (0.46 - 1.19)	Current cig use vs. nothing: Never tobacco use as reference: Longitudinal: 1.92 (1.29 - 2.86) Cross-sectional at Wave 1: 3.00 (2.37 - 3.80)	Current dual use vs nothing: Never tobacco use as reference: Longitudinal: 13.10 (2.39 - 4.02) Cross-sectional at Wave 1: 1.99 (1.29 - 3.07) Exclusive cigarette as reference group: Longitudinal: 1.03 (0.86 - 1.24) Cross-sectional at Wave 1: 1.04 (0.77 - 3.40)		Tables 3 and 4	Relative risk Longitudinal analysis presented incident COPD at Waves 2-5 among people who did not report COPD at Wave 1. Multivariable model also included other combusted and noncombusted tobacco products and former users
Perez (2019b)	COPD, bronchitis, or emphysema	PATH	3642	A	2013- 2014	E	С	NC	1	Μ	current (y/n)= 1.43 (1.12 - 1.85) in the propensity-matched sample (controlling for pack-years of smoking) current (y/n)=1.47 (1.21 - 1.79) for total sample Daily vs. never=1.59 (1.06 - 2.37), someday vs. never=1.97 (1.55 - 2.49) Former vs. never= 1.73 (1.46 - 2.06)			current ecig (y/n) =2.94 (1.73 – 4.99) for nonsmokers	Table 2 and Main text section 3.2	
Qeadan (2023)	aggregate measure of respiratory disease	PATH	18,893	0	2014- 2018	0	1	0	3	1	Adverse respiratory condition: 1.11 (0.99- 1.23)				Table 3	Adverse respiratory condition: asthma, COPD, chronic bronchitis, emphysema, or other lung or respiratory condition "Dual use" in the paper is dual use of e- cigs and illicit drug (not nicotine cigarette), so was not extracted

Table S2. Ch	naracteristics and	d results from	n included stud	ies (v	alues use	d in me	ta-anal	ysis ap	pear	in <i>bold</i>	italics; all are OR unless otl	nerwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%Cl)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Strong (2018)	COPD, bronchitis, emphysema, asthma	PATH	32320	А	2013- 2014	Е	с	NC	2	М	Sole ENDS vs. non- current users= 1.39 (1.09 – 1.76)	Cig only vs. non-current users= 1.54 (1.43 – 1.66)	DU vs. non-current users= 2.07 (1.71 – 2.51)		Main text section 3.5	
Wills (2019)	COPD	Hawaii BRFSS	8087	A	2016	E	С	NC	1	S	risk for COPD: current (<i>y/n</i>) = 2.58 (1.36 – 4.89) for the total sample ever (y/n)=1.29 (0.94 – 1.77) for smokers	current (y/n)= 2.98 (2.34 – 3.78) for the total sample	DU vs. neither = 3.92 (2.82 - 5.44) DU vs. Cig= 1.32 (0.98 - 1.77) DU vs. ENDS= 1.52 (0.81 - 2.87)	Sole cig vs. none=2.98 (2.34 – 3.78) current ecig vs current cig: 0.86 (0.46 - 1.61) [current Cig vs. current ENDS = 1.16 (0.62 – 2.17)]	Table 3	
Wills (2022)	COPD	BRFSS	117,063	А	2020	E	С	N	1	Μ	Current daily e-cig vs never ecig or cig (Tab 3): 1.44 (1.21 - 1.71)	Current daily cig vs never ecig or cig (Tab 3): 4.60 (4.23 – 5.00)		Current daily ecig vs nothing among nonsmokers: 1.16 (0.57 - 2.36)	Tables 3 and 5A	Table 5B uses ever smoking, not current smoking, so could not be used to get dual use risk. Wills is running the dual use numbers for me and will send.
Xie (2020a)	COPD	BRFSS	887182	А	2016, 2017	E	С	N	4	S	Current ecig who never smoked vs never users of both: 1.47 (1.01 - 2.12) Current ecig who never smoked vs current cig: 0.39 (0.27 - 0.56) Current ecig vs never among ex-smokers: 3.24 (2.78 - 3.78) Current ecig vs cig among ex-smokers: 0.85 (0.73 - 0.99)	Current smokers vs never users: 3.80 (3.58 - 4.02)	Dual users vs never users of both: 4.39 (3.98 - 4.85) Dual users vs current smokers: 1.16 (1.05 - 1.27)		Table 1	Also contains results stratified by age

Table S2. Ch	aracteristics and	d results from	m included studi	ies (v	alues use	d in me	ta-analy	ysis ap	pear	in <i>bold</i>	italics; all are OR unless othe	rwise noted)				
Study	Outcome	Sample	Sample size	Adult or Youth*	Years data collected	Diagnosis: Current † or Ever	Cross-sectional or Longitudinal	Reference use: Never or Non-Current	No. studies of dataset	Model: Multivariate, Stratified, or Both	E-cigarette risk (95%Cl)	Cigarette risk (95%CI)	Dual Use risk	Sole e-cigarette or e- cigarette risk	Where to find reported results	Notes
Xie (2020b)	incident COPD (no respiratory disease at baseline)	PATH	21618	A	2013- 2018	С	L	Ν	3	М	For COPD: current vs. never = 1.57 (1.15-2.13) ever vs. never= 1.62 (1.28 -2.04) former vs. never= 1.66 (1.29 - 2.12) Any respiratory condition for the total sample: current vs. never = 1.31 (1.08 - 1.59) ever vs. never= 1.28 (1.10 -1.48) former vs. never= 1.28 (1.09 - 1.51)			Any respiratory condition among nonsmokers: current ENDS vs. never = 1.35 (0.87 - 2.09) ever ENDS vs. never= 1.37 (1.05 - 1.79) former ENDS vs. never= 1.38 (1.03 - 1.84)	Table 2	Incident rate ratio

Oral disease																
Akinkugbe (2019)	dental health issues, such as cavities, gum disease or dental stains (age 12-17)	PATH	13650	Y	2013- 2014	С	С	NC	1	S	Past year dental problems: Current ecig only vs non- current: 1.11 (0.79 - 1.55) Ever ecig only vs never: 1.12 (0.90 - 1.38) Ever dental problems: Current ecig only vs non- current: 1.27 (0.95 - 1.70)	Past year dental problems: <i>Current cig only vs non- current: 1.50 (1.18-1.90)</i> Ever cig only vs never: 1.34 (1.13 - 1.58) Ever dental problems: Current cig only vs non-current: 1.47 (1.17 - 1.83)	Past year dental problems: Current dual vs non- current:: 1.72 (1.24 - 2.38) Ever dual vs never:1.43 (1.22 - 1.67) Ever dental problems: Current dual vs non-current: 1.59 (1.20 - 2.09)		Tables 4 and 5	
											Ever ecig vs never: 1.28 (1.07 - 1.54)	Ever cig vs never: 1.29 (1.10 - 1.51)	Ever dual vs never: 1.45 (1.24 - 1.68)			
AlQobaly (2022)	Periodontal disease	NHANES	8129	A	2015-6 & 2017-8	E	С	N	1	В	Periodontal disease Multivariate <i>Current vs never: 1.38</i> (0.97 - 1.97) Ever vs never: 1.43 (1.18 - 1.73) <i>Among former smokers:</i> 1.72 (0.76-3.87) Bone loss Multivariate Current v never: 1.80 (1.30 - 2.49) Ever v never: 0.92 (0.65 - 1.29)	Periodontal disease Multivariate Current vs never: 1.72 (1.47 - 2.02) Ever vs. never: 1.43 (1.13 - 1.82) Bone loss Multivariate Current v never: 2.75 (2.17 - 3.48) Ever v never: 1.90 (0.51 - 2.39)	Stratified (among current smokers) Periodontal disease <i>Current ecig (dual) vs</i> <i>never (sole smoking): 1.65</i> <i>(1.03 - 2.64)</i> Bone loss Current ecig (dual) vs. never (sole smoking): 2.41 (1.58 - 3.70) Ever vs never (sole smoking): 1.13 (0.68 - 1.89)	Periodontal disease Stratified (Among never smokers) Current vs never: 0.95 (0.24 - 3.82) Ever vs never: 0.94 (0.48 - 1.42) Bone loss Stratified (Among never smokers) Current vs never: 0.13 (0.01 - 1.30) Ever vs never: 0.80 (0.27 - 2.35)	Tables 2 and 3 (Model 2) and 4 (stratified)	Model 2 contains ecig and smoking (as well as passive smoking) in same model so also is marginal risk of dual use compared to smokers More combinations in paper
Atuegwu (2019b)	Incident periodontal disease (no history of gum disease at baseline)	PATH	18289	A	2013- 2016	С	L	N	1	Μ	Ecig use at all three times vs no ecig use controlling for cig and other tobacco use: Any periodontal disease (either of previous two): 1.58 (1.06 - 2.34) New gum disease: 1.76 (1.12 - 2.76) Bone loss around teeth: 1.67 (1.06 - 2.63)				Table 2	

Chaffee (2021b)	Xerostomia (high school students)	public high school students in rural Northern California	976	Y	2020- 2021	с	с	NC	1	М	Dry mouth <i>Current e-cig use (6-30 days in past 30) vs</i> <i>nonuse: 1.40 (0.69 - 2.84)</i> Current ecig use (1-5 days in past 30) vs nonuse: 1.22 (0.84 - 1.78) <i>Xerostomia</i> Current e-cig use (6-30 days in past 30) vs nonuse: 0.96 (0.90 - 1.01) Current ecig use (1-5 days in past 30) vs nonuse: 1.05 (0.99 - 1.11)	Dry mouth Current use (cig, cigar, hookah): vs nonuse: 1.92 (1.38 - 2.68) Xerostomia Current combustible tob use vs nonuse: 1.13 (0.99 - 1.29)		Table 4	Current combustible tob products included cigarettes, cigars, and/or hookah
Chaffee (2022)	Poor or fair oral health	PATH	24,984	A	2016- 2018	с	с	N	1	S	e-cig only vs never tobacco: Last 12 months: 1.28 (0.93 - 1.75)	Cig only vs never tobacco: 1.76 (1.48 - 2.10)	Dual vs never tobacco: 1.80 (1.46 - 2.23)	Table 5	Many other outcomes reported; selected self-rated oral health because it was most global.
Cho (2017)	Gingival pain and/or bleeding, tongue and/or inside-cheek pain, cracked or broken tooth (age xx, Korea)	KYRBW S	33309	Y	2016	с	С	Ν	1	М	gingival pain and/or bleeding Daily ecig vs never:1.00 (0.72 - 1.41) 1-29 days vs never: 0.88 (0.74 - 1.05) cracked or broken tooth daily ecig vs never: 1.65 (1.19 - 2.27) nondaily vs never: 1.26 (1.06 - 1.51) tongue and/or inside- cheek pain, Daily ecig vs never: 1.54 (1.05 - 2.26) Nondaily vs never: 1.08 (0.88 - 1.33)	gingival pain and/or bleeding Daily cig vs never:0.98 (0.81- 1.18) 1-29 days vs never: 1.14 (0.95 - 1.35) cracked or broken tooth daily cig vs never: 1.33 (1.08 - 1.63) nondaily vs never: 1.13 (0.93 - 1.38) tongue and/or inside-cheek pain, Daily cig vs never: 0.80 (0.62 - 1.02) Nondaily vs never: 1.02 (0.82 - 1.28)		Table 4 (ORs for cigarette s) Tables 5, 6 and 7 (Model 3)	Also data on former ecig users and ecig with/without nicotine (Table 8), not tabulated
Huilgol (2019)	Poor oral health: at least one permanent tooth removed due to non- traumatic cause	BRFSS	456343	A	2016	E	с	NC	1	М	Daily ecig vs nonusers: 1.78 (1.39 – 2.30) Nondaily vs nonuser: 1.08 (0.87 – 1.32)	Current smoking (y/n): 2.231 (2.041 - 2.438)		Table 2	Smoking risk in Fig 2, but to small to read OR. Emailed author to get exact numbers.
Jeong (2020)	Periodontal disease (Korea)	KNHANE S	13551	А	2013- 2015	с	с	N	1	М	E-cigarette vs no tobacco: [both] 2.33 (1.58 - 3.44) * [male] 2.34 (1.52 - 3.59) [female] 2.27 (0.89 - 5.80)	Cigarette vs no tobacco: [both] 1.99 (1.69 - 2.53) * [male] 2.17 (1.76 – 2.68) [female] 1.73 (1.32 – 2.27)		Table 2	Separate male & female results pooled using a fixed effect meta- analysis

Silveira (2022)	Gum disease	PATH	18925	A	2013- 2019	С	L	N	1	М	<i>Current ecig vs. non- current:</i> <i>gum disease: 1.15 (0.89 - 1.47)</i> precancerous oral lesions: 0.56 (0.26 - 1.20) bone loss around teeth: 0.95 (0.69 - 1.31) bleeding after brushing or flossing: 1.27 (1.04 - 1.54) loose teeth: 1.01 (0.75 - 1.35) one or more teeth removed: 1.03 (0.80 - 1.33)	Current cig smoker vs non- current: gum disease: 1.33 (1.11 - 1.60) precancerous lesions: 1.47 (0.87 -2.48) bone loss around teeth: 0.99 (0.77 - 1.27) bleeding after brushing or flossing: 0.94 (0.81 - 1.10) loose teeth: 1.35 (1.05 - 1.75) one or more teeth removed: 1.43 (1.18 - 1.74)		Tables 3 and 4	Hazard ratio Sample included people without oral disease at Wave 1 or 3. Including cigarette pack years as independent variable might dilute estimated cigarette effect.
Vora (2019)	Gum disease	PATH	32300	A	2013- 2014	E	с	N	2	S	Gum disease diagnosis current ecig only vs never tobacco: 2.9 (1.9 - 4.5) Gum disease treatment current ecig only vs never tobacco: 2.3 (1.3 - 4.1) Pre-cancerous lesion diagnosis: current ecig only vs never tobacco: 2.4 (0.5 - 12.4)	Gum disease diagnosis current cig only vs never tobacco: 2.2 (1.9 - 2.6) Gum disease treatment current cig only vs never tobacco: 1.5 (1.3 - 1.7) Pre-cancerous lesion diagnosis: current cig only vs never tobacco: 2.0 (0.9 - 4.1)	Gum disease diagnosis current multiple prod vs never tobacco: 2.8 (2.4 - 3.4) Gum disease treatment current multiple prod vs never tobacco: 1.6 (1.4 - 1.9) Pre-cancerous lesion diagnosis: current multiple prod vs never tobacco: 3.6 (1.7 - 7.7)	Table 4	Other forms of tobacco use also in multivariate model as well as former users. Don't present products used by multiple product users.

Hawkins (2021) Preterm birth PRAMS 57,046 A 2016- 2017 C C C NC 1 S Preterm birth: 1.39 (0.84 - 2.30) small for gestational age: 0.78 (0.48 - 1.27) (2.01 - 2.63) small for gestational age: 1.93 (13.1 - 2.83) small for gestational age: 1.93 (13.1 - 2.83	Other													
		Preterm birth	PRAMS	57,046	А	с	NC	1	S	2.30) small for gestational age:	small for gestational age: 2.30	1.46) small for gestational age:	Table 3	

			1		1				Prevalence ratios			
									Frevalence ratios			
									PRE-TERM BIRTH			
									(N=11,576):			Prevalence ratio
									Overall (controlling for			Flevalence Ialio
									smoking in multivariate			"e-cigarette use
									model):			relative to
									E-cig during pregnancy vs not: 1.09 (0.85 - 1.40)			pregnancy was
									E-cig use before			classified into the
									pregnancy vs not: 0.97			following
									(0.81 - 1.17)			categories: e-
												cigarette use in the 3 months before
									Stratified; smoked during			pregnancy but not
									pregnancy:			during the last 3
									E-cig use before pregnancy vs not: 1.10			months of
									(0.79 - 1.54)			pregnancy, e-
												cigarette use
									Stratified; did not smoke			during the last 3 months of
									during pregnancy:			pregnancy (these
									E-cig during pregnancy	PRETERM BIRTH:		respondents could
									vs not: 1.69 (1.20 - 2.39) E-cig use before	Dual use during		have also used e-
									pregnancy vs not: 0.89	pregnancy vs cigs:		cigarettes before
									(0.72 - 1.10)	0.82 (0.59-1.14)		pregnancy), and
										SGA:		nonuse defined as no e-cigarette use
Regan			2016-						SGA (N=11,288):	Dual use during		in the 3 months
(2021)	Preterm birth PRAMS	79,176 A	2018	С	С	NC	1	В	Overall (controlling for	pregnancy vs cigs: 1.15	Table 2	before
()									smoking in multivariate	(0.89-1.48)		pregnancy or
									model): E-cig during pregnancy vs			during the last 3
									not: 1.22 (0.95 - 1.56)	LBW:		months of
									E-cig use before	Dual use during pregnancy vs cigs: 1.05		pregnancy."
									pregnancy vs not: 0.97	(0.80-1.38)		"We assessed for
									(0.81 - 1.16)	(0.00		possible interaction
									Stratified; did not smoke			between
									during pregnancy:			combustible
									E-cig during pregnancy vs			cigarette smoking
									not: 1.10 (0.65 - 1.86)			during pregnancy and e-cigarette use
									E-cig use before			during pregnancy
									pregnancy vs not: 1.08			by including
					1				(0.86 - 1.36) Stratified; smoked during			combustible
					1				pregnancy:			cigarette smoking
					1				E-cig use before			as an interaction
									pregnancy vs not: 0.82			term in the models
									(0.63 - 1.08)			and performed additional analyses
												stratified by
									LBW (N=13,959): Overall (controlling for			combustible
									smoking in multivariate			cigarette smoking
									model):			during pregnancy."
									E-cig during pregnancy vs			
									not: 1.33 (1.06 - 1.66)			
									E-cig use before			

											pregnancy vs not: 1.08 (0.92 - 1.26) Stratified; smoked during pregnancy: E-cig use before pregnancy vs not: 1.07 (0.81 - 1.41) Stratified; did not smoke during pregnancy: E-cig during pregnancy vs not: 1.88 (1.38 - 2.57)					
Wang (2020)	Preterm birth	PRAMS	31,973	A	2016	с	С	NC	1	S	E-cig use before pregnancy vs not: 1.06 (0.89 - 1.28) Based on last 3 months of pregnancy: <i>Preterm birth: 1.2 (0.5 -</i> 2.7)	Preterm birth: 1.6 (1.2 - 2.0) SGA: 2.4 (1.8 - 2.9)	Preterm birth: 1.3 (0.8 - 2.3) SGA: 2.3 (1.3 - 4.1)		Table 4	Preterm birth outcome selected at random for all three studies that
Wen (2023)	Low gestational weight	PRAMS	176,882	A	2016- 2020	с	С	NC	1	S	SGA: 2.4 (1.0 - 5.7) Current vs non-current e- cig: 0.99 (0.78 - 1.27)	Current cig vs non-current: 1.26 (1.18 - 1.35)	Current dual vs current nonuse: 1.18 (0.96 - 1.64)	Cig vs e-cig: 1.27 (0.99-1.64) so ecig vs cig: 0.79 (0.61 - 1.01) Dual users vs cigarettes: 0.93 (0.75 - 1.15)	Table 4	measured it Exposure based on e-cigarette and cigarette use during last three months of pregnancy The classification of a stratified analysis is based on the structure of Table 4.
McBride (2021)	Did not breastfeed for at least 3 months	PRAMS	42,827	А	2016- 2018	с	С	NC	1	Μ	Prenatal e-cig use vs not: 1.59 (1.12 - 2.50)	Prenatal cig use vs not: 2.04 (1.79 - 2.38)			Table 3	E-cig use in last 3 months or pregnancy. Reported ORs for breastfeeding: inverted ORs to obtain ORs for not breastfeeding (undesirable outcome)
Ebrahimi Kalan (2023)	COVID-19 infection	NHIS	29,482	0	2021	1	0	1	2	2	1.17 (0.92-1.50)	0.67 (0.54-0.82)	2 or more tobacco products: 0.85 (0.63-1.15) [not necessarily e-cigarettes]		Table 3	Disease coded as current because NHIS conducted in 2021 and the COVID-19 epidemic started in the US in 2020.

Gaiha (2020)	COVID diagnosis (age 13-24)	online national survey of adolesce nts and young adults	4351	Y	2020	С	С	N	1	S	current ecigs only vs no cigs no ecigs: 1.91 (0.77 - 4.73)	current cigs vs no cigs no ecigs: 1.53 (0.29 - 8.14)	dual use vs never ecigs never cigs: 6.84 (2.40 - 19.55)		Table 2	
Moyers (2023)	COVID-19 infection	NHIS	28344	0	2021	0	0	0	2	2	1.30 (1.04-1.63)	0.64 (0.55-0.74)	0.77 (0.52-1.14)		Table 2	Disease coded as current because NHIS conducted in 2021 and the COVID-19 epidemic started in the US in 2020.
Goldberg Scott (2023)	ER visit, hospitalization , death	Kaiser Permane nte Researc h Bank	96,148	0	2015- 2019	0	1	1	1	1	Longitudinal ER visit: 1.17 (1.05-1.30) Hospitalization: 1.18 (0.98- 1.43) Death: 1.84 (1.02-3.32)				Table 3 (longitudi nal) and Table 2 (cross- sectional)	Hazard ratios (HR) People with history of heart attack, stroke or cancer prior to survey excluded. Used ER visits because largest number of events in "Other" group
To (2023)	health services use (hospitalizatio n or ER visit)	CCHS	2700	1	2015- 2018	0	0	0	1	2	HSU: 1.73 (1.00-3.00)	HSU: 1.72 (1.29 - 2.29)	HSU: 2.13 (1.53 - 2.98)	HSU: e-cig: 1.73 (1.00-3.00) cig: 1.72 (1.29 - 2.29)	Table 3	Propensity score matching with 5 controls per case Canadian Community Health Survey linked to Discharge Abstract Database National Ambulatory Care Reporting System Also reported all- cause health services utilization (HSU: hospitalization or ER visit) accounting for gender and e-cig x cig interactions as well as main effects.
Zhu (2023)	Obstructive sleep apnea	NHANES	11,248	А	2015- 2018	С	С	NC	1	S	Current vs. non-current: 0.84 (0.52 - 1.37)	Current vs non-current:1.38 (1.17 - 1.63)	Current vs non-current: 1.78 (1.37 - 2.32)		Table 4	01100101

Christian (2023)	sleep duration	Kentucky BRFSS	18,907	0	2016- 2017	0	0	0	1	2	Current ecig, never smoked: 0.99 (0.61-1.60)	Current smoker, never ecig: 1.15 (1.02-1.28)	Current e-cig, current smoker 1.28 (1.08-1.51)	<i>Current ecig, never</i> <i>smoked: 0.99 (0.61- 1.60)</i> Current smoker, never ecig: 1.15 (1.02-1.28)	Table 2	Sleep <7 hours coded as "short" Prevalence odds ratios (POR) using Poisson regression
Wiener (2020)	Sleep disorder	NHANES	2889	А	2015- 2016	С	С	Ν	1	М	Current vs never: 1.82 (1.18 - 2.79)				Table 2 model 2	
Tian (2022)	Arthritis	BRFSS	924,882	А	2016- 2018	E	С	N	1	S	Sole current e-cig vs never among never smokers: 1.25 (1.00 - 1.57)			Current dual use vs current smoker: 1.55 (1.42 - 1.69)	Table 4	
Smith (2023)	atopic dermatitis	NHIS	28,563	0	2021	1	0	0	1	1	1.35 (1.16-1.58)			Among never smokers: 1.61 (1.28- 2.02)	Table 2	
											Current vs never ecig users: 1.43 (0.84 - 2.45)					
Agoons (2021)	Fragility bone fractures	NHANES	5569	А	2017- 2018	E	С	N	1	В	Ever vs never ecig users: 1.46 (1.12 - 1.89)	Current smoker vs never smoker never ecig user 1.63 (1.18 - 2.25)	Dual use vs never smoker never ecig user: 2.41 (1.28 - 4.55)		Tables 2 and 3	Prevalence ratio
											Former ecig vs never users: 1.46 (1.10 - 1.94)					
Goldberg Scott (2023)	Cancer	Kaiser Permane nte Researc h Bank	96,148	0	2015- 2019	0	1	1	1	1	Longitudinal [cross- sectional in brackets]: Any cancer: 0.80 (0.41- 1.55) [0.84; 0.67-1.06] Lung cancer: 1.00 (0.14- 7.42) [2.64; 1.42-4.92]				Table 3 (longitudi nal) and Table 2 (cross- sectional)	Hazard ratios (HR) for longitudinal results OR for cross- sectional results Longitudinal results used in meta- analysis. Cross sectional results (based on larger sample sizes) also reported (Table 2). People with history of heart attack, stroke or cancer prior to survey excluded. Used any cancer because lung cancer based on a single incident case.
Xie (2020c)	Difficulty concentrating	BRFSS	886,603	A	2016- 2017	С	С	NC	1	S	Current ecig who never smoked: 1.96 (1.16 - 3.30) Current ecig among former smokers: 1.94 (1.40 - 2.71)	Current smokers who never used ecigs: 1.49 (1.32 - 1.69)	Current ecig who also currently smoke: 2.07 (1.66 - 2.60)		Table 2	

Han (2023)	Non-alcoholic fatty liver disease	Korea NHANES	7096	A	2016-2020	С	С	Ν	1	S	Current vs never smoker: HSI: 1.22 (1.05 - 1.42) NRS: 2.13 (1.87 - 2.42) KNS: 1.33 (1.14 - 1.55)	1.05 - 1.42) product: 1.87 - 2.42) HSI: 1.47 (1.08 - 1.99)		Table 2	NAFLD defined by Hepatic Steatosis Index (HSI), NAFLD Ridge Score (NRS), and KNHANES NAFLD score (KNS) Excluded people with underlying chronic liver disease Former smokers without history of e- cigarette use excluded to account for the confounding effects of smoking cessation Excluded e- cigarette only users due to small sample size Age differences may explain why dual users, with a greater proportion of young people, appear to have fewer pack-years than cigarette only selected for quantitative meta- analysis
Wang (2022)	Ordered logistic regression on health status (1= excellent, 5=poor)	NHIS and MEPS	109133	A	2015- 2018	С	С	NC	1	S		Current dual use vs never tobacco use: 1.84 (1.64 - 2.06) Current dual use vs current smoking: 1.39 (1.22 - 1.57)	exclusive ecig vs. never tob user = 1.62 (1.18 - 2.23) current sole cig vs never tobacco use: 1.33 (1.22 - 1.44) exclusive ecig vs smoker: 1.22 (0.88 - 1.69)	Commun ication with author	Except for exclusive ecig vs never to user, results obtained from communication with Yingning Wang The paper as published included former smokers/OTP users in dual use group, so was not comparable to other papers. Dr. Wang ran the results using more standard definitions

Hong (2021)Oral human papillomavirus -16 infectionNHANES9266A2013- 2016CCNC1MOral HPV-16: 2.97 (1.25 - 7.06) Any oral HPV: 1.05 (0.69 - 1.58)Oral HPV-16: 1.33 (0.57 - 3.08) Any oral HPV: 1.80 (1.05 - 3.09)Oral HPV-16: 1.33 (0.57 - 3.08) Any oral HPV: 1.80 (1.05 - 3.09)Oral HPV-16: 1.33 (0.57 - 3.08) Any oral HPV: 1.80 (1.05 - 3.09)FranceSmoking and e- cigarette use we not significant, suggesting that the main effect of e- cigarette use or HPV-16 did not differ by concurrent	Nguyen (2023)	impaired vision	Investiga tor survey using Qualtrics	4351	1	2020	0	0	0	1	2	1.14 (0.80-1.61) [inverted from 0.88 (0.62-1.25)]	2.08 (1.23-3.45) [inverted from 0.48 (0.29-0.81)]	1.39 (0.86-2.220 [inverted from 0.72 (0.45-1.16)]	Table 4 (Past 30 day use)	According to email from authors, AOR <1 indicates worse outcomes: 1.1 am completely blind, 2, Very poor, 3. Poor, 4. Fair, 5. Good, 6. Excellent. Answers dichotomized as 1 = Excellent to Fair; and 0 = Poor to Completely Blind. So we inverted reported AORs so that AOR>1 indicates worse outcomes
Bold italicized values used in meta-analysis; other results presented for information	(2021)	papillomavirus -16 infection				2016			NC	1	м	7.06) Any oral HPV: 1.05 (0.69 -	Oral HPV-16: 1.33 (0.57 - 3.08) Any oral HPV: 1.80 (1.05 - 3.09)		Table 1	between current smoking and e- cigarette use were

Table S3. Po	tential co	onfounder	s and risk of bias												
		I	1	I	Potential confo	unders				R	isk of b	ias* (F	ROBINS	-E)	
Study	Age	Sex	Race/ ethnicity	Education, socioeconomic status	ВМІ	other tobacco product use	comorbid conditions	Former smoking†	Confounding	Exposure measurement	Participant selection	Missing data	Outcome measurement	Selection of reported result	Overall
Agoons (2021)	age	Sex	race/ethnicity	education	BMI, physical activity		steroid use, family history of osteoporosis		L	L	L	L	L	L	L
Akinkugbe (2019)	age	sex	race/ethnicity	parental education			diabetes		L	L	L	L	L	L	L
Alnajem (2020)	age	sex				exposure to secondhand smoke and aerosols		S	L	L	L	L	L	L	L
AlQobaly (2022)	age	sex	race/ethnicity	education			diabetes and dental visit	S	L	L	L	L	L	L	L
Alzahrani (2018)	age	sex	race/ethnicity		BMI		hypertension, diabetes mellitus, hypercholesterolemia	С	L	L	L	L	L	L	L
Antwi (2022)	age	sex	race/ethnicity	education, marital status, past month leisure time	BMI, physical activity			S	L	L	L	L	L	L	L
Atuegwu (2019a)	age	sex	race/ethnicity	education, marital status	BMI, exercise	smokeless	diet, alcohol use, asthma, heart disease, hypercholesterolemia, hypertension, tested blood sugar in past 3 years, depression, history of prediabetes		L	L	L	L	L	L	L
Atuegwu (2019b)	age	sex	race/ethnicity	income, education		other tobacco product, secondhand smoke exposure	prescription drug abuse, stomach, duodenal or peptic ulcer, marijuana use, alcohol use, illicit drug abuse		L	L	L	L	L	L	L

Table S3. Po	tential c	onfounder	s and risk of bias	;											
		I	1		Potential confo	unders				R	isk of b	ias* (R	OBINS	-E)	
Study	Age	Sex	Race/ ethnicity	Education, socioeconomic status	BMI	other tobacco product use	comorbid conditions	Former smoking†	Confounding	Exposure measurement	Participant selection	Missing data	Outcome measurement	Selection of reported result	Overall
Barrameda (2021)	age	sex	race/ethnicity	education, annual household income, health insurance, personal physician, metropolitan status, marital status	BMI, exercise	tobacco chewing	alcohol use	С	L	L	L	L	L	L	L
Bayly (2019)	age	sex	race/ethnicity	metropolitan status, housing type		Cigar, hookah, secondhand smoke, secondhand aerosol			L	L	L	L	L	L	L
Berlowitz (2022)	age	sex	race/ethnicity	education	BMI	cigars, cigarillos, pipes, snus, other smokeless tobacco	hypertension, hypercholesterolemia, diabetes, close relative with MI or heart surgery, marijuana use		L	L	L	L	L	L	L
Bhatta (2020)	age	sex	race/ethnicity	poverty level	BMI		hypertension, hypercholesterolemia, diabetes	С	L	L	L	L	L	L	L
Bircan (2021)	age	sex	race/ethnicity	education, marital status, income level, employment status, health insurance coverage, not being able to afford a doctor	BMI, physical activity				L	L	L	L	L	L	L

Table S3. Po	otential co	onfounders	s and risk of bias												$\neg \gamma$
		T		I	Potential confo	unders		1		R	isk of b	ias* (R	ROBINS	-E)	
Study	Age	Sex	Race/ ethnicity	Education, socioeconomic status	ВМІ	other tobacco product use	comorbid conditions	Former smoking†	Confounding	Exposure measurement	Participant selection	Missing data	Outcome measurement	Selection of reported result	Overall
Boyd (2021)	age	sex	race/ethnicity	household income, region			cannabis use, asthma		L	L	L	L	L	L	L
Braymiller (2020)	age	sex	race/ethnicity	overall personal financial situation	BMI		cannabis use		L	L	L	L	L	L	L
Bricknell (2021)	age	sex	race/ethnicity	poverty level	BMI		coronary artery disease, chronic kidney disease, diabetes mellitus	С	L	L	L	L	L	L	L
Brunette (2023)	age	sex	race/ethnicity	education, urbanicity	BMI	cigarette pack years, secondhand smoke exposure, marijuana		с	L	L	L	L	L	L	L
Cai (2023)	age	gender	race/ethnicity	income	BMI	chewing tobacco, snuff, snus			L	L	L	L	L	L	L
Chaffee (2021a)	age	sex	race/ethnicity	personal income	BMI		hypertension, hypercholesterolemia, diabetes, cannabis use		L	L	L	L	L	L	L
Chaffee (2021b)	age	sex	race/ethnicity		physical activity	cigars, hookah, snuff, chewing tobacco, snus, nicotine ¶pouches, nicotine tablets/lozenge	asthma, alcohol use, cannabis use		L	L	L	L	L	L	L
Chaffee (2022)	age	sex	race/ethnicity	educational attainment, income	BMI	cigars, smokeless tobacco, hookah, pipe, secondhand smoke	diabetes, alcohol use, marijuana use		L	L	L	L	L	L	L

Table S3. Po	tential co	onfounders	s and risk of bias												
	-	1	1		Potential confo	unders		1		R	isk of b	ias* (R	OBINS	-E)	1
Study	Age	Sex	Race/ ethnicity	Education, socioeconomic status	BMI	other tobacco product use	comorbid conditions	Former smoking†	Confounding	Exposure measurement	Participant selection	Missing data	Outcome measurement	Selection of reported result	Overall
Cho (2016)	age	sex	race/ethnicity	high school grade, city size, student's economic status, residential type, multi-cultural family status, academic performance	BMI	secondhand smoke exposure, attempt to quit smoking	stress, atopic dermatitis history, allergic rhinitis history, asthma history		L	L	L	L	L	L	L
Cho (2017)	age	sex		school grade, economic status, city size	obesity, vigorous sports activity	attempt to quit smoking, secondhand smoking at home	carbonated drink, overweight status, stress, alcohol use		L	L	L	L	L	L	L
Choi (2016)	age	sex	race/ethnicity	metropolitan status, housing type		exposure to secondhand smoke, positive social norm towards smoking			L	L	L	L	L	L	L
Christian (2023)	age	sex	race/ethnicity	education, income, employment status	BMI		alcohol, number of chronic diseases (coronary heart disease, stroke, current asthma, and chronic obstructive pulmonary disease summed and classified to reflect the number of chronic diseases: none, 1, or ≥ 2)		L	L	L	L	L	L	L
Chung (2020)	age	sex		socioeconomic status, residential area	BMI, regular exercise, sedentary time	exposure to secondhand smoke			L	L	L	L	L	L	L

Table S3. Po	tential co	onfounders	and risk of bias												
		1		[Potential confo	unders		1		Ri	isk of b	ias* (R	ROBINS	-E)	
Study	Age	Sex	Race/ ethnicity	Education, socioeconomic status	ВМІ	other tobacco product use	comorbid conditions	Former smoking†	Confounding	Exposure measurement	Participant selection	Missing data	Outcome measurement	Selection of reported result	Overall
Cook (2023a)	age	sex	race/ethnicity	education, uninsured	BMI	other combustible tobacco use, cigarette pack years	asthma at baseline		L	L	L	L	L	L	L
Cook (2023b)	age	sex	race/ethnicity	household income	BMI	former smoking, cigarette pack- years	family history of heart attack/bypass surgery, diabetes and binge drinking		L	L	L	L	L	L	L
Cordova (2022)	age	sex	race/ethnicity	education, income, marital status		noncombustible tobacco product use, former users of any product	internalizing behavior, externalizing behavior, respiratory disorders (asthma adjusts for COPD and bronchitis), substance use, alcohol,		L	L	L	L	L	L	L
Ebrahimi Kalan (2023)	age	sex, sexual orientati on	race/ethnicity	education, poverty level, employed		cigars, pipe/waterpipe, smokeless	social distancing at work, psychological distress, having >=1 health condition, region		L	L	L	L	L	L	L
El-Shahawy (2022)	age	sexual orientati on	race/ethnicity	educational attainment, income, region	BMI, physical activity	other tobacco product use	diabetes, hypertension, hypercholesterolemia, mental health status		L	L	L	L	L	L	L
Falk (2022)	age	sex			BMI										
Farsalinos (2019)	age	sex	race		BMI		hypertension, hypercholesterolemia, diabetes		L	L	L	L	L	L	L
Gaiha (2020)	age	gender	race/ethnicity	region, mother's education	BMI		complying with county shelter-in-place orders and state percentage of COVID- 19 positive cases		L	L	L	L	L	L	L
Gathright (2019)	age	sex	race/ethnicity	education, income					L	L	L	L	L	L	L
Giovanni (2020)	age	sex			BMI		cardiac or respiratory disease, marijuana use	S	L	L	L	L	L	L	L

Table S3. Po	tential co	onfounders	s and risk of bias												
	-	1	1		Potential confo	ounders				Ri	isk of b	ias* (F	ROBINS	-E)	
Study	Age	Sex	Race/ ethnicity	Education, socioeconomic status	ВМІ	other tobacco product use	comorbid conditions	Former smoking†	Confounding	Exposure measurement	Participant selection	Missing data	Outcome measurement	Selection of reported result	Overall
Goldberg Scott (2023)	age	sex, sexual orientati on	race/ethnicity	education	BMI		history of COPD, hyperlipidemia, hypertension, marijuana, alcohol, physical activity, KP region		L	L	L	L	L	L	L
Han (2020)	age	sex	race/ethnicity		BMI		dental visit in the previous year, marijuana use		L	L	L	L	L	L	L
Han (2023)	age	Only men		income, education level, occupation	BMI		alcohol, physical activity		L	L	L	L	L	L	L
Hawkins (2021)	age	only women	race/ethnicity	education, household income, insurance, WIC, marital status			first prenatal care visit, language preference, plurality, parity, age at delivery, method of payment for delivery		L	L	L	L	L	L	L
Hedman (2018)	age	sex		education					L	L	L	L	L	L	L
Hirschtick (2022)	age	sex	race/ethnicity	education			baseline clinical risk factors, including family history of premature heart disease (MI at age <50), hypertension, diabetes	с	L	L	L	L	L	L	L
Hong (2021)	age	sex		income, marital status			Self-reported sexual behaviors, HPV vaccination, other substance use		L	L	L	L	L	L	L
Huilgol (2019)	age (grad e)	sex	race/ethnicity	education, income, region		smokeless tobacco	alcohol use, soda intake, dental visit history, physical health status, depression, diabetes mellitus		L	L	L	L	L	L	L
Jeong (2020)	age	sex		household income, marital status, occupation, region			alcohol use, number of walking days in a week, self-reported health status, stress level, dental related variables, such as self-reported oral health status, dental caries, toothache within the past year, the experience of dental damage		L	L	L	L	L	L	L

Table S3. Po	tential co	onfounders	s and risk of bias												
		1	I		Potential confo	unders	1			R	isk of b	ias* (F	ROBINS	-Е)	
Study	Age	Sex	Race/ ethnicity	Education, socioeconomic status	ВМІ	other tobacco product use	comorbid conditions	Former smoking†	Confounding	Exposure measurement	Participant selection	Missing data	Outcome measurement	Selection of reported result	Overall
Kim (2017)	age	sex		residential area, family economic status	obesity, physical activity				L	L	L	L	L	L	L
Kim (2020a)	age	only males		education, household income, residence location, occupational status, marital status	BMI		perceived high stress, depressive mood, suicidal thoughts, self-rated health status, alcohol use, comorbidities, and family history of disease		L	L	L	L	L	L	L
Kim (2020b)	age	sex		education, income	BMI, physical activity		alcohol use		L	L	L	L	L	L	L
Kim (2021)	age	sex		residence, education, income	BMI		High risk drinking		L	L	L	L	L	L	L
Kim (2022)	age	sex		marital status, region, household income, education, occupational category	BMI, physical activity	alcohol use			L	L	L	L	L	L	L
Lee (2023)	age	sex	race/ethnicity	education, employed, marital status, region, insurance	BMI		taking hypertension medications, taking low-dose aspirin, diabetes, COPD, BMI, have a doctor	с	L	L	L	L	L	L	L
Li (2020)	age	sex	race/ethnicity	income	BMI	secondhand smoke exposure	self-reported asthma, physical health, mental health	S	L	L	L	L	L	L	L

Table S3. Po	otential c	onfounder	s and risk of bias	i											
		1	I		Potential confo	ounders		T		R	isk of b	ias* (R	ROBINS	-Е)	
Study	Age	Sex	Race/ ethnicity	Education, socioeconomic status	BMI	other tobacco product use	comorbid conditions	Former smoking†	Confounding	Exposure measurement	Participant selection	Missing data	Outcome measurement	Selection of reported result	Overall
Lui (2022)	age	sex	race	education	BMI, physical activity	chewing tobacco	diabetes, depression, COPD, sleep duration	S	L	L	L	L	L	L	L
Mahoney (2022)	age	sex			BMI	cigars, cigarillos, filtered cigars, pipe tobacco, hookah, smokeless tobacco, snus pouches, dissolvable tobacco	hypertension, hypercholesterolemia, diabetes, family history of premature heart disease		L	L	L	L	L	L	L
Mattingly (2023)	age	sex	race/ethnicity	parental education, urbanicity	BMI	secondhand smoke exposure, household use of combustible tobacco products (cigars, cigarillos, filtered cigars, hookah, pipe tobacco), exclusive OC use, dual cigarettes and OC use, polytobacco use			L	L	L	L	L	L	L

Table S3. Po	otential co	onfounders	s and risk of bias	i											
			I	I	Potential confo	unders		r		R	isk of b	ias* (F	ROBINS	-Е)	
Study	Age	Sex	Race/ ethnicity	Education, socioeconomic status	ВМІ	other tobacco product use	comorbid conditions	Former smoking†	Confounding	Exposure measurement	Participant selection	Missing data	Outcome measurement	Selection of reported result	Overall
McBride (2021)	age	only women	race/ethnicity	education, marital status	BMI		parity, gestational weight gain, mode of delivery, preterm or term birth, infant sex, insurance during pregnancy, WIC during pregnancy, quality of prenatal care, gestational age of the infant at birth, infant's sex		L	L	L	L	L	L	L
McConnell (2017)	11 th & 12 th grade stude nts	sex	ethnicity	parental education, community, acculturation based on language of questionnaire, housing conditions, ownership of a dog or cat		secondhand smoke exposure at home			L	L	L	L	L	L	L
Miller (2021)	age	sex	race/ethnicity	education, household income, insurance status, marital status	BMI, physical activity		heavy alcohol use, hypercholesterolemia, diabetes mellitus	S	L	L	L	L	L	L	L
Moyers (2023)	age	sex	race/ethnicity	education, urbanicity, region	obesity		diabetes, COPD, coronary heart disease or heart attack, obesity		L	L	L	L	L	L	L
Nguyen (2023)	age	gender	race/ethnicity			contact lens use, cannabis use	blunts, cigars/cigarillos		L	L	L	L	L	L	L
Okafor (2022)	age	sex	race/ethnicity	income, educational attainment	BMI, physical activity	other tobacco product use	alcohol use		L	L	L	L	L	L	L
Osei (2019a)	age	sex	race/ethnicity	educational status, income	BMI, physical activity		diabetes, heavy alcohol drinking, hypertension, hypercholesterolemia		L	L	L	L	L	L	L

Table S3. Po	tential c	onfounders	s and risk of bias												
	-	1			Potential confo	ounders				Ri	sk of b	ias* (F	OBINS	-E)	1
Study	Age	Sex	Race/ ethnicity	Education, socioeconomic status	ВМІ	other tobacco product use	comorbid conditions	Former smoking†	Confounding	Exposure measurement	Participant selection	Missing data	Outcome measurement	Selection of reported result	Overall
Osei (2019b)	age	sex	race/ethnicity	income, education	BMI				L	L	L	L	L	L	L
Osei (2020)	age	sex	race/ethnicity	income, education			Chronic bronchitis, emphysema, or chronic obstructive pulmonary disease	S	L	L	L	L	L	L	L
Parekh (2020a)	age	sex	race/ethnicity	education, income, marital status, health insurance, region	BMI, physical activity		alcohol use, diabetes, and hypertension, cholesterol	S	L	L	L	L	L	L	L
Parekh (2020b)	age	Only women	race/ethnicity	marital status, income, education, health insurance	BMI		binge drinking	S	L	L	L	L	L	L	L
Patel (2022)	age	sex	race/ethnicity	income	BMI		diabetes, cholesterol, hypertension, depression, cancer, substance abuse (marijuana, cocaine, heroin, methamphetamine, illegal injectable drug), alcohol use, and preventive aspirin use		L	L	L	L	L	L	L
Patel (2023)	age	sex	race/ethnicity	parental education, urbanicity	BMI	secondhand smoke, household combustible tobacco use			L	L	L	L	L	L	L
Paulin (2022)	age	sex	race/ethnicity	education, urbanicity		cigarette pack years, secondhand smoke	marijuana use, COPD comorbidity index, asthma diagnosis	D	L	L	L	L	L	L	L
Perez (2019a)	age	sex	race/ethnicity	education, income, marital status	BMI	smokeless tobacco	history of diabetes, heart attack, angina, coronary artery disease, stroke	S	L	L	L	L	L	L	L

Table S3. Po	otential co	onfounders	s and risk of bias												
		1		-	Potential confo	ounders		r		R	isk of b	ias* (F	ROBINS	-E)	
Study	Age	Sex	Race/ ethnicity	Education, socioeconomic status	BMI	other tobacco product use	comorbid conditions	Former smoking†	Confounding	Exposure measurement	Participant selection	Missing data	Outcome measurement	Selection of reported result	Overall
Perez (2019b)	age	sex	race/ethnicity	poverty level, census region, education	BMI	traditional or filtered cigars, cigarillos, pipe, hookah, oral tobacco, and cigars with marijuana (blunts)	asthma, hypertension, hypercholesterolemia, congestive heart failure, stroke, heart attack, and diabetes, history of exposure to heroin	s	L	L	L	L	L	L	L
Qeadan (2023)	age	gender	race/ethnicity	education, income, marital status, employment, region, health insurance	BMI	smoking duration	alcohol, diabetes		L	L	L	L	L	L	L
Reddy (2021)	age	sex	race/ethnicity				Self-reported history of asthma, COPD, chronic bronchitis, or emphysema		L	L	L	L	L	L	L
Regan (2021)	age	only women	race/ethnicity	education, income, health insurance, marital status, maternal residence	BMI		WIC, service during pregnancy, parity, obstetric risk factors		L	L	L	L	L	L	L
Sargent (2022)	age	sex	race/ethnicity	income, urbanicity	BMI (overweight)	cigars (traditional cigars, cigarillos, and filtered cigars), pipe tobacco, hookah, snus pouches, other smokeless tobacco, secondhand smoke	asthma, congestive heart failure, heart attack, diabetes, cancer, use of antihypertensives known to cause coughing or wheezing (beta blockers, angiotensin receptor blockers, and ace inhibitors), marijuana use		L	L	L	L	L	L	L
Schneller (2020)	age	sex	race/ethnicity	health insurance	BMI	secondhand smoke exposure,	asthma		L	L	L	L	L	L	L

Table S3. Po	tential co	onfounders	and risk of bias												
					Potential confo	unders				Ri	isk of b	ias* (F	ROBINS	-E)	
Study	Age	Sex	Race/ ethnicity	Education, socioeconomic status	BMI	other tobacco product use	comorbid conditions	Former smoking†	Confounding	Exposure measurement	Participant selection	Missing data	Outcome measurement	Selection of reported result	Overall
						Rules about smoking a combustible product inside your home, rules about using ENDS inside your home									
Schweitzer (2017)	age	sex	race/ethnicity	education	BMI (overweight)		marijuana use		L	L	L	L	L	L	L
Shi (2022)	age	sex	race/ethnicity	education	BMI, physical activity	traditional cigar, hookah, cigarillo, filtered cigar, cigar, blunt, snus, pipe, smokeless tobacco, or dissolvable tobacco	disease-related covariates (CVD, hypercholesterolemia, and diabetes mellitus), family history of hypertension, heavy alcohol use		L	L	L	L	L	L	L
Silveira (2022)	age	sex	race/ethnicity	education, income		cigarette pack years, cigar, pipe, hookah, smokeless tobacco, snus	diabetes, heavy alcohol use, marijuana, flossing		L	L	L	L	L	L	L
Smith (2023)	age	sex	race	education	BMI		diabetes, asthma		L	L	L	L	L	L	L

Table S3. Po	otential co	onfounder	s and risk of bias												
			I		Potential confo	ounders		1		R	isk of b	ias* (F	ROBINS	-E)	
Study	Age	Sex	Race/ ethnicity	Education, socioeconomic status	BMI	other tobacco product use	comorbid conditions	Former smoking†	Confounding	Exposure measurement	Participant selection	Missing data	Outcome measurement	Selection of reported result	Overall
Sompa (2022)	All respo ndent s aroun d 24y	sex		educational level, occupational status, parental socioeconomic status	BMI, WC, body fat percentage	waterpipe use, snus, second- hand tobacco exposure, parental smoking habit			L	L	L	L	L	L	L
Stevens (2022)	age	sex	race/ethnicity	income	BMI	secondhand smoke exposure,	chronic disease (high blood pressure, high cholesterol, diabetes		L	L	L	L	L	L	L
Strong (2018)	age	sex	race/ethnicity			cigars, cigarillos, and filtered cigars, pipes, hookah, smokeless tobacco	marijuana use		L	L	L	L	L	L	L
Tackett (2020)	age	sex	race/ethnicity	income		traditional cigars, cigarillos, filtered cigars, pipes, hookahs, bidis, kreteks, secondhand smoke			L	L	L	L	L	L	L
Tackett (2023)	age	sex	race	parental education		cannabis, survey wave	secondhand smoke from ecigs, cigs, cannabis		L	L	L	L	L	L	L
Tanski (2022)	age	sex	race/ethnicity		obesity (based on BMI)	secondhand smoke exposure, marijuana use,	asthma status		L	L	L	L	L	L	L
Tian (2022)	age	sex	race/ethnicity	education, income	BMI				L	L	L	L	L	L	L
To (2023)	age‡	sex		education, income, urbanicity	BMI		mental health, life stress	с	L	L	L	L	L	L	L

Table S3. Po	tential c	onfounders	s and risk of bias	;											
			I	I	Potential confo	ounders		1		R	isk of b	ias* (F	ROBINS	i-Е)	
Study	Age	Sex	Race/ ethnicity	Education, socioeconomic status	ВМІ	other tobacco product use	comorbid conditions	Former smoking†	Confounding	Exposure measurement	Participant selection	Missing data	Outcome measurement	Selection of reported result	Overall
Tran (2020)	age	sex	race/ethnicity	education, income, marital status, health- care coverage				с	L	L	L	L	L	L	L
Varella (2022)	age	sex	race/ethnicity	education, employment status, income, marital status, insurance status,		exercise in past 30 days	asthma history, COPD history	с	L	L	L	L	L	L	L
Vora (2019)	age	sex	race/ethnicity	education, income, employment, medical insurance			diabetes, visit to dentist in last 12 months	C D	L	L	L	L	L	L	L
Walker (2021)	age	sex	race	education, employment, marital status, income	obesity, BMI				L	L	L	L	L	L	L
Wang (2016)	age	sex		family affluence		secondhand smoke exposure		s	L	L	L	L	L	L	L
Wang (2020)	age	All women	race/ethnicity	education, marital status	BMI		previous preterm history, plurality, Kotelchuck index of prenatal care, drinking alcohol before pregnancy, gestational weight gain		L	L	L	L	L	L	L
Wang (2022)	age	sex	race/ethnicity	education, income level, marital status, region of residence, health insurance coverage	BMI	cigars, pipes, smokeless tobacco	alcohol consumption		L	L	L	L	L	L	L
Wen (2023)	age	Only women	race/ethnicity	education, insurance, marital status	BMI prepregnancy		pre-pregnancy diabetes, hypertension		L	L	L	L	L	L	L

					Potential confo	ounders				R	isk of b	ias* (F	ROBINS	-E)	
Study	Age	Sex	Race/ ethnicity	Education, socioeconomic status	BMI	other tobacco product use	comorbid conditions	Former smoking†	Confounding	Exposure measurement	Participant selection	Missing data	Outcome measurement	Selection of reported result	Overall
Wiener (2020)	age	sex	race/ethnicity	education, health insurance, federal poverty level	BMI		chronic disease, alcohol use		L	L	L	L	L	L	L
Williams (2023)	age	sex	race/ethnicity	parental education		cannabis	Household use of e-cigs, cigs, or cannabis		L	L	L	L	L	L	L
Wills (2019)	age	sex	race/ethnicity	education, financial stress	BMI	secondhand smoke exposure		D	L	L	L	L	L	L	L
Wills (2020)	age	sex	race/ethnicity		BMI (overweight status, obesity status)		marijuana use		L	L	L	L	L	L	L
Wills (2022)	age	sex	race/ethnicity	education	BMI		marijuana use	С	L	L	L	L	L	L	L
Wen (2023)	age	All women	race/ethnicity	education, insurance, marital status	BMI pre- pregnancy		pre-pregnancy diabetes, hypertension		L	L	L	L	L	L	L
Xie (2020a)	age	sex	race/ethnicity	marital status, education, income, employment status	BMI		general health	S	L	L	L	L	L	L	L
Xie (2020b)	age	sex	race/ethnicity	education, region	BMI	other combustible products	use of illicit substances (i.e., heroin, inhalants, or hallucinogens), hypertension, cholesterol, heart failure, stroke, diabetes	D	L	L	L	L	L	L	L
Xie (2020c)	age	sex		employment, education, income	BMI, physical activity		general health, mental health, alcohol, cannabis use	s	L	L	L	L	L	L	L
Xie (2022)	age	sex	race		BMI	cigar, cigarillo, filtered cigar, pipe, hookah, smokeless, snus exposure, secondhand smoke	marijuana use, other recreational drug use	с	L	L	L	L	L	L	L

					Potential confo	unders		1		Ri	sk of b	ias* (F	ROBINS	-E)	
Study	Age	Sex	Race/ ethnicity	Education, socioeconomic status	BMI	other tobacco product use	comorbid conditions	Former smoking†	Confounding	Exposure measurement	Participant selection	Missing data	Outcome measurement	Selection of reported result	Overall
Zhang (2022)	age	sex	race/ethnicity	education	BMI, physical activity	smokeless tobacco	history of heart disease, cancer, depressive disorder, COPD, asthma, test for blood sugar in past 3 years	с	L	L	L	L	L	L	L
Zhu (2023)	age	all male		marital status	BMI		drinking		L	L	L	L	L	L	L

				DDAMC	VDDCC	Other†
BFR35	NHANES	NHIS	PATH	PRAMS	TRBSS	Asthma (youth) Choi (2016)
						Asthma (youth) Kim (2017) Wang (2016)
			Cardiovascular Gathright (2019) COPD Perez (2019b) Strong (2018) Oral disease Vora (2019) Oral disease (youth)			Asthma (youth) Cho (2016) McConnell (2017)
			Asthma Li (2020)			<i>Metabolic</i> Kim (2020b) <i>Oral disease</i>
Stroke Bricknell (2021) Asthma Wills (2019) COPD Barrameda (2021) Oral disease Huilgol (2019)	Other Hong (2021) Wiener (2020)	Cardiovascular Alzahrani (2018)	Metabolic Miller (2021) Asthma Bhatta (2020) Sargent (2022) Schneller (2020) COPD Bhatta (2020) Oral disease Atuegwu (2019b)	<i>Other</i> Wang (2020)		Jeong (2020)CardiovascularAlzahrani (2018)AsthmaWills (2019)Asthma (youth)Bayly (2019)COPDHedman (2018)Oral disease(youth)Cho (2017)
Cardiovascular Osei (2019a) Stroke Parekh (2020a) Metabolic Atuegwu (2019a) Asthma Osei (2019b) Parekh (2020b) Perez (2019a) Varella (2022) Walker (2021) COPD Giovanni (2020) Osei (2020) Parekh (2020b) Xie (2020a) Other Christian (2023)			Cardiovascular Farsalinos (2019) Asthma (youth) Tanski (2022) Asthma Brunette (2023)	Other Hawkins (2021)	Asthma (youth) Han (2020)‡ Wills (2020)‡	Metabolic Kim (2020a) Asthma (youth) Schweitzer (2017)
	BFRSS BFRSS Bricknell (2021) Asthma Wills (2019) COPD Barrameda (2021) Oral disease Huilgol (2019) CoPD Barrameda (2021) Oral disease Huilgol (2019) Stroke Parekh (2020a) Metabolic Atuegwu (2019a) Stroke Parekh (2020a) Metabolic Atuegwu (2019b) Parekh (2020b) Parekh (2020b) Parekh (2020) Varella (2020) Varelkh (2020b) Xie (2020a)	BFRSSNHANESBFRSSNHANESBricknellImage: Constraint of the state of the	BFRSS NHANES NHIS BFRSS NHANES NHIS Image: Stroke Bricknell (2021) Other Hong (2021) Wiener (2020) Asthma (2018) Wills (2019) Other (2020) Alzahrani (2018) Cordiovascular Osei (2021) Other (2020) Alzahrani (2018) Stroke Barrameda (2021) Oral disease Huilgol (2019) Image: Stroke Parekh (2020a) Stroke Parekh (2020a) Stroke Parekh (2020b) Image: Stroke (2019a) Varella (2021) Osei (2019b) Image: Stroke Parekh (2020b) Parekh (2020b) Perex (2019a) Image: Stroke Parekh (2020b) Parekh (2020b) Perex (2020b) Image: Stroke Parekh (2020b) Parekh (2020b) Perex (2020b) Image: Stroke Parekh (2020b) Parekh (2020b) Perex (2020b) Image: Stroke Parekh (2020b) Parekh (2020b) Parekh (2020b) Image: Stroke Parekh (2020b) Parekh (2020b) Parekh (2020b) Image: Stroke Parekh (2020b) Parekh (2020b) Parekh (2020b) Im	Image: Stroke Bricknell (2021) Other Cardiovascular Gathright (2019) Stroke Bricknell (2021) Other Hong (2021) Metabolic Mikinkughe (2019) Astima Wills (2019) Other (2020) Astima Li (2021) Wills (2019) Other (2020) Astima Li (2018) Oral disease (youth) Astima Li (2020) Astima Li (2020) Oral disease (youth) Astima Li (2020) Astima Binatta (2020) Oral disease Huilgol (2019) Other (2020) Astima Binatta (2020) Cardiovascular Cosei (2019) Cardiovascular Alzahrani (2018) Metabolic Miller (2020) Stroke Parekh (2020a) Cardiovascular Farsalinos (2019) Stroneller (2020) Stroke Parekh (2020a) Astima Strune (2019) Astima Brunette (2023) Stroke Parekh (2020a) Astima Brunette (2023) Astima Brunette (2023) Varelia (2022) Varelia (2020) Astima Brunette (2023) Osei (2019a) Astima Brunette (2023) Astima Brunette (2023) Osei (2020) Parekh (2020) Astima Brunette (2023) Osei (2020) Astima Brunette (2023) Astima Brunette (2023) Other Cardiovascular Farsalinos (2020) Astima Brunette (2023)	BFRSS NHANES NHIS PATH PRAMS Image: Constraint of the second secon	BFRSS NHANES NHIS PATH PRAMS YRBSS Image: Stroke Brite (2021) Barrameda (2021) Walker (2020) Barrameda (2021) COPD Barrameda (2021) Cord disease Huligol (2019) Cord (2020) Cord disease Huligol (2019) Cord (2020) Cord (2020) Cord (2019b) Parek (2020b) Parek (2020b)

	Studies that used the				-		
Year	BFRSS	NHANES	NHIS	PATH	PRAMS	YRBSS	Other†
2018	<i>Metabolic</i> Zhang (2022)	<i>Cardiovascular</i> Patel (2022)	<i>Cardiovascular</i> Falk (2022)	Cardiovascular El-Shahawy (2022)	Other McBride (2021) Bogon (2021)		Asthma To (2023)
	Asthma Bircan (2021) Tran (2020)	<i>Metabolic</i> Cai (2023) Okafor (2022)	Stroke Falk (2022) Metabolic	Qeadan (2023) <i>Metabolic</i> Shi (2022)	Regan (2021)		Asthma (youth) Chung (2020) Tackett (2023)
	COPD Antwi (2022) Bircan (2021)	Oral disease AlQobaly (2022)	Falk (2022) <i>Other</i>	Asthma Boyd (2021) Cordova (2022)			COPD Kim (2021)
	Other Tian (2022)	Other Agoons (2021) Zhu (2023)	Wang (2022)	Xie (2020b) Asthma (youth) Reddy (2021) Stevens (2022) Tackett (2020)			Other Wang (2022) To (2023) Zhu (2023)
				COPD Cordova (2022) Qeadan (2023) Xie (2020b)			
				Oral disease Chaffee (2022)			
2019			Asthma Lee (2023)	Cardiovascular Berlowitz (2022) Hirschtick (2022) Mahoney (2022)			Cardiovascular Goldberg Scott (2023)
				<i>Stroke</i> Hirschtick (2022)			Stroke Goldberg Scott (2023)
				<i>Metabolic</i> Cook (2023a)			<i>Metabolic</i> Kim (2022)
				Asthma Xie (2022)			Asthma Braymiller (2020)
				Asthma (youth) Patel (2023)			Asthma (youth) Alnajem (2020)
				COPD Paulin (2022) Cook (2023b)			COPD Goldberg Scott (2023)
				Oral disease Silveira (2022)			Other Goldberg Scott (2023) §
2020	<i>Cardiovascular</i> Liu (2022)				Other Wen (2023)		<i>Metabolic</i> Sompa (2022)
	Asthma Wills (2022)						Asthma Sompa (2022)
	COPD Wills (2022)						Asthma (youth) Chaffee (2021a) Wiliams (2023)
							Other Gaiha (2020) Han (2023) Nguyen (2023)

Year	BFRSS	NHANES	NHIS	PATH	PRAMS	YRBSS	Other+
2021			Other Smith (2023) Other: COVID Ebrahmi Kalan (2023) Moyers (2023)				Oral disease (youth) Chaffee (2021b)
Total studies	26	8	9	39	5	2	35
Studies sharing datasets	14	2	2	27	0	2	0

*Based on last year of data collection. For "Other" outcomes, see Table S2.

†Studies in which no two studies used the same dataset for the same outcome and year. Datasets are: Canadian Community Health Survey, Florida Youth Tobacco Survey, Hawaii BRFSS, Hawaii YRBSS, Hong Kong Youth Survey, Kaiser Permanente Research Bank, KNHANES, KYRBS, KYRBWS, Korea Community Health Survey, Obstructive Lung Disease in Northern Sweden, Southern California Children's' Health Study, Southern California Happiness and Health Study, investigator-initiated surveys. ‡Both used YRBSS is 2017.

§ Contributed two "Other" outcomes: health services utilization and cancer.

	Cardiovascular	Stroke	Metabolic dysfunction	Asthma	COPD	Oral disease	Other	All studies
Study design								
Cross-sectional ^a	7/12 (58%)	4/6 (67%)	10/12 (83%)	32/42 (76%)	13/20 (65%)	8/10 (80%)	20/22 (91%)	94/124 (76%)
Reference condition: Never use ^b	5/12 (42%)	2/6 (33%)	2/12 (17%)	23/42 (55%)	6/20 (30%)	3/10 (30%)	14/22 (64%)	55/124 (44%)
Disease measure: Current ^c	6/12 (50%)	2/6 (33%)	9/12 (75%)	39/42 (93%)	9/20 (45%)	7/10 (70%)	18/22 (82%)	90/124 (73%)
Source of OR estimates: Multivariable modeling ^d								
Ecig vs Cig	4/8 (50%)	1/5 (20%)	0/6 (0%)	14/29 (48%)	5/11 (45%)	5/9 (56%)	3/14 (21%)	32/82 (39%)
Dual vs Cig	5/12 (42%)	2/6 (33%)	3/10 (30%)	24/39 (62%)	9/17 (53%)	7/9 (78%)	8/20 (40%)	58/113 (51%)
Ecig vs none	5/11 (56%)	2/5 (40%)	4/11 (36%)	24/41 (59%)	10/19 (53%)	6/10 (60%)	8/20 (40%)	60/117 (51%)
Dual vs none	0/6 (0%)	0/3 (0%)	1/5 (20%)	1/13 (8%)	0/7 (0%)	0/2 (0%)	0/11 (0%)	2/47 (4%)
Cig vs none	3/9 (33%)	1/4 (25%)	1/7 (14%)	15/30 (50%)	5/12 (42%)	6/9 (67%)	2/15 (13%)	33/86 (38%)
Control for former smoking	3/12 (25%)	3/6 (50%)	2/12 (17%)	15/42 (36%)	12/20 (60%)	2/10 (20%)	2/22 (9%)	39/124 (31%) ^e
Sample: Adult ^e	12/12 (100%)	6/6 (100%)	10/10 (100%)	22/42 (52%)	20/20 (100%)	7/10 (70%)	19/22 (86%)	98/134 (79%)

^a Remaining ORs longitudinal

^b Remaining ORs non-current e-cigarette use

^c Remaining ORs ever disease ^d Remaining ORs stratified modeling

• Of the 39 ORs that controlled for former smoking, 17 (44%) did so my including smoking status (current, former, never) in a multivariate model, 16 (41%) stratified on smoking status, 5 (13%) included smoking duration (years or pack years) in a multivariate model, and 1 (3%) included both smoking status and duration in a multivariate model.

^f Remaining studies youth

Table S6. Unadjusted p values from sensitivity analysis of odds ratios to study characteristics* controlling for outcome[†]

Odds ratio	Longitudinal vs cross- section	Reference (never vs non-current use)	Diagnosis (current vs ever)	Multivariate vs stratified estimate	Former smoking (vs not considering)	Year
E-cigarette vs cigarette‡	0.814	0.930	0.797	0.918	0.652	0.953
Dual use vs cigarette	0.028§	0.056	0.543	0.004¶	0.469	0.009°
E-cigarette vs no product use	0.233	0.311	0.585	0.574	0.071	0.009#
Dual use vs no product use	0.186	0.187	0.956	٨	0.262	0.234
Cigarette vs no product use	0.941	0.987	0.970	0.502	0.969	0.218

* P values for coefficients in a metaregression of the natural logarithm of the odds ratios against study design characteristics (longitudinal vs. cross-sectional; whether the reference condition was never use or non-current use, whether product use was current or ever, whether the diagnosis was current or ever, and whether the estimate was based on multivariate or stratified estimates, whether the analysis accounted for former smoking (coded as 0/1 dummy variables), and last year of data collection (continuous, centered on 2017) controlling for the outcome (6 effects coded dummy variables; "Other" is coded as - 1 for the 6 dummy variables).

+ Outcome effects coded dummy variables for outcome (not shown)

‡ An additional model found that whether the OR was computed or from direct observation did not significantly affect the results (p=0.914).

§ OR_{longitudinal vs cross-sectional} = 0.85; 95% CI 0.73-0.98.

¶ OR_{multivariate vs stratified} = 0.94; 95% CI 0.90-0.98.

^o OR_{per year} = 0.96; 95% CI 0.93-0.99

[#] OR_{per year} = 0.97; 95% CI 0.95-0.99

^ Dropped from model due to collinearity.

Table S7. Poo	led adjusted* odds r	ratios of disease (95	5% CI) based only o	n studies that repo	orted odds ratios	
	Cardiovascular	Stroke	Metabolic dysfunction	Asthma	COPD/respiratory	Oral disease
Comparison to	cigarette use					
E-cigarettes vs cigarettes	0.87 (0.58-1.31)	0.72 (0.45-1.159)	1.00 (0.88-1.12)	0.88 (0.77-1.00)	0.51 (0.35-0.74)	0.87 (0.75-1.00)
Dual use vs. cigarettes	1.28 (1.05-1.48)	1.25 (1.05-1.48)	1.25 (1.16-1.34)	1.21 (1.12-1.29)	1.50 (1.24-1.83)	1.39 (1.12-1.73)
Comparison to	no use					
E-cigarette vs. non use	1.28 (1.06-1.55)	1.17 (0.77-1.80)	1.26 (1.18-1.34)	1.24 (1.18-1.31)	1.53 (1.36-1.72)	1.53 (1.21-1.94)
Dual use vs. non use	2.53 (1.76-3.47)	2.43 (2.05-2.88)	1.66 (1.16-2.40)	1.48 (1.07-2.05)	4.65 (3.48-6.21)	1.78 (1.49-2.12)
Cigarette vs. non use	1.61 (1.15-2.26)	2.07 (1.89-2.27)	1.27 (1.14-1.40)	1.49 (1.27-1.76)	3.30 (2.46-4.42)	1.74 (1.44-2.12)
* Adjusted for	covariates listed in Ta	ble S3				

Table S8. Una youth	adjusted p val	lues from sen	sitivity analysis o	f odds ratios compa	aring adults and						
	Ecig vs Cig	Dual vs Cig	Ecig vs Nonuse	Dual vs Nonuse	Cig vs Nonuse						
Asthma	0.739	0.376	0.574	0.617	0.915						
Oral disease	0.924	0.264	0.108	NA	0.128						
NA: Not availab	NA: Not available due to small sample size.										

	Cardiovascular	Stroke	Metabolic dysfunction	Asthma	COPD	Oral disease
E-cigarette vs cigarette	0.166	1.000	NA	0.005†	0.200	0.341
Dual use vs cigarette	0.276	1.000	0.395	0.172	0.025¶	0.537
E-cigarette vs no product use	0.104	1.000	0.636	0.321	0.037#	0.797
Dual use vs no product use	NA	1.000	NA	0.010 [‡]	0.036°	NA
Cigarette vs no product use	0.003 [¥]	1.000	0.313	0.002§	0.124	0.720
For respiratory symptoms: O	93; 95% CI 0.82-1. .62; 95% CI 0.50-0 = 1.33; 95% CI 1.08 95% CI 2.26-3.08 95% CI 1.24-1.54 95% CI 1.66-2.75 1.38; 95% CI 1.22-1 R _{dual vs cig} = 1.57; 95 1.59; 95% CI 1.40-7 R _{dual vs cig} = 1.20; 95 ; 95% CI 3.03-5.58 R _{dual} = 1.16; 95% CI 2_{cig} = 2.72; 95% CI 2 ; 95% CI 1.27-1.54 g = 1.05; 95% CI 0. $D_{R_{cig}}$ = 1.73; 95% C	77 -1.63 .57 % CI 0.82-3.00 .80 % CI 1.04-1.37 I 0.95-1.42 2.41-3.07 68-1.62 I 1.46-2.05				

Table S10. Sensitivity analysis of meta-analyses of e-cigarettes vs cigarettes assuming ORs for e-cigarettes and cigarettes are independent, OR (95%CI)						
	Main model	Assuming SEs cut by factor of 4				
Cardiovascular disease	0.81 (0.58-1.14)	0.77 (0.56-1.06)				
Stroke	0.73 (0.47-1.13)	0.69 (0.46-1.03)				
Metabolic dysfunction	0.99 (0.91-1.09)	1.04 (0.92-1.16)				
Asthma/bronchitis	0.84 (0.75-0.95)	0.85 (0.76-0.95)				
COPD/respiratory	0.53 (0.38-0.74)	0.53 (0.39-0.73)				
Oral disease	0.87 (0.76-1.00)	0.87 (0.76-1.00)				

Table S11. Unadjusted p va	lues for Begg and E	gger tests* for p	ublication bias			
Odds ratio	Cardiovascular	Stroke	Metabolic Dysfunction	Asthma	COPD/respiratory	Oral disease
E-cigarette vs cigarette	0.711/0.869	0.999/0.040†	0.707/0.849	0.866/0.899	0.876/0.288	0.466/0.868
Dual use vs cigarette	0.837/0.693	0.707/0.321	0.858/0.595	0.397/0.987	0.902/0.872	0.602/0.701
E-cigarette vs nonuse	0.999/0.262	0.462/0.679	0.350/0.225	0.694/0.966	0.484/0.710	0.371/0.674
Dual use vs nonuse	0.707/0.464	0.999/0.719	0.462/0.637	0.951/0.646	0.368/0.340	0.999/NA
Cigarette vs non-use	0.754/0.723	0.999/0.530	0.999/0.601	0.830/0.736	0.945/0.999	0.466/0.151
* Display: (p value for Begg)/(p value for Egger)						
†This one statistically significant result may be a statistical artifact of doing 60 tests.						
NA Not available; inadequate	data to compute					

Table S12. Trim	Table S12. Trim and fill analysis of publication bias (random effects model)							
		Original estin			After fill and			
	OR	95% CI	No. studies	OR	95% CI	No. studies		
E-cigarette vs c	igarette			_				
Cardiovascular	0.81	(0.58-1.14)	8	0.81	(0.58-1.14)	8		
Stroke	0.73	(0.47-1.13)	5	0.73	(0.47-1.13)	5		
Metabolic	0.99	(0.91-1.09)	6	0.99	(0.91-1.09)	6		
Asthma	0.84	(0.75-0.95)	29	0.77	(0.68-0.87)	34		
COPD	0.53	(0.38-0.74)	11	0.35	(0.18-0.51)	17		
Oral disease	0.87	(0.76-1.00)	9	0.87	(0.76-1.00)	9		
Dual use vs cig	arette		L	1				
Cardiovascular	1.23	(1.05-1.46)	12	1.00	(0.81-1.25)	16		
Stroke	1.26	(1.06-1.50)	6	1.23	(1.04-1.45)	7		
Metabolic	1.22	(1.15-1.31)	10	1.22	(1.15-1.31)	10		
Asthma	1.20	(1.12-1.28)	39	1.20	(1.12-1.28)	39		
COPD	1.41	(1.12-1.64)	17	1.41	(1.19-1.67)	17		
Oral disease	1.27	(1.15-1.39)	9	1.36	(1.12-1.64)	9		
E-cigarette vs n	onuse	, , , , , , , , , , , , , , , , , , ,			· · · ·			
Cardiovascular	1.24	(1.05-1.46)	11	1.24	(1.05-1.46)	11		
Stroke	1.32	(0.99-1.76)	5	1.32	(0.99-1.76)	5		
Metabolic	1.25	(1.18-1.33)	11	1.25	(1.15-1.34)	13		
Asthma	1.24	(1.19-1.40)	41	1.21	(1.15-1.27)	47		
COPD	1.46	(1.31-1.61)	19	1.46	(1.31-1.61)	19		
Oral disease	1.27	(1.19-1.82)	10	1.47	(1.19-1.82)	10		
Dual use vs nor	nuse							
Cardiovascular	2.23	(1.59-3.14)	6	2.23	(1.59-3.14)	6		
Stroke	2.39	(2.02-2.83)	3	2.39	(2.02-2.83)	3		
Metabolic	1.49	(1.17-1.91)	5	1.49	(1.17-1.91)	5		
Asthma	1.56	(1.22-2.00)	13	1.60	(1.21-2.00)	13		
COPD	3.29	(1.97-5.51)	7	3.29	(1.97-5.51)	7		
Oral disease	1.78	(1.49-2.12)	2	1.78	(1.45-2.12)	2		
Cigarette vs nor	nuse							
Cardiovascular	1.64	(1.24-2.16)	9	1.63	(1.24-2.15)	8		
Stroke	2.08	(1.91-2.27)	4	2.05	(1.60-2.63)	5		
Metabolic	1.27	(1.17-1.91)	7	1.24	(1.14-1.35)	6		
Asthma	1.56	(1.34-1.80)	30	1.53	(1.32-1.75)	29		
COPD	2.99	(2.29-3.92)	12	3.10	(2.21-4.36)	11		
Oral disease	1.69	(1.40-2.03)	9	1.41	(1.12-1.78)	12		

	E vs C (Fig 1)	D vs C (Fig 2)	E vs nothing (Fig S1)	D vs nothing (Fig S2)	C vs nothing (Fig S3)
Preterm birth (Hawkins 2021; Regan 2021; Wang 2020)	0	0	0	0, +	+
Low gestational weight (Wen 2023)	0	0	0	0	+
Not breastfeeding McBride 2021)	0	+	+		+
COVID (Ebrahimi Kalan 2023; Gaiha 2020; Moyers 2023)	0, 0, +	0, 0	0, 0, 0	+, 0	-, 0, -
Hospitalization/Emergency Dept. (Goldberg Scott, 2023; To 2023)	0	+, 0	0	+	0
Sleep apnea (Zhu 2023)	0	0	0	+	+
Sleep disorder (Christian 2023; Wiener 2020)	0	+, 0	0, +	+	+
Arthritis (Tian 2022)		+	+		
Atopic dermatitis (Smith 2023)			+		
Bone fracture (Agoons 2021)	0	0	0		+
Cancer (Goldberg Scott 2023)		+	0		
Difficulty concentrating (Xie 2020c)	0	+	+	+	+
Nonalcoholic fatty liver disease (Han 2023)		+		+	+
General health (Wang 2022)	0	+	+	+	+
Impaired vision (Nguyen 2023)					
Oral HPV (Hong 2021)	0	+	+		0

Table S14. Explanation for GRADE level of confidence ratings for e-cigarette	vs. cigarette and dual use vs cigarette OR
Criteria	Rating and justification
1. Risk of bias	
Bias occurs when the results of a study do not represent the truth because of inherent limitations in design or conduct of a study. In practice, it is difficult to know to what degree potential biases influence the results and therefore certainty is lower in the estimated effect if the studies informing the estimated effect could be biased.	All studies included in this meta-analysis had low risk of bias (Table S3), yielding high confidence according to the ROBINS-E standard for observational studies.
GRADE is used to rate the body of evidence at the <i>outcome level</i> rather than the study level. Authors must, therefore, make a judgement about whether the risk of bias in the individual studies is sufficiently large that their confidence in the estimated treatment effect is lower.	
2. Imprecision	
The GRADE approach to rating imprecision focuses on the 95% confidence interval around the best estimate of the <i>absolute effect</i> [†] Certainty is lower if the clinical decision is likely to be different if the true effect was at the upper versus the lower end of the confidence interval. Authors may also choose to rate down for imprecision if the effect estimate comes from only one or two small studies or if there were few events.	Except for oral disease where the upper 95% CI was just below 1.0 (p=0.042), conclusions about comparisons of e-cigarette to cigarette had high confidence because the 95% CIs either broadly spanned 1.0 (with correspondingly large p values: 0.221 for cardiovascular. 0.154 for stroke, and 0.886 for metabolic dysfunction; Table 1) or clearly excluded 1.0 (with correspondingly small p values: 0.007 for asthma and <0.001 for COPD).
	Because one of the estimates of the upper 95% confidence interval fall below 1.0 when dropping individual studies for cardiovascular disease and four for oral disease do (Figure S6), the confidence for imprecision is moderate for cardiovascular and oral disease for the e-cigarette to cigarette comparison.
	All comparisons of dual use to cigarette odds had a p value near 0.05 for cardiovascular disease (p=0.064), so we score imprecision as moderate for this outcome. All the other assessments have high confidence because the 95% Cl's broadly exclude 1.0 (p≤0.009 in those cases).
3. Inconsistency	
Certainty in a body of evidence is highest when there are several studies that show consistent effects. When considering whether or not certainty should be rated down for inconsistency, authors should inspect the similarity of point estimates and the overlap of their confidence intervals, as well as statistical criteria for heterogeneity (e.g., the I ² and chi-squared test). [‡]	The studies were broadly consistent regarding to exposure and outcome measures, using similar measures of exposure (e-cigarette and cigarette use in the past 30 days) and disease presence (mostly self-report of diagnosis using similar validated questions). In the sensitivity analysis for the effects of study characteristics (Table S6), there were several
	significant p values for dual use vs. cigarettes, so inconsistency is rated moderate for all outcomes.
	There were not significant differences between the different detailed outcomes for cardiovascular disease, stroke, metabolic dysfunction, or oral disease for e-cigarette vs. cigarette use and dual use vs. cigarettes (p≥0.166; Table S9). There was significant heterogeneity for asthma for e-cigarettes vs. cigarettes and for COPD for dual use vs cigarettes and dual use vs no product use for COPD diagnosis vs respiratory symptoms, but none of these heterogeneities led to a change in qualitative conclusions (footnotes in Table S9). The results were insensitive to deleting individual studies (Figures S5 and S6) suggest that this heterogeneity did not materially affect the conclusions.
	Cardiovascular disease, stroke, metabolic dysfunction, and oral disease were rated high confidence and asthma for e-cigarette vs. cigarette and COPD for dual vs. cigarette moderate because the heterogeneity p values were significant.
4. Indirectness	

Criteria		Rating and justification
interest in the decision mak from those fo when the inte a study of a r applies to ce outcome stud	nost certain when studies directly compare the interventions of e population of interest, and report the outcome(s) critical for king. Certainty can be rated down if the patients studied are different or whom the recommendation applies. Indirectness can also occur erventions studied are different than the real outcomes (for example, new surgical procedure in a highly specialised centre only indirectly intres with less experience). Indirectness also occurs when the died is a surrogate for a different outcome – typically one that is ant to patients.	Certainty was high because the samples were generally from large probability samples of the entire population, include the variety of e-cigarette use as consumer products in the general population. Outcomes and exposures were measured reasonably consistently across studies.
5. Publicatio		
requires mak visual methoo limitations. P	ias is perhaps the most vexing of the GRADE domains, because it ing inferences about missing evidence. Several statistical and ds are helpful in detecting publication bias, despite having serious ublication bias is more common with observational data and when published studies are funded by industry.	Certainty that publication bias does not account for results was high. While there were a few isolated indications of significant publication bias, they never appeared consistently across the four measures we used (funnel plots, Begg and Eger tests, and trim and fill analysis).
Overall certa	ainty	
outcomes, us	RADE quality rating can be applied to a body of evidence across sually by taking the lowest quality of evidence from all of the at are critical to decision making.	We scored overall confidence using the lowest score for each situation, resulting in moderate confidence for most conclusions and high confidence for some (Table S15)
Certainty	What it means	
Very low	The true effect is probably markedly different from the estimated effect	
Low	The true effect might be markedly different from the estimated effect	
Moderate	The true effect is probably close to the estimated effect	
High	T true effect is similar to the estimated effect	
	nis column are abridged direct quotes from <i>BMJ's</i> summary of the GR ervational (as opposed to randomized controlled trials).	ADE criteria. ⁶ Because we are assessing associations in populations, studies are not downgraded
		ported OR (or other measures of association with disease diagnosis).

	Cardiovascular	Stroke	Metabolic dysfunction	Asthma	COPD	Oral disease
E-cigarette vs cigarette	ette				·	•
Risk of bias	High	High	High	High	High	High
Imprecision	Moderate	High	Moderate	High	High	Moderate
Inconsistency	High	High	High	Moderate	High	High
Indirectness	High	High	High	High	High	High
Publication bias	High	High	High	High	High	High
Overall	Moderate	High	Moderate	Moderate	High	Moderate
Dual vs cigarette		0				
Risk of bias	Moderate	High	High	High	High	High
Imprecision	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate
Inconsistency	High	High	High	High	Moderate	High
Indirectness	High	High	High	High	High	High
Publication bias	High	High	High	High	High	High
Overall	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate
E-cigarette vs nothi					•	
Risk of bias	High	High	High	High	High	High
Imprecision	Moderate	Moderate	Moderate	High	High	High
Inconsistency	High	High	High	High	Moderate	High
Indirectness	High	High	High	High	High	High
Publication bias	High	High	High	High	High	High
Overall	Moderate	Moderate	Moderate	High	Moderate	High
Dual vs nothing				0		. 0
Risk of bias	High	High	High	High	High	High
Imprecision	High	High	High	High	High	High
Inconsistency	High	High	High	Moderate	Moderate	Moderate
Indirectness	High	High	High	High	Moderate	High
Publication bias	High	High	High	High	High	High
Overall	High	High	High	Moderate	Moderate	Moderate
Cigarette vs nothing		0	Ŭ			
Risk of bias	High	High	High	High	High	High
Imprecision	High	High	High	High	High	High
Inconsistency	High	High	High	Moderate	High	High
Indirectness	High	High	High	High	High	High
Publication bias	High	High	High	High	High	High
Overall	High	High	High	Moderate	High	High
* See Table S14 for t	he logic for the e-cigar		tte and dual use y		narisons. The lo	aic for the other

STATA DO FILES

*IMPORT DATA AND DO PRELIMINARY CALCULATIONS local condensed excel "Condensed-10ct2023E.xlsx" import excel `condensed_excel', sheet("Data") cellrange(A1:AW125) firstrow label var study "Study" label define outcome 10 "Cardiovascular disease" 20 "Asthma" 30 "COPD" 40 "Oral disease" 50 "Metabolic dvsfunction" /// 60 "Stroke" 100 "Other", replace label values outcome outcome * create effects coded summmy variables for outcome tabulate outcome, generate(outcome_) replace outcome 1=-1 if outcome 7==1 replace outcome 2=-1 if outcome 7==1 replace outcome_3=-1 if outcome_7==1 replace outcome_4=-1 if outcome_7==1 replace outcome 5=-1 if outcome 7==1 replace outcome_6=-1 if outcome 7==1 drop outcome_7 label var outcome2 "Detailed outcome" label define outcome2 11 "Composite (CHD, MI, stroke, CVD)" 12 "Myocardial infarction" 13 "Stroke" 14 "Erectile dvsfunction" /// 15 "Heart failure" 16 "Hypertension" 17 "CHD" /// 21 "Asthma" 22 "Wheezing/cough" 23 "Bronchitis" /// 31 "COPD" 32 "Respiratory symptoms" /// 41 "Poor oral health" 42 "Periodontitis/gum disease" 43 "Dry mouth" 44 "Loose/lost tooth" /// 51 "Metabolic syndrome" 52 "Hypertension" 53 "Prediabetes" 54 "Waist circumference" /// 61 "Stroke" /// 101 "Bone fracture" 102 "Cancer" 103 "Skin cancer" 104 "COVID" 105 "Obesity" 106 "General health" 107 "Depression" /// 108 "Arthritis" 109 "Oral HPV" 110 "Sleep disorder" 111 "Difficulty concentrating" 112 "Preterm birth" 111 113 "Not breastfeeding" 114 "Low gestational weight gain" 115 "Fatty liver disease" 116 "Hospitalization/ED" 117 "Sleep apnea" /// 118 "Impaired visiion" 119 "Atopic dermatitis", replace label values outcome2 outcome2 label var samplesize "Sample size of study" label var adult "Adult or Youth sample" label define adult 0 "Adult (min age 18+)" 1 "Youth (min age <18)" label values adult adult label var year "Last year data collected" gen year c=year-2017 label var year_c "Last year data collected (centered on 2016.5)" label var diagnosis "When diagnosed" label define diagnosis 0 "Current (usually last 12 mo)" 1 "Ever" label values diagnosis diagnosis label var longitudinal "Longitudinal or cross-section" label define longitudinal 1 "Longitudinal" 0 "Cross-sectional" label values longitudinal longitudinal label var reference "Reference condition" label define reference 0 "Never use" 1 "Non-current use" label values reference reference label var n shared "Number of studies sharing same dataset" label var model "Statistical model" label define model 1 "Multivariate" 2 "Stratified" 3 "Both" label values model model *SE inflators for cases where several studies used same dataset for same outcome *in same year using Bonferroi correction. (Numbers are ratios of Bonferroni-*adjusted z values divided by 1.959964. matrix SEinflator = (1, 1.143594, 1.221441, 1.274363, 1.314223, 1.346074) label var EM "Ecig risk (multivariate)" gen EM ln=ln(EM) gen EMlo ln=ln(EMlo) gen EMhi ln=ln(EMhi) gen EMse=(EMhi ln-EMlo ln)/(2*1.96) label var ES "Ecig risk (stratified)" gen ES ln=ln(ES) gen ESlo_ln=ln(ESlo) gen EShi ln=ln(EShi) gen ESse=(EShi ln-ESlo ln)/(2*1.96) label var CM "Cig risk (multivariate)" gen CM ln=ln(CM) gen CMlo_ln=ln(CMlo)

```
gen CMhi ln=ln(CMhi)
gen CMse=(CMhi ln-CMlo ln)/(2*1.96)
label var CS "Cig risk (stratified)"
gen CS ln=ln(CS)
gen CSlo_ln=ln(CSlo)
gen CShi ln=ln(CShi)
gen CSse=(CShi_ln-CSlo_ln)/(2*1.96)
label var DNM "Dual vs nothing (multivariate)"
gen DNM ln=ln(DNM)
gen DNMlo ln=ln(DNMlo)
gen DNMhi_ln=ln(DNMhi)
gen DNMse=(DNMhi ln-DNMlo ln)/(2*1.96)
label var DNS "Dual vs nothing (stratified)"
gen DNS ln=ln(DNS)
gen DNSlo_ln=ln(DNSlo)
gen DNShi ln=ln(DNShi)
gen DNSse=(DNShi_ln-DNSlo_ln)/(2*1.96)
label var DSM "Dual vs smoking (multivariate)"
gen DSM ln=ln(DSM)
gen DSMlo_ln=ln(DSMlo)
gen DSMhi ln=ln(DSMhi)
gen DSMse=(DSMhi ln-DSMlo ln)/(2*1.96)
label var DSS "Dual vs smoking (stratified)"
gen DSS ln=ln(DSS)
gen DSSlo_ln=ln(DSSlo)
gen DSShi_ln=ln(DSShi)
gen DSSse=(DSShi_ln-DSSlo_ln)/(2*1.96)
label var ECM "Ecig vs cig (multivariate)"
gen ECM ln=ln(ECM)
gen ECMlo_ln=ln(ECMlo)
gen ECMhi ln=ln(ECMhi)
gen ECMse=(ECMhi ln-ECMlo ln)/(2*1.96)
label var ECS "Ecig vs cig (stratified)"
gen ECS ln=ln(ECS)
gen ECSlo ln=ln(ECSlo)
gen ECShi_ln=ln(ECShi)
gen ECSse=(ECShi_ln-ECSlo_ln)/(2*1.96)
label var EN "Ecig vs nothing among never smokers (stratified)"
gen EN ln=ln(EN)
gen ENlo_ln=ln(ENlo)
gen ENhi_ln=ln(ENhi)
gen ENse=(ENhi_ln-ENlo_ln)/(2*1.96)
label var EN "Eciq vs nothing among former smokers (stratified)"
gen EF_ln=ln(EF)
gen EFlo_ln=ln(EFlo)
gen EFhi ln=ln(EFhi)
gen EFse=(EFhi_ln-EFlo_ln)/(2*1.96)
/*Merge the multivariate and stratified results, selecting the smaller OR for the cases where both are available
These are the cases where there are both as of 1 Oct 2023:
```

	+				+
	I	study	EM	ES	E
9.	Liu	(2022)	1.17	1.25	1.17
20.	Cai	(2023)	1.3	.75	.75
26.	Miller	(2021)	1.31	1.32	1.31
30.	Zhang	(2022)	1.22	1.54	1.22
39.	Cho	(2016)	2.77	2.74	2.74
45.	Lee	(2023)	1.22	1.96	1.22
48.	McConnell	(2017)	1.24		1.24
66.	Wang	(2016)	1.28	2.06	1.28
69.	Wills	(2020)	1.3	1.29	1.29
72.	Xie	(2022)	1.32	1.62	1.32
73.	Antwi	(2022)	1.53	3.17	1.53
74.	Barrameda	(2021)	1.83	4.36	1.83
94.	AlQobaly	(2022)	1.38	. 95	.95

. list study EM ES E if model==3

```
104. |
         Regan (2021) 1.09 1.69 1.09 |
                                 . 1.43 |
118. |
       Agoons (2021) 1.43
    +----
            -----+
*/
gen E=.
gen Elo=.
gen Ehi=.
label var E "Ecig risk"
gen whichE=.
label var whichE "Source of E pooled value"
label values whichE model
replace E=EM if model==1 | (model==3 & EM<ES)
replace Elo=EMlo if model==1 | (model==3 & EM<ES)</pre>
                                                  //EM<ES also handles ES missing
replace Ehi=EMhi if model==1 | (model==3 & EM<ES)</pre>
replace whichE=1 if model==1 | (model==3 & EM<ES)</pre>
replace E=ES if model==2 | (model==3 & ES<EM)
replace Elo=ESlo if model==2 | (model==3 & ES<EM)
replace Ehi=EShi if model==2 | (model==3 & ES<EM)
replace whichE=2 if model==2 | (model==3 & ES<EM)
replace whichE=. if E==.
gen E ln=ln(E)
gen Elo_ln=ln(Elo)
gen Ehi_ln=ln(Ehi)
gen Ese=(Ehi ln-Elo ln)/(2*1.96)
*Inflate SE and CI to account for shared studies
gen EseI=Ese*SEinflator[1,n_shared]
gen Elo lnI=E ln-1.96*EseI
gen Ehi_lnI=E_ln+1.96*EseI
```

/* Here are studies where model=3 (both) for cig risks as of 1 Oct 2023:

. list study CM CS C if model==3

-	+				+
		study	CM	CS	сI
9.	 Liu	(2022)	1.45	1.35	1.35
20.	Cai	(2023)			. 1
26.	Miller	(2021)	1.27		1.27
30.	Zhang	(2022)	•		. 1
39.	Cho	(2016)	1.47		1.47
45.	l Lee	(2023)	1.15		1.15
48.	McConnell	(2017)			. 1
66.	Wang	(2016)			. 1
69.	Wills	(2020)	1.24	1.23	1.23
72.	Xie	(2022)	•	2.07	2.07
73.	Antwi	(2022)	4.75		4.75
74.	Barrameda	(2021)	•		. 1
94.	AlQobaly	(2022)	1.72		1.72
104.	Regan	(2021)			. 1
118.	Aqoons	(2021)		1.63	1.63
-	+				+

*/

```
gen C=.
gen Clo=.
gen Chi=.
label var C "Cig risk"
gen whichC=.
label var whichC "Source of C pooled value"
label values whichC model
replace C=CM if model==1 | (model==3 & CM<CS) //CM<CS handles CS missing
replace Clo=CMlo if model==1 | (model==3 & CM<CS)</pre>
replace Chi=CMhi if model==1 | (model==3 & CM<CS)
replace whichC=1 if model==1 | (model==3 & CM<CS)
replace C=CS if model==2 | (model==3 & CS<CM)
replace Clo=CSlo if model==2 | (model==3 & CS<CM)
replace Chi=CShi if model==2 | (model==3 & CS<CM)
replace whichC=2 if model==2 | (model==3 & CS<CM)</pre>
replace whichC=. if C==.
gen C_ln=ln(C)
gen Clo ln=ln(Clo)
gen Chi ln=ln(Chi)
gen Cse=(Chi_ln-Clo_ln)/(2*1.96)
```

```
*Inflate SE and CI to account for shared studies
gen CseI=Cse*SEinflator[1,n_shared]
```

```
gen Clo lnI=C ln-1.96*CseI
gen Chi_lnI=C_ln+1.96*CseI
*Compute OR for ecig vs cig comparison
*Multivariate
gen ECCMse_diff=sqrt(EMse^2+CMse^2)
gen ECCM_ln=EM_ln-CM_ln
gen ECCM=exp(ECCM ln)
label var ECCM "Ecig v cig (computed, multivariate)"
gen ECCMlo_ln=ECCM_ln-1.96*ECCMse_diff
gen ECCMhi ln=ECCM ln+1.96*ECCMse diff
gen ECCMlo=exp(ECCMlo ln)
gen ECCMhi=exp(ECCMhi_ln)
*Stratified
gen ECCSse diff=sqrt(ESse^2+CSse^2)
gen ECCS ln=ES ln-CS ln
gen ECCS=exp(ECCS ln)
label var ECCS "Ecig v cig (computed, stratified)"
gen ECCSlo_ln=ECCS_ln-1.96*ECCSse diff
gen ECCShi_ln=ECCM_ln+1.96*ECCSse_diff
gen ECCSlo=exp(ECCSlo ln)
gen ECCShi=exp(ECCShi_ln)
* Compute EC from E and C
gen ECse=sqrt(Ese^2+Cse^2)
gen EC ln=E ln-C ln
gen EC=exp(EC_ln)
label var EC "Ecig v cig"
gen EClo_ln=EC_ln-1.96*ECse
gen EChi_ln=EC_ln+1.96*ECse
gen EClo=exp(EClo ln)
gen EChi=exp(EChi_ln)
/* When EC is computed both the E and C numbers come from the same kind of study
(multivariate or stratified) so we can use that to define whichEC*/
gen whichEC=.
label var whichEC "Source of EC estimate"
label values whichEC model
replace whichEC=whichE if EC<.
                              //In these cases whichE=whichC
/* These are comparisons of the computed ECs (EC) vs directly measured ECs (ECS) as of 1 Oct 2023:
. list study ECS EC if ECS<.
                                 ----+
    +-----
                study ECS EC |
    1
    |-----|
 2. | Berlowitz (2022) .66 .66 |
                              .3 |
.77 |
 8. | Hirschtick (2022)
                          .3
                         .77
 16. | Hirschtick (2022)
 17. | Parekh (2020a)
                          . 43
                                 .43 1
         Patel (2022) 1.15 1.15 |
 18. |
    |-----|
 26. | Miller (2021) .96 .96 |
27. | Okafor (2022) 1.85 1.85 |
 46. |
          Li (2020)
                        .61
                                .61 |
                              1.06 |
       Wills (2020) 1.06
Xie (2022) .78
 69. I
 72. |
                         .78
                                .78 |
                                ----|
    |-----
 85. | Paulin (2022) .71
                              .71 |
                        .86
.39
         Wills (2019)
                                .86 |
 89. |
                               .39 |
          Xie (2020a)
 91. I
106. |
                         .79
           Wen (2023)
                                .79 |
122. |
           Wang (2022) 1.22
                              1.22 |
    +----+
Note that the computed values are very close to the directly observed values when we have both.
*/
*But, if there is a directly reported value of EC use that instead of the computed values.
*This will let us pick up a couple more values
gen directEC=.
replace directEC=0 if whichEC < .
```

replace directEC=1 if ECS < .
label var directEC "EC source"
label define directEC 0 "Computed" 1 "Direct estimate", replace
label values directEC directEC</pre>

replace whichEC=2 if directEC==1

replace EC=ECS if directEC==1

replace EClo=ECSlo if directEC==1

replace EChi=ECShi if directEC==1
replace EC_ln=ln(EC) if directEC==1
replace EClo_ln=ln(EClo) if directEC==1
replace EChi_ln=ln(EChi) if directEC==1
replace ECse=(EChi_ln=EClo_ln)/(2*1.96)
*/

/* There are no studies (as of 1 Oct 2023) that have dual vs nothing numbers for both multivariate and stratified models, so merging the data doesn't have to account for model=3 (both)

. list study DNM DNS

. list	t study DNM DNS		
-	study	DNM	+ DN
1.	Alzahrani (2018)		. i
2.	Berlowitz (2022)	•	1.54
3. 4.	El-Shahawy (2022) Farsalinos (2019)	•	•
5.	Falk (2022)		3.84
6.	Gathright (2019)		1.76
7. 8.	Goldberg Scott (2023) Hirschtick (2022)	:	1.84
9.	Liu (2022)	•	• 1
10.	Mahoney (2022)		1.85
11.	Osei (2019a)		2.44
	Qeadan (2023)	•	• [
	Bricknell (2021) Falk (2022)	•	2.4
	Falk (2022) Goldberg Scott (2023)	•	2.4
16.	Hirschtick (2022)		1.12
17.	Parekh (2020a)	•	2.91
18. 19.	Patel (2022) Atuegwu (2019a)	•	•
20.	Cai (2023)	•	• •
21.	Cook (2023a)		1.15
22.	Falk (2022)		1.66
23.	Kim (2020a)	•	2.79
24.	Kim (2020b)	1.13	1.13
25.	Kim (2022)		·
26. 27.	Miller (2021) Okafor (2022)	•	•
27.	Shi (2022)	•	1.45
29.	Sompa (2022)		
30.	Zhang (2022)	•	· · ·
31.	Alnajem (2020)		1.92 j
32.	Bayly (2019)	•	• !
33. 34.	Bhatta (2020) Bircan (2021)	•	•
35.	Bircan (2021) Boyd (2021)	•	
36.	Braymiller (2020)		۱ ۱ ،
37.	Brunette (2023)	•	• !
38. 39.	Chaffee (2021a) Cho (2016)	•	•
40.		•	
41.	Chung (2020)		1.2
42.	Cordova (2022)	•	.8
43. 44.	Han (2020) Kim (2017)	•	•
44. 45.	Lee (2023)	•	
46.	Li (2020)		2.83
	Mattingly (2023)	•	1.23
	McConnell (2017)	•	•
49. 50.	Osei (2019b) Parekh (2020b)	•	•
51.	Patel (2023)		1.54
	Perez (2019a)		• 1
	Reddy (2021)	•	2.22
	Sargent (2022)	•	2.13
55.	Schneller (2020)	•	1.52

56.	Schweitzer (2017)		
	Sompa (2022)	•	3.6
58.	Stevens (2022)		
59.	Tackett (2020)		
60.	Tackett (2023)	•	
61.	Tanski (2022)	•	•
62.	То (2023)	•	•
63.	Tran (2020)	1.41	1.41
	Varella (2022)	•	•
65.	Walker (2021)	•	•
66.	Wang (2016)		
67.		•	.68
68.	Wills (2023) Wills (2019)	•	1.26
69.	Wills (2019)	•	1.20
70.	Wills (2022)	•	•
	(,		
71.	Xie (2020b)		
72.	Xie (2022)		
73.	Antwi (2022)		
74.	Barrameda (2021)		
75.	Bhatta (2020)		.
76.	Bircan (2021)	•	•
	Cook (2023b)	•	•
	Cordova (2022)	•	•
	Giovanni (2020)	•	1.16
80.	Goldberg Scott (2023)	•	•
81.	 Hedman (2018)		
	Kim (2013)	•	2.83
83.	Osei (2020)	•	6.89
	Parekh (2020)	•	5.07
85.	Paulin (2022)		1.99
86.	Perez (2019b)		
87.	Qeadan (2023)		
88.	Strong (2018)		
89.	Wills (2019)		3.92
90.	Wills (2022)		
91. 00	Xie (2020a)	•	4.39
92. 93.	Xie (2020b)	•	1 70
	Akinkugbe (2019)	•	1.72
94. 95.	AlQobaly (2022) Atuegwu (2019b)	•	•
55.	ACUEGWU (2013D)	·	·
96.	Chaffee (2021b)		
	Chaffee (2022)		1.8
	Cho (2017)		
99.	Huilgol (2019)		
100.	Jeong (2020)		
	Silveira (2022)	•	•
	Vora (2019)	•	
	Hawkins (2021)	•	1.03
	Regan (2021)	•	
105.	Wang (2020)	•	2.07
106.	Wen (2023)		1.18
108.		•	1.10
107.		•	•
	Gaiha (2020)	•	6.84
	Moyers (2023)		.77
111.	Goldberg Scott (2023)	•	
	То (2023)	•	2.13
	Zhu (2023)	•	1.78
	Christian (2023)	•	1.28
115.	Wiener (2020)	•	•
110			
116.	Tian (2022)	•	•
	Smith (2023)	•	•
118. 119.	Agoons (2021) Goldberg Scott (2023)	•	•
	Goldberg Scott (2023) Xie (2020c)	•	2.07
	, ATE (2020C)	•	

1.47 | Han (2023) 121. | 122. | Wang (2022) 1.84 | 123. | Nguyen (2023) · 1 . 124. | Hong (2021) . | ----+ + */ *Inflate SE and CI to account for shared studies gen ECseI=ECse*SEinflator[1,n shared] gen EClo_lnI=EC_ln-1.96*ECseI gen EChi lnI=EC ln+1.96*ECseI gen DN=. gen DNlo=. gen DNhi=. label var DN "Dual vs. nothing" gen whichDN=. label var whichDN "Source of DN pooled value" label values whichDN model replace DN=DNM if model==1 replace DNlo=DNMlo if model==1 replace DNhi=DNMhi if model==1 replace whichDN=1 if model==1 replace DN=DNS if model==2 replace DNlo=DNSlo if model==2 replace DNhi=DNShi if model==2 replace whichDN=2 if model==2 replace whichDN=. if DN==. gen DN ln=ln(DN) gen DNlo_ln=ln(DNlo) gen DNhi_ln=ln(DNhi) gen DNse=(DNhi_ln-DNlo_ln)/(2*1.96) *Inflate SE and CI to account for shared studies gen DNseI=DNse*SEinflator[1,n shared] gen DNlo lnI=DN ln-1.96*DNseI gen DNhi lnI=DN ln+1.96*DNseI /* Dual vs cig comparison In the multivariate models that include only ecigs and cigs, the ecig vs nothing risk is also the dual vs cigs risk because ecigs and cigs have independent effects. Specifially, the ecig risk is also the marginal risk above smoking. As a result, we have three different estimates of the dual vs cig comparison: 1. Estimate using the ecig vs nothing risk as an estimate of dual use vs cig risk (EM) 2. Direct estimates from multivariate models (DSM) 3. Direct estimates from stratified models (DSS) 4. Calculate estimate from stratified dual vs nothing (DNS) and cig vs nothing (CNS) [added to accomodate Chaffee (2022)](DSSSC) Because there are a few studies in which we have multiple estimates, we will pick the estimate with the smallest point estimates. */ * Compute DCCS from DSS and CS (for case 4) gen DCCSse=sqrt(DNSse^2+CSse^2) gen DCCS ln=DNS ln-CS ln gen DCCS=exp(DCCS ln) label var DCCS "Dual v cig stratified (computed)" gen DCCSlo_ln=DCCS_ln-1.96*DCCSse gen DCCShi ln=DCCS ln+1.96*DCCSse gen DCCSlo=exp(DCCSlo_ln) gen DCCShi=exp(DCCShi ln) gen DC=. gen DClo=. gen DChi=. label var DC "Dual vs cig risk" gen whichDC=. label var whichDC "Source of DC pooled value" label define whichDC 1 "Marginal multivariate marginal ecig risk" 2 "Direct multivariate" 3 "Direct Stratified" 4 "Computed stratified" label values whichDC whichDC *Find the smallest point estimate of the risk gen DCmin=. replace whichDC=1 if EM<. replace DCmin=EM if EM<.

107

replace whichDC=2 if DSM<DCmin & DSM<. replace DCmin=DSM if DSM<DCmin & DSM<. replace whichDC=3 if DSS<DCmin & DSS<. replace DCmin=DSS if DSS<DCmin & DSS<. replace whichDC=4 if DCCS<DCmin & DCCS<. & DSS==. //don't use computed value if directly reported value replace DCmin=DCCS if DCCS<DCmin & DCCS<. & DSS==. *Now store the selected values replace DC=EM if whichDC==1 replace DClo=EMlo if whichDC==1 replace DChi=EMhi if whichDC==1 replace DC=DSM if whichDC==2 replace DClo=DSMlo if whichDC==2 replace DChi=DSMhi if whichDC==2 replace DC=DSS if whichDC==3 replace DClo=DSSlo if whichDC==3 replace DChi=DSShi if whichDC==3 replace DC=DCCS if whichDC==4 replace DClo=DCCSlo if whichDC==4 replace DChi=DCCShi if whichDC==4 gen DC ln=ln(DC) gen DClo_ln=ln(DClo) gen DChi_ln=ln(DChi) gen DCse=(DChi_ln-DClo_ln)/(2*1.96)

/* Here are the values as of 1 Oct 2023 (including code for case 4):

. list study EM DSM DNS CS DSS DCCS DC whichDC

whichDC	DC	DCCS	DSS	cs	DNS	DSM	EM	study	
Marginal multivariate marginal ecig risk	1.79		•				1.79	Alzahrani (2018)	1.
Direct Stratified	1.01	1.006536	1.01	1.53	1.54			Berlowitz (2022)	2.
Marginal multivariate marginal ecig risk	2.24	•			1.68		2.24	El-Shahawy (2022)	3.
Marginal multivariate marginal ecig risk	1.31						1.31	Farsalinos (2019)	4.
Computed stratified	1.352113	1.352113	•	2.84	3.84	•	•	Falk (2022)	5. I
Computed stratified	1.913043	1.913043		. 92	1.76			Gathright (2019)	6.
Marginal multivariate marginal ecig risk	1.3	•					1.3	Goldberg Scott (2023)	7.
Direct Stratified	. 93	.9246231	. 93	1.99	1.84			Hirschtick (2022)	8.
Computed stratified	.4740741	.4740741		1.35	.64		1.17	Liu (2022)	9.
Computed stratified	1.284722	1.284722	•	1.44	1.85	•	•	Mahoney (2022)	10.
Direct Stratified	1.36		1.36		2.44			Osei (2019a)	11.
Marginal multivariate marginal ecig risk	1.02						1.02	Qeadan (2023)	12.
Marginal multivariate marginal ecig risk	1.62						1.62	Bricknell (2021)	13.
Computed stratified	1.137441	1.137441		2.11	2.4			Falk (2022)	14.
Marginal multivariate marginal ecig risk	1.65		•				1.65	Goldberg Scott (2023)	15. j
Direct Stratified	.5	.4955752	.5	2.26	1.12			Hirschtick (2022)	16.
Direct Stratified	1.83	1.830189	1.83	1.59	2.91			Parekh (2020a)	17. 1
Direct Stratified	1.14		1.14				_	Patel (2022)	18.
								Atuegwu (2019a)	19.
Direct Stratified	1.21	•	1.21	•	1.35		1.3	Cai (2023)	20.
Computed stratified	.9504132	.9504132		1.21	1.15			Cook (2023a)	21. I
Computed stratified	1.202899	1.202899	•	1.38	1.66	•	•	Falk (2022)	22. 1
Direct Stratified	1.57	1.897959	1.57	1.47	2.79	•	•	Kim (2020a)	23. 1
Marginal multivariate marginal ecig risk	1.4	1.057505	1.07		2.75	•	1.4		24.
······································				1.2				Kim (2022)	25.
Direct Stratified	1.3		1.3		1.77		1.31	Miller (2021)	26. I
Direct Stratified	1.05	•	1.05	.93	±.,,	•	1.51	Okafor (2022)	27. 1
Computed stratified	1.043165	1.043165	1.00	1.39	1.45	•	•	Shi (2022)	28. 1
Marginal multivariate marginal ecig risk	1.045105	1.045105	•	1.55	1.45	•	1.9		29.
Marginal multivariate marginal ecig risk	1.22	•	•	•	1.14		1.22	Zhang (2022)	30.
Computed stratified	1.109827	1.109827		 1.73	1.92			Alnajem (2020)	 31.
Marginal multivariate marginal ecig risk	.9	1.109027	•	1.75	1.92	•	.9	Bayly (2019)	32. 1
Marginal multivariate marginal ecig risk	1.3	•	•	•	•	•	1.3		33. 1
Marginar marcivariate marginar ecry risk	1.5	•	•	•	•	•	1.5	(,	34.
Marginal multivariate marginal ecig risk	1.09	•	•	•	•		1.09	· · ·	35.
Manginal multimaniate marginal agin mich									36
Marginal multivariate marginal ecig risk	.85	•	•	•	•	•	.85	· • · ·	36.
Marginal multivariate marginal ecig risk	1.12	•	•	•	•	•	1.12	· · ·	37.
Marginal multivariate marginal ecig risk	1.36 1.3	•	1.3	•	•	•	1.36 2.77		38. 39.
Direct Stratified Marginal multivariate marginal ecig risk	1.78	•	1.5	•			1.78		40.
	 75	 75		1 6	1 0				41
Computed stratified	.75	.75	•	1.6	1.2	•	•		41.
Computed stratified	1	1	•	. 8	. 8	•	. 1 21	Cordova (2022)	42.
Marginal multivariate marginal ecig risk	1.31	•	•	•	•	•	1.31	Han (2020)	43.
Marginal multivariate marginal ecig risk	1.13	•	•	•	•	•	1.13	Kim (2017)	44.

46 Li (2020) 2.83 2.75 1.03 1.02901 1.03 Direct Statified 47 Matingly (2023) 1.23 1.23 Matingly (2023) 1.24 1.24 Matingly (2023) 1.14 1.45 2.11 Matingly (2023) 1.54 1.65 .211 Direct milituraties arginal edg (ist) 50 Patel (2023) .1.54 1.65 .9166666 Computed stratified 52 Perex (2019a) .2.22 1.78 1.24 .9102564 .9102564 .90025666 Computed stratified 54 Sargent (2022) .2.23 1.64 .2.25 .2.25 <td< th=""><th>45.</th><th>Lee (2023</th><th>) 1.22</th><th></th><th>1.11</th><th></th><th></th><th></th><th>1.22</th><th>Marginal multivariate marginal ecig risk </th></td<>	45.	Lee (2023) 1.22		1.11				1.22	Marginal multivariate marginal ecig risk
47. Mettingly (2023) . 1.23 1.71 .712292 .712292 .702022 Computed straining risk (2015) 48. Marginal multivariate marginal edg risk (2015) . 1.39 . 1.34 Marginal multivariate marginal edg risk (2015) 51. Paraka (2023) . 1.54 1.64 . 9166666 . . . 52. Paraka (2023) . 1.54 1.24 1.247191 1.24 . . . 53. Beddy (2021) . 2.23 2.33 .	46.	Li (2020) .		2.83	2.75	1.03	1.029091	1.03	Direct Stratified
del McConnell (2017) 1.24 . 1.24 Marginal multivariate marginal ecig risk in the print marginal ecig risk in the print multivariate margin										•
49. Osei (2019b) 1.39 . . . 1.39 Marginal multiveriate marginal coig risk 50. Parach (2020b) . 2.11										· · · · · · · · · · · · · · · · · · ·
50. Parekk (2020b) 2.11 1.49 2.11 Direct multivariate 51. Patea (2033) 1.54 1.66 .916666 Computed stratified 52. Parea (2013a) 2.22 1.78 1.24 1.247131 1.24 Direct Stratified 53. Meddy (2021) 2.22 1.78 1.24 1.247131 1.24 Direct Stratified 54. Sangunt (2021) 1.22 1.83 .3867864 .3867864 Computed stratified 55. Schweitzer (2017) 1.48 Marginal multivariate marginal ecig risk Computed stratified 56. Schweitzer (2020) .3.6 1.6 2.25 2.5 Computed stratified 57. Scepa (2022) . . . 1.35 Marginal multivariate marginal ecig risk 60. Tracket (2020) 1.25 . . 1.21 Marginal multivariate marginal ecig risk 62. Tracket (2020) 1.04 . . 1.24 Marginal multivariate marginal ecig risk 63. <td></td> <td></td> <td></td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td></td> <td></td>				•	•	•	•	•		
Image: Solution of the second secon		•	•	2 11	•	1 4 9	•	•		
52. Perce (2019a) .			, . 							
22. Parce (2019a)	51.	Patel (2023) .		1.54	1.68		.9166666	.9166666	Computed stratified
54. Sargent (2020) 2.13 2.34 .9102564 Computed stratified 55. Schweitzer (2017) 1.48 . . 1.48 Marginal multivariate marginal ecip riak 56. Schweitzer (2017) 1.48 . . 1.48 Marginal multivariate marginal ecip riak 57. Sompa (2022) . 3.6 1.6 2.25 2.25 Computed stratified 58. Stevens (2021) 59. Tackett (2020) 1.35 .	52.	Perez (2019a) .							
54. Sargent (2022) 2.13 2.34 .396764 .3002564 Computed stratified 55. Schweitzer (2017) 1.48 . 1.48 Marginal multivariate marginal ecig risk 56. Schweitzer (2017) 1.48 . 1.48 Marginal multivariate marginal ecig risk 57. Sompa (2022) . 3.6 1.6 2.25 2.25 58. Stevens (2021) . . . 1.55 Marginal multivariate marginal ecig risk 59. Tackett (2020) 1.55 . . . 1.55 Marginal multivariate marginal ecig risk 61. Tranki (2021) 1.25 . . . 1.25 Marginal multivariate marginal ecig risk 62. Tran (2020) 1.04 . . 1.04 Marginal multivariate marginal ecig risk 63. Tran (2020) 1.04 . . 1.04 Marginal multivariate marginal ecig risk 64. Wallse (2021) 1.06 . . 1.06 Marginal multivariate marginal ecig risk 65. Walls (2020) 1.26 1.27 <t< td=""><td>53.</td><td>Reddy (2021</td><td>) .</td><td></td><td>2.22</td><td>1.78</td><td>1.24</td><td>1.247191</td><td>1.24</td><td>Direct Stratified </td></t<>	53.	Reddy (2021) .		2.22	1.78	1.24	1.247191	1.24	Direct Stratified
55. Schweitzer (2020) 1.52 3.93 .3867684 .3867684 Computed stratified 56. Schweitzer (2017) 1.48 . . 1.48 Marginal multivariate marginal ecig risk 57. Sompa (2022) . 3.6 1.6 2.25 2.25 58. Stavens (2020) . . . 1.35 Marginal multivariate marginal ecig risk 60. Tackett (2023) 1.25 . . 1.55 Marginal multivariate marginal ecig risk 61. Tanket (2022) 1.25 . . 1.25 Marginal multivariate marginal ecig risk 62. To (2021) 1.04 . . 1.64 Marginal multivariate marginal ecig risk 63. Tran (2020) 1.04 . . 1.64 Marginal multivariate marginal ecig risk 64. Varella (2021) 1.06 . 1.15 . 1.15 64. Warginal multivariate marginal ecig risk 64. Wills	54.	_			2.13	2.34		.9102564	.9102564	Computed stratified
57. Sompa (2022) 3.6 1.6 2.25 Computed stratified 58. Steven (2023) 1.35 1.35 Marginal multivariate marginal ecig risk 60. Tackett (2023) 1.25 1.35 Marginal multivariate marginal ecig risk 61. Tankki (2023) 1.25 1.25 1.25 Marginal multivariate marginal ecig risk 62. Tackett (2020) 1.41 1.21 Marginal multivariate marginal ecig risk 63. Tran (2020) 1.04 1.04 Marginal multivariate marginal ecig risk 64. Varela (2022) 1.41 1.06 1.06 Marginal multivariate marginal ecig risk 65. Weilg (2016) 1.28 1.15 0.155 Direct Stratified 66. Willa (2020) 1.3 1.62 1.27 .99 .92126 .99 67. Willia (2020) 1.3 1.62 1.23 .32 Marginal multivariate marginal ecig risk 71. Xie (2020b) 1.32 . . .135 Marginal multivariate marginal ecig risk 72. Mila (2020) 1.32 . . <	55.	_			1.52	3.93		.3867684	.3867684	
57. Sompa (2022) 3.6 1.6 2.25 Computed stratified 58. Steven (2023) 1.35 1.35 Marginal multivariate marginal ecig risk 60. Tackett (2023) 1.25 1.35 Marginal multivariate marginal ecig risk 61. Tankki (2023) 1.25 1.25 1.25 Marginal multivariate marginal ecig risk 62. Tackett (2020) 1.41 1.21 Marginal multivariate marginal ecig risk 63. Tran (2020) 1.04 1.04 Marginal multivariate marginal ecig risk 64. Varela (2022) 1.41 1.06 1.06 Marginal multivariate marginal ecig risk 65. Weilg (2016) 1.28 1.15 0.155 Direct Stratified 66. Willa (2020) 1.3 1.62 1.27 .99 .92126 .99 67. Willia (2020) 1.3 1.62 1.23 .32 Marginal multivariate marginal ecig risk 71. Xie (2020b) 1.32 . . .135 Marginal multivariate marginal ecig risk 72. Mila (2020) 1.32 . . <	I									
58. Stevens (2020)				•	•	•	•	•		
59. Tackett (2020) 1.35	57.	Sompa (2022).	•	3.6	1.6	•	2.25	2.25	Computed stratified
60. Tackett (2023) 1.55	58.	Stevens (2022).		•			•	•	•
Image: Construction of the second s	59.	Tackett (2020) 1.35	•					1.35	Marginal multivariate marginal ecig risk
62. To (2023) 1.21	60.	Tackett (2023) 1.55					•	1.55	Marginal multivariate marginal ecig risk
62. To (2023) 1.21										
63. Tran (2020) 1.04				•	•	•	•	•		
66. Varella (2022) 1.41 . 1.41 Marginal multivariate marginal ecig risk 65. Walker (2021) 1.06 . 1.06 Marginal multivariate marginal ecig risk 66. Wang (2016) 1.28 . 1.15 1.15 Direct Stratified 67. Williams (2023) . .68 .79 .8607595 Computed stratified 68. Wills (2019) . 1.26 1.27 .99 .992126 .99 Direct Stratified 70. Wills (2022) 1.3 1.62 1.23 1.317073 1.3 Marginal multivariate marginal ecig risk 71. Xie (2022) 1.32 . . . 1.33 Marginal multivariate marginal ecig risk 72. Xie (2022) 1.32 .88 2.07 .91 .9082125 .91 73. Antwi (2022) 1.33 .47 . .83 Marginal multivariate marginal ecig risk 75. Barameda (2021) . .1.3 Marginal multivariate marginal ecig risk 76. Bircan (2021)	62.	То (2023) 1.21	•	•	•	•	•	1.21	Marginal multivariate marginal ecig risk
65. Walker (2021) 1.06	63.	Tran (2020) 1.04	•	•	•	•	•	1.04	Marginal multivariate marginal ecig risk
Image Image <th< td=""><td>64.</td><td>Varella (2022</td><td>) 1.41</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>1.41</td><td>Marginal multivariate marginal ecig risk </td></th<>	64.	Varella (2022) 1.41	•	•	•	•	•	1.41	Marginal multivariate marginal ecig risk
67. William (2023) .68 .79 .8607595 .8607595 .Computed stratified 68. Wills (2029) .1.26 1.27 .99 .992126 .99 Direct Stratified I 69. Wills (2020) 1.3 1.62 1.21 1.32 1.317073 1.3 Marginal multivariate marginal ecig risk Narginal multivariate marginal ecig risk 70. Wills (2020) 1.32 . . 1.32 Marginal multivariate marginal ecig risk 71. Xie (2020b) 1.32 . . . 1.32 Marginal multivariate marginal ecig risk 72. Xie (2022) 1.53 73. Barrameda (2021) 1.83 .	65.	Walker (2021) 1.06	•	•	•	•	•	1.06	Marginal multivariate marginal ecig risk
67. William (2023) .68 .79 .8607595 .8607595 .Computed stratified 68. Wills (2019) .1.26 1.27 .99 .992126 .99 69. Wills (2022) 1.3 .1.62 1.27 .99 .992126 .99 70. Wills (2022) 1.2 1.2 Marginal multivariate marginal ecig risk 71. Xie (2020b) 1.32 1.32 Marginal multivariate marginal ecig risk 72. Xie (2020b) 1.32 1.32 Marginal multivariate marginal ecig risk 73. Antwi (2022) 1.53 1.83 Marginal multivariate marginal ecig risk 74. Barrameda (2021) 1.83 .147 1.83 Marginal multivariate marginal ecig risk 75. Ebircan (2021) 1.14 Marginal multivariate marginal ecig risk 76. Bircan (2020) 79. Goldberg Scott (2023)	66.	Wang (2016) 1.28				1.15		1.15	Direct Stratified
68. Wills (2019) 1.26 1.27 .99 .992126 .99 Direct Stratified 69. Wills (2020) 1.3 1.62 1.23 1.317073 1.3 Marginal multivariate marginal ecig risk 70. Wills (2022) 1.2 . . 1.2 Marginal multivariate marginal ecig risk 71. Xie (2020) 1.32 . . . 1.32 Marginal multivariate marginal ecig risk 72. Xie (2022) 1.32 73. Antwi (2022) 1.53 .		_			. 68	.79		.8607595		•
69. Wills (2020) 1.3 1.62 1.23 1.32 1.317073 1.3 Marginal multivariate marginal ecig risk 70. Wills (2022) 1.2 . . 1.2 Marginal multivariate marginal ecig risk 71. Xie (2020b) 1.32 . . 1.32 Marginal multivariate marginal ecig risk 72. Xie (2022b) 1.32 . . . 1.32 Marginal multivariate marginal ecig risk 73. Antwi (2022) 1.53 . . .99 Direct Stratified 74. Barrameda (2021) 1.83 1.47 . . 1.83 Marginal multivariate marginal ecig risk 75. Bhatta (2020) 1.44 . . . 1.44 Marginal multivariate marginal ecig risk 76. Bircan (2021) 78. Cordova (2022) . . 1.16 79. Giovanni (2020) . 1.16 			•	•						-
70. Wills (2022) 1.2 . 1.2 Marginal multivariate marginal ecig risk 71. Xie (2020b) 1.32 . . 1.32 Marginal multivariate marginal ecig risk 72. Xie (2020b) 1.32 . . . 1.32 Marginal multivariate marginal ecig risk 73. Antwi (2022) 1.53 . .99 Direct Stratified 74. Barrameda (2021) 1.83 1.47 . . 1.83 Marginal multivariate marginal ecig risk 75. Bhatta (2020) 1.44 . . . 1.44 Marginal multivariate marginal ecig risk 76. Bircan (2021) 77. Coodva (2022) 80. Goldvarni (2020) .				•						
71. Xie (2020b) 1.32 . . . 1.32 Marginal multivariate marginal ecig risk 72. Xie (2022) 1.32 . 1.88 2.07 .91 .9082125 .91 Direct Stratified 73. Antwi (2022) 1.53 . .99 .99 Direct Stratified 74. Barrameda (2021) 1.83 .1.47 . .1.83 Marginal multivariate marginal ecig risk 75. Bhatta (2020) 1.44 . . .1.44 Marginal multivariate marginal ecig risk 76. Bircan (2021) 1.1 Marginal multivariate marginal ecig risk 77. Cook (2023b) 1.1 78. Goldberg Scott (2023) 79. Goldberg Scott (2023) 81. Hedman (2018) . . 2.55 4.03 . 4.03 Direct Stratified 82. Kim (202				•	1.01	1.25	1.01	1.51/0/5		
72. Xie (2022) 1.32 1.88 2.07 .91 .9082125 .91 Direct Stratified 73. Antwi (2022) 1.53 . .99 .99 .99 Direct Stratified 74. Barrameda (2021) 1.83 1.47 . .183 Marginal multivariate marginal ecig risk 75. Bhatta (2020) 1.44 . . 1.44 Marginal multivariate marginal ecig risk 76. Bircan (2021) 1.44 Marginal multivariate marginal ecig risk 77. Cook (2023b) 1.11 . . . 1.11 Marginal multivariate marginal ecig risk 78. Cordova (2022) . .611 78. Govanni (2020) . 1.16 80. Goldberg Scott (2023) .96 81. Hedman (2018) . . 2.55 4.03 				·	·			·		
73. Antwi (2022) 1.53 . .99 .99 Direct Stratified 74. Barrameda (2021) 1.83 1.47 . .1.83 Marginal multivariate marginal ecig risk 75. Bhatta (2020) 1.44 . . .1.83 Marginal multivariate marginal ecig risk 76. Bircan (2021) 1.44 Marginal multivariate marginal ecig risk 77. Cook (2023b) 1.1 . . . 1.1 78. Cordova (2022) . .6.1 . . . 79. Giovanni (2020) . 1.16 80. Goldberg Scott (2023) 81. Hedman (2018) . . 2.55 4.03 . 4.03 Direct Stratified 82. Kim (2021) . 2.83 2.26 1.252212 1.25212 Computed stratified 83. Osei (2020) . 5.07 3.28 . 1.545732 1.545732	71.	Xie (2020b) 1.32			•			1.32	Marginal multivariate marginal ecig risk
74. Barrameda (2021) 1.83 1.47 . 1.83 Marginal multivariate marginal ecig risk 75. Bhatta (2020) 1.44 . . 1.44 Marginal multivariate marginal ecig risk 76. Bircan (2021) . . . 1.44 Marginal multivariate marginal ecig risk 77. Cook (2023b) 1.1 . . 1.1 Marginal multivariate marginal ecig risk 78. Cordova (2022) . 6.1 79. Giovanni (2020) . 1.16 80. Goldberg Scott (2023) .96 96 Marginal multivariate marginal ecig risk 81. Hedman (2018) . . 2.55 4.03 82. Kim (2020b) . 5.07 3.28 . 1.545732 1.545732 Computed stratified 83. Osei (2020b) 	72.	Xie (2022) 1.32		1.88	2.07	.91	.9082125	. 91	Direct Stratified
75. Bhatta (2020) 1.44 . . 1.44 Marginal multivariate marginal ecig risk 76. Bircan (2021) 77. Cook (2023b) 1.1 . . . 1.1 Marginal multivariate marginal ecig risk 78. Cordova (2022) . . 6.1 . . . 79. Giovanni (2020) . 1.16 80. Goldberg Scott (2023) .96 81. Hedman (2018) . . 2.55 4.03 . 4.03 Direct Stratified 82. Kim (2021) . 2.83 2.26 1.252212 1.252212 Computed stratified 83. Osei (2020b) . 6.69 . 1.66 Direct Stratified 84. Parekh (2020b) . 5.07 3.28 . 1.43 Marginal multivariate marginal ecig risk 85. Paulin (2022)	73.	Antwi (2022) 1.53				. 99		. 99	Direct Stratified
76. Bircan (2021) .	74.	Barrameda (2021) 1.83		1.47				1.83	Marginal multivariate marginal ecig risk
77. Cook (2023b) 1.1 . . 1.1 Marginal multivariate marginal ecig risk 78. Cordova (2022) . . 6.1 . . . 79. Giovanni (2020) . 1.16 80. Goldberg Scott (2023) .96 . <td>75.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.44</td> <td></td>	75.								1.44	
77. Cook (2023b) 1.1 . . 1.1 Marginal multivariate marginal ecig risk 78. Cordova (2022) . . 6.1 . . . 79. Giovanni (2020) . 1.16 80. Goldberg Scott (2023) .96 . <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td>										
78. Cordova (2022) . . 6.1 .				•	•	•	•	•		
79. Giovanni (2020) . 1.16 .				•	•		•	•	1.1	Marginal multivariate marginal ecig risk
80. Goldberg Scott (2023) .96 . . .96 Marginal multivariate marginal ecig risk 81. Hedman (2018) . .2.55 4.03 .4.03 Direct Stratified 82. Kim (2021) .2.83 2.26 .1.252212 1.252212 Computed stratified 83. Osei (2020) .6.89 .1.66 .1.66 Direct Stratified 84. Parekh (2020b) .5.07 3.28 .1.545732 1.545732 Computed stratified 85. Paulin (2022) .1.99 1.92 1.04 1.036458 1.04 Direct Stratified 86. Perez (2019b) 1.43 . . . 1.43 Marginal multivariate marginal ecig risk 87. Qeadan (2023) 1.11 . . . 1.39 Marginal multivariate marginal ecig risk 88. Strong (2018) 1.39 2.07 . . 1.39 Marginal multivariate marginal ecig risk 90. Wills (2019) .3.92 2.98 1.32 1.315436 1.32 Direct Stratified 90. <				•		6.1	•	•	•	•
81. Hedman (2018) . . 2.55 4.03 4.03 Direct Stratified 82. Kim (2021) . 2.83 2.26 . 1.252212 1.252212 Computed stratified 83. Osei (2020) . 6.89 . 1.66 . 1.66 Direct Stratified 84. Parekh (2020b) . . 5.07 3.28 . 1.545732 1.545732 Computed stratified 84. Parekh (2020b) . . 5.07 3.28 . 1.545732 1.545732 Computed stratified 85. Paulin (2022) . 1.99 1.92 1.04 1.036458 1.04 Direct Stratified 96. Perez (2019b) 1.43 . . . 1.43 Marginal multivariate marginal ecig risk 87. Qeadan (2023) 1.11 . . . 1.39 Marginal multivariate marginal ecig risk 88. Strong (2018) 1.39 2.07 . . 1.39 Marginal multivariate marginal ecig risk 90. Will				•	1.16	•	•	•		
82. Kim (2021) . 2.83 2.26 1.252212 1.252212 Computed stratified 83. Osei (2020) . 6.89 1.66 1.66 Direct Stratified 84. Parekh (2020b) . 5.07 3.28 1.545732 1.545732 Computed stratified 85. Paulin (2022) . 1.99 1.92 1.04 1.036458 1.04 Direct Stratified 86. Perez (2019b) 1.43 . . . 1.43 Marginal multivariate marginal ecig risk 87. Qeadan (2023) 1.11 . . . 1.11 Marginal multivariate marginal ecig risk 88. Strong (2018) 1.39 2.07 . . 1.39 Marginal multivariate marginal ecig risk 89. Wills (2019) . 3.92 2.98 1.32 1.315436 1.32 Direct Stratified 90. Wills (2022) 1.44 . . . 1.44 Marginal multivariate marginal ecig risk 91. Xie (2020a) . 4.39 3.8 1.16	80.	Goldberg Scott (2023) .96	·	·	·	·	·	. 96	Marginal multivariate marginal ecig risk
82. Kim (2021) . 2.83 2.26 1.252212 1.252212 Computed stratified 83. Osei (2020) . 6.89 1.66 1.66 Direct Stratified 84. Parekh (2020b) . 5.07 3.28 1.545732 1.545732 Computed stratified 85. Paulin (2022) . 1.99 1.92 1.04 1.036458 1.04 Direct Stratified 86. Perez (2019b) 1.43 . . . 1.43 Marginal multivariate marginal ecig risk 87. Qeadan (2023) 1.11 . . . 1.11 Marginal multivariate marginal ecig risk 88. Strong (2018) 1.39 2.07 . . 1.39 Marginal multivariate marginal ecig risk 89. Wills (2019) . 3.92 2.98 1.32 1.315436 1.32 Direct Stratified 90. Wills (2022) 1.44 . . . 1.44 Marginal multivariate marginal ecig risk 91. Xie (2020a) . 4.39 3.8 1.16	81.	Hedman (2018) .			2.55	4.03		4.03	Direct Stratified
83. Osei (2020) . . 6.89 . 1.66 . 1.66 Direct Stratified 84. Parekh (2020b) . . 5.07 3.28 . 1.545732 1.545732 Computed stratified 85. Paulin (2022) . 1.99 1.92 1.04 1.036458 1.04 Direct Stratified 86. Perez (2019b) 1.43 . . . 1.43 Marginal multivariate marginal ecig risk 87. Qeadan (2023) 1.11 . . . 1.11 Marginal multivariate marginal ecig risk 88. Strong (2018) 1.39 2.07 . . 1.39 Marginal multivariate marginal ecig risk 89. Wills (2019) . 3.92 2.98 1.32 1.315436 1.32 Direct Stratified 90. Wills (2022) 1.44 . . . 1.44 Marginal multivariate marginal ecig risk 91. Xie (2020a) . 4.39 3.8 1.16 1.155263 1.16 Direct Stratified 92. Xie (2020b)					2.83			1.252212		
84. Parekh (2020b) . . 5.07 3.28 . 1.545732 1.545732 Computed stratified 85. Paulin (2022) . 1.99 1.92 1.04 1.036458 1.04 Direct Stratified 86. Perez (2019b) 1.43 . . . 1.43 Marginal multivariate marginal ecig risk 86. Perez (2019b) 1.43 . . . 1.43 Marginal multivariate marginal ecig risk 87. Qeadan (2023) 1.11 . . . 1.11 Marginal multivariate marginal ecig risk 88. Strong (2018) 1.39 2.07 . . 1.39 Marginal multivariate marginal ecig risk 89. Wills (2019) . 3.92 2.98 1.32 1.315436 1.32 Direct Stratified 90. Wills (2022) 1.44 . . . 1.44 Marginal multivariate marginal ecig risk 91. Xie (2020a) . 4.39 3.8 1.16 1.155263 1.16 Direct Stratified 92. Xie (2020b)	83.				6.89		1.66		1.66	
85. Paulin (2022) . 1.99 1.92 1.04 1.036458 1.04 Direct Stratified 86. Perez (2019b) 1.43 . . 1.43 Marginal multivariate marginal ecig risk 86. Qeadan (2023) 1.11 . . . 1.11 Marginal multivariate marginal ecig risk 87. Qeadan (2023) 1.11 . . . 1.11 Marginal multivariate marginal ecig risk 88. Strong (2018) 1.39 2.07 . . 1.39 Marginal multivariate marginal ecig risk 89. Wills (2019) . 3.92 2.98 1.32 1.315436 1.32 Direct Stratified 90. Wills (2022) 1.44 . . . 1.44 Marginal multivariate marginal ecig risk 91. Xie (2020a) . 4.39 3.8 1.16 1.155263 1.16 Direct Stratified 92. Xie (2020b) 1.57 . . . 1.57 Marginal multivariate marginal ecig risk						3.28		1.545732		
86. Perez (2019b) 1.43 . . 1.43 Marginal multivariate marginal ecig risk 87. Qeadan (2023) 1.11 . . 1.11 Marginal multivariate marginal ecig risk 88. Strong (2018) 1.39 2.07 . . 1.39 Marginal multivariate marginal ecig risk 89. Wills (2019) . 3.92 2.98 1.32 1.315436 1.32 Direct Stratified 90. Wills (2022) 1.44 . . . 1.44 Marginal multivariate marginal ecig risk 91. Xie (2020a) . 4.39 3.8 1.16 1.155263 1.16 Direct Stratified 92. Xie (2020b) 1.57 . . . 1.57 Marginal multivariate marginal ecig risk		•					1.04			-
87. Qeadan (2023) 1.11 . . . 1.11 Marginal multivariate marginal ecig risk 88. Strong (2018) 1.39 2.07 . . 1.39 Marginal multivariate marginal ecig risk 89. Wills (2019) . 3.92 2.98 1.32 1.315436 1.32 Direct Stratified 90. Wills (2022) 1.44 . . . 1.44 Marginal multivariate marginal ecig risk 91. Xie (2020a) . 4.39 3.8 1.16 1.155263 1.16 Direct Stratified 92. Xie (2020b) 1.57 . . . 1.57 Marginal multivariate marginal ecig risk				·						•
87. Qeadan (2023) 1.11 . . . 1.11 Marginal multivariate marginal ecig risk 88. Strong (2018) 1.39 2.07 . . 1.39 Marginal multivariate marginal ecig risk 89. Wills (2019) . 3.92 2.98 1.32 1.315436 1.32 Direct Stratified 90. Wills (2022) 1.44 . . . 1.44 Marginal multivariate marginal ecig risk 91. Xie (2020a) . 4.39 3.8 1.16 1.155263 1.16 Direct Stratified 92. Xie (2020b) 1.57 . . . 1.57 Marginal multivariate marginal ecig risk	86.	Perez (2019h) 1.43						1.43	Marginal multivariate marginal ecig risk
88. Strong (2018) 1.39 2.07 . . 1.39 Marginal multivariate marginal ecig risk 89. Wills (2019) . 3.92 2.98 1.32 1.315436 1.32 Direct Stratified 90. Wills (2022) 1.44 . . . 1.44 Marginal multivariate marginal ecig risk 91. Xie (2020a) . . 4.39 3.8 1.16 1.155263 1.16 Direct Stratified 92. Xie (2020b) 1.57 . . . 1.57 Marginal multivariate marginal ecig risk	87.									
89. Wills (2019) . 3.92 2.98 1.32 1.315436 1.32 Direct Stratified 90. Wills (2022) 1.44 . . . 1.44 Marginal multivariate marginal ecig risk 91. Xie (2020a) . . 4.39 3.8 1.16 1.155263 1.16 Direct Stratified 92. Xie (2020b) 1.57 . . . 1.57 Marginal multivariate marginal ecig risk	88.	Strong (2018		2.07						
90. Wills (2022) 1.44 . . 1.44 Marginal multivariate marginal ecig risk		_			3.92	2.98	1.32	1.315436		
91. Xie (2020a) . . 4.39 3.8 1.16 1.155263 1.16 Direct Stratified 92. Xie (2020b) 1.57 . . . 1.57 Marginal multivariate marginal ecig risk				•	•	•	•	•		
92. Xie (2020b) 1.57 1.57 Marginal multivariate marginal ecig risk								1 1 5 5 6 6 6		•
				•	4.39	3.8	1.16	1.155263		
93. Akinkugbe (2019) 1.72 1.5 . 1.146667 1.146667 Computed stratified		· · · · · · · · · · · · · · · · · · ·		•			•			
	93.	Akinkugbe (2019).	•	1.72	1.5	•	1.146667	1.146667	Computed stratified

1.58 1.4 1.022727 1 1.78 2.33	1.022727	·	·	·	1.58 . 1.4 .	Atuegwu (2019b)	95.
1.022727 1 1.78	1.022727				1 4		
1 1.78	1.022727				1.4 ·	Chaffee (2021b)	96.
1.78		•	1.76	1.8		Chaffee (2022)	97.
					1.	Cho (2017)	98.
2.33					1.78 .	Huilgol (2019)	99.
	•	•	•	•	2.33 .	Jeong (2020)	100.
1.15					1.15 .	Silveira (2022)	101.
			2.2			Vora (2019)	102.
.8046875	.8046875		1.28	1.03		Hawkins (2021)	103.
1.09			•	.82	1.09 .	Regan (2021)	104.
1.29375	1.29375	•	1.6	2.07		Wang (2020)	105.
. 93	.9365079	. 93	1.26	1.18		Wen (2023)	106.
1.59			•		1.59.	McBride (2021)	107.
			. 67			Ebrahimi Kalan (2023)	108.
4.470589	4.470589		1.53	6.84		Gaiha (2020)	109.
1.203125	1.203125	•	.64	.77		Moyers (2023)	110.
1.17					1.17 .	Goldberg Scott (2023)	111.
1.238372	1.238372		1.72	2.13		То (2023)	112.
1.289855	1.289855		1.38	1.78		Zhu (2023)	113.
1.113043	1.113043		1.15	1.28		Christian (2023)	114.
1.82	•	•	•	•	1.82 .	Wiener (2020)	115.
1.55	· · ·	1.55				Tian (2022)	116.
1.35	•				1.35 .	Smith (2023)	117.
1.43	1.478528		1.63	2.41	1.43 .	Agoons (2021)	118.
. 8			•		.8.	Goldberg Scott (2023)	119.
1.389262	1.389262	•	1.49	2.07		Xie (2020c)	120.
1.204918	1.204918		1.22	1.47		Han (2023)	121.
1.39	1.383459	1.39	1.33	1.84		Wang (2022)	122.
	•					Nguyen (2023)	123.
2.97				•	2.97 .	Hong (2021)	124.
1.09 1.29375 .93 1.59 4.470589 1.203125 .1.17 1.238372 1.289855 1.113043 1.82 1.55 1.35 1.43 .8 1.389262 1.204918 1.39	 1 1 1 1	1.29375 .9365079 4.470589 4.203125 1.203125 1.238372 1.289855 1.113043 1.478528 1.389262 1.389262 1.204918 1	. 1.29375 .93 .9365079 . 4.470589 4 . 1.203125 1 . 1.238372 1 . 1.289855 1 . 1.113043 1 1.55 . 1.478528 . 1.389262 1 . 1.204918 1	i.6 i.29375 1.26 .93 .9365079 .67 . 1.53 4.470589 .64 1.203125 1.72 1.238372 1.38 1.289855 1.15 1.113043 1.478528 . . 1.49 1.389262 1.22 1.204918	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Regan (2021) 1.09 .82 . . Wang (2020) . 2.07 1.6 1.29375 Wen (2023) . 1.18 1.26 .93 .9365079 McBride (2021) 1.59 Ebrahimi Kalan (2023) Gaiha (2020) Gaiha (2020) Goldberg Scott (2023) To (2023) Christian (2023) . . 1.78 1.38 . 1.289855 . Mener (2020) 1.82 Tian (2022) . . . 1.55 . . . Magoons (2021) 1.43 2.41 1.63 1.478528 . . .

*/

*Make condensed version of whichDC that is just multivariate or stratified gen whichDC_ms=whichDC replace whichDC_ms=1 if (whichDC==1 | whichDC==2) replace whichDC_ms=2 if (whichDC==3 | whichDC==4)
label values whichDC_ms model

*Inflate SE and CI to account for shared studies gen DCseI=DCse*SEinflator[1,n shared] gen DClo lnI=DC ln-1.96*DCseI gen DChi_lnI=DC_ln+1.96*DCseI

save metaanalysis.dta, replace

*now merge with study characteristics clear local condensed_excel "Condensed-10ct2023D.xlsx" import excel `condensed_excel', sheet("Citations") cellrange(A1:AD108) firstrow drop B drop Age-comorbidconditions

rename Y BMI
rename AA comorbid
label var former_smoking "Controlled for former smoking"
* Key for former_smoking strong values: C: Former smoking is covariate; S: Stratified on when smoked; P: Pack
years covariate; CP: Covariate and pack years
save "studycharacteristics.dta", replace
clear
*Now merge with info from data tab in master spreadsheet
use metaanalysis.dta
*The merge sorts results by study; we want them sorted by outcome
*This is to put the outcomes in the right order for meta-analysis output
gen sequence=_n
merge m:1 study using "studycharacteristics.dta"
sort sequence
drop sequence

*Create variable to indicate if former smoking considered in paper gen former=0 label var former "Controlled for former smoking" label define yesno 1 "Yes" 0 "No" label values former yesno replace former=1 if former_smoking !=""

save "metaanalysis+chars.dta", replace

*META-ANALYSES

*SE inflators for cases where several studies used same dataset for same outcome *in same year using Bonferroi correction. (Numbers are ratios of Bonferroni-*adjusted z values divided by 1.959964. matrix SEinflator = (1, 1.143594, 1.221441, 1.274363, 1.314223, 1.346074) *meta-analyses (using inflated SEs) metan EC ln EClo lnI EChi lnI, random eform lcols(study outcome2) effect(OR) xlabel(.1,.2,.4,.6,.8,1,2,4,8) /// favours ("Cigarettes riskier" # "E-cigarettes riskier") aspect(1.30) texts(160) /// title("Ecig vs Cig", size(vsmall)) nooverall /// nobox saving (ECfancyI, replace) nowt by (outcome) graph export ECfancyI.svg, as(svg) replace metan DC ln DClo lnI DChi lnI, random eform lcols(study outcome2) effect(OR) xlabel(.1,.2,.4,.8,1,2,4,6) /// favours ("Cigarettes riskier" # "Dual use riskier") aspect(1.30) texts(220) title("Dual vs Cig", /// size(vsmall)) nooverall nobox saving(DCfancyI, replace) nowt by(outcome) graph export DCfancyI.svg, as(svg) replace metan E_ln Elo_lnI Ehi_lnI, random eform lcols(study outcome2) effect(OR) xlabel(.1,.2,.4,.6,.8,1,2,4,8) /// favours ("Less disease" # "More disease") aspect(1.30) texts(220) title("Ecig vs Nonuse", /// size(vsmall)) nooverall nobox saving(EfancyI, replace) nowt by(outcome) graph export EfancyI.svg, as(svg) replace metan C_ln Clo_lnI Chi_lnI, random eform lcols(study outcome2) effect(OR) xlabel(.1,.2,.4,.6,.8,1,2,4,8) /// favours ("Less disease" # "More disease") aspect(1.30) texts(160) title("Cig vs Nonuse", /// size(vsmall)) nooverall nobox saving(CfancyI, replace) nowt by(outcome) graph export CfancyI.svg, as(svg) replace metan DN_ln DNlo_lnI DNhi_lnI, random eform lcols(study outcome2) effect(OR) xlabel(.1,.2, .4,.8,1,2,4,8) /// favours ("Less disease" # "More disease") aspect(0.7) texts(120) title("Dual use vs Nonuse", size(vsmall)) nooverall /// nobox saving (DNfancyI, replace) nowt by (outcome) graph export DNfancyI.svg, as(svg) replace * do analysis of asthma stratified by age metareg EC_ln adult if outcome==20, eform wsse(ECseI) metareg DC_ln adult if outcome==20, eform wsse(DCseI) metareg E_ln adult if outcome==20, eform wsse(EseI) metareg C ln adult if outcome==20, eform wsse(CseI) metareg $\overline{\text{DN}}$ ln adult if outcome==20, eform wsse(DNseI) metan EC ln EClo lnI EChi lnI if outcome==20, random eform lcols (study) nograph by(adult) metan DC ln DClo lnI DChi lnI if outcome==20, random eform nograph lcols (study) by(adult) metan E In Elo InI Ehi lnI if outcome==20, random eform nograph lcols (study)by(adult) metan C_ln Clo_lnI Chi_lnI if outcome==20, random eform nograph lcols (study) by(adult) metan DN ln DNlo lnI DNhi lnI if outcome==20, random eform lcols(study) by (outcome2) nograph *Meta-analyses of cardiovascular outcomes stratifying on second level outcomes metan EC ln EClo lnI EChi lnI if outcome==10, random eform lcols(study) by (outcome2) nograph

metan DC_ln DClo_lnI DChi_lnI if outcome==10, random eform lcols(study) by (outcome2) nograph metan E_ln Elo_lnI Ehi_lnI if outcome==10, random eform lcols(study) by (outcome2) nograph metan C_ln Clo_lnI Chi_lnI if outcome==10, random eform lcols(study) by (outcome2) nograph metan DN ln DNlo lnI DNhi lnI if outcome==10, random eform lcols(study) by (outcome2) nograph

*Meta-analyses of asthma stratifying on astha vs wheeze metan EC_ln EClo_lnI EChi_lnI if outcome==20, random eform lcols(study) by (outcome2) nograph metan DC_ln DClo_lnI DChi_lnI if outcome==20, random eform lcols(study) by (outcome2) nograph metan $E_{ln} Elo_{lnI} Ehi_{lnT}$ if outcome==20, random eform lcols(study) by (outcome2) nograph metan C ln Clo lnI Chi lnI if outcome==20, random eform lcols(study) by (outcome2) nograph metan DN ln DNlo lnI DNhi lnI if outcome==20, random eform lcols(study) by (outcome2) nograph *Meta-analyses on COPD stratifying on COPD vs respiratory conditions metan EC ln EClo lnI EChi lnI if outcome==30, random eform lcols(study) by (outcome2) nograph metan DC_ln DClo_lnI DChi_lnI if outcome==30, random eform lcols(study) by (outcome2) nograph metan E_ln Elo_lnI Ehi_lnI if outcome==30, random eform lcols(study) by (outcome2) nograph metan C ln Clo lnI Chi lnI if outcome==30, random eform lcols(study) by (outcome2) nograph metan $D\overline{N}$ ln $D\overline{N}$ lo lnI $D\overline{N}$ hi lnI if outcome==30, random eform lcols(study) by (outcome2) nograph * check for age effect in oral diseases metareg EC_ln adult if outcome==40, eform wsse(ECseI) metareg DC_ln adult if outcome==40, eform wsse(DCseI) metareg E ln adult if outcome==40, eform wsse(EseI) metareg C ln adult if outcome==40, eform wsse(CseI) *metareg DN ln adult if outcome==40, eform wsse(DNseI) -- not enough cases metan EC ln EClo lnI EChi lnI if outcome==40, random eform lcols (study) nograph by(adult)
metan DC_ln DClo_lnI DChi_lnI if outcome==40, random eform nograph lcols (study) by(adult) metan E ln Elo lnI Ehi lnI if outcome==40, random eform nograph lcols (study)by(adult) metan C ln Clo lnI Chi lnI if outcome==40, random eform nograph lcols (study) by(adult) metan DN ln DNlo lnI DNhi lnI if outcome==40, random eform lcols(study) by (outcome2) nograph * sensitivity analyses metareg EC_ln longitudinal reference diagnosis whichEC former year_c outcome_1-outcome_6, eform wsse(ECseI)
metareg EC_ln longitudinal reference diagnosis whichEC directEC former year_c outcome_1-outcome_6, eform wsse(ECseI) metareg DC_ln longitudinal reference diagnosis whichDC former year_c outcome_1-outcome_6, eform wsse(DCseI) metareg E_ln longitudinal reference diagnosis whichE former year_c outcome_1-outcome_6, eform wsse(EseI)
metareg C_ln longitudinal reference diagnosis whichC former year_c outcome_1-outcome_6, eform wsse(CseI) metareg DN ln longitudinal reference diagnosis whichC former year c outcome 1-outcome 6, eform wsse(DNseI) *sensitivity analysis to see if cutting SE by factor of 4 for EC affects conclusion gen ECse4I=ECseI/4 gen EClo_ln4I=EC_ln-1.96*ECse4I gen EChi ln4I=EC ln+1.96*ECse4I * set CIs metan EC ln EClo ln4I EChi ln4I, eform random nograph effect(OR) lcols(study) nooverall by(outcome) drop ECse4I EClo ln4I EChi ln4I *Heterogenuity analysis quietly tabulate outcome2 if outcome==10, generate(cvd) quietly tabulate outcome2 if outcome==60, generate(stroke) quietly tabulate outcome2 if outcome==50, generate(meta) quietly tabulate outcome2 if outcome==20, generate(asthma_) quietly tabulate outcome2 if outcome==30, generate(copd) quietly tabulate outcome2 if outcome==40, generate(oral) metareg EC_ln cvd_1-cvd 5 if outcome==10, wsse(ECseI) eform *metareg EC ln stroke 1 if outcome==60, wsse(ECseI) eform all stroke studies have stroke as outcome metareg EC In meta 1-meta_4 if outcome==50, wsse(ECseI) eform metareg EC ln asthma 1-asthma 3 if outcome==20, wsse(ECseI) eform metareg EC_ln copd 1-copd_2 if outcome==30, wsse(ECseI) eform
metareg EC_ln oral_1-oral_4 if outcome==40, wsse(ECseI) eform metareg DC_ln cvd_1-cvd_5 if outcome==10, wsse(DCseI) eform metareg DC ln meta 1-meta 4 if outcome==50, wsse(DCseI) eform metareg DC ln asthma 1-asthma 3 if outcome==20, wsse(DCseI) eform metareg DC_ln copd_1-copd_2 if outcome==30, wsse(DCseI) eform metareg DC ln oral 1-oral 4 if outcome==40, wsse(DCseI) eform metareg E ln cvd 1-cvd 5 if outcome==10, wsse(EseI) eform metareg E ln meta 1-meta 4 if outcome==50, wsse(EseI) eform metareg E_ln asthma_1-asthma_3 if outcome==20, wsse(EseI) eform
metareg E_ln copd_1-copd_2 if outcome==30, wsse(EseI) eform metareg E ln oral 1-oral 4 if outcome==40, wsse(EseI) eform *metareg DN ln cvd 1-cvd 5 if outcome==10, wsse(DNseI) eform skip because insufficient observations *metareq DN ln meta 1-meta 4 if outcome==50, wsse(DNseI) eform skip because insufficient observations metareg DN_ln asthma_1-asthma_3 if outcome==20, wsse(DNseI) eform metareg DN ln copd 1-copd 2 if outcome==30, wsse(DNseI) eform * metareg DN ln oral 1-oral 4 if outcome==40, wsse(DNseI) eform skip because insufficient observations metareg C_ln cvd_1-cvd_5 if outcome==10, wsse(CseI) eform

metareg C_ln meta_1-meta_4 if outcome==50, wsse(CseI) eform
metareg C ln asthma 1-asthma 2 if outcome==20, wsse(CseI) eform

metareg C ln copd 1-copd 2 if outcome==30, wsse(CseI) eform metareg C ln oral 1-oral 4 if outcome==40, wsse(CseI) eform drop cvd * stroke * meta * asthma * copd * oral * *tablulate some descriptive statistics about study characteristics tab outcome year, row tab outcome adult, row tab outcome longitudinal, row tab outcome diagnosis, row tab outcome reference, row tab outcome model, row tab outcome whichEC, row tab outcome whichDC, row tab outcome whichDC ms, row tab outcome whichE, row tab outcome whichC, row tab outcome whichDN, row tab outcome former, row tab former smoking tab former smoking, m *Do meta-analyses limiting studies to ones that estimated ORs (as opposed to other risk measures) metan EC_ln EClo_lnI EChi_lnI if risk=="OR", random eform lcols(study outcome2) nograph by(outcome)
metan DC ln DClo lnI DChi lnI if risk=="OR", random eform lcols(study outcome2) nograph by(outcome) metan E_ln Elo_lnI Ehi_lnI if risk=="OR", random eform lcols(study outcome2) nograph by(outcome) metan C_ln Clo_lnI Chi_lnI if risk=="OR", random eform lcols(study outcome2) nograph by(outcome) metan DN ln DNlo lnI DNhi lnI if risk=="OR", random eform lcols(study outcome2) nograph by(outcome) * List and meta-analyze studies that present ecig risks among never smokers list study outcome EN ENlo ENhi if EN<. gen ENseI=ENse*SEinflator[1,n shared] gen ENlo lnI=EN ln-1.96*ENseI gen ENhi_lnI=EN_ln+1.96*ENseI
metan EN_ln ENlo_lnI ENhi_lnI, nograph random eform lcols(study) effect (OR) by (outcome) drop ENseI ENlo lnI ENhi lnI * Compare computed and directly estimated EC values, which can be done for some of the stratified studies list study outcome model ECS ECCS EC if ECS<. & ECCS<. list study outcome DSS DCCS if DSS<. & DCCS<. * Tabulate outcomes by age of sample tab adult outcome, col metareg EC adult outcome_1-outcome_6, wsse (ECseI) metareg DC adult outcome 1-outcome 6, wsse (DCseI) *Tabulate outcomes by when diagnosed tab diagnosis outcome, col metareg EC diagnosis outcome_1-outcome_6, wsse (ECseI) metareg DC diagnosis outcome 1-outcome 6, wsse (DCseI) * Compare E with E among people who never smoked gen Ediff=EN-E replace Ediff=0 if abs(Ediff)<.005 list outcome study E EN Ediff if EN<. drop Ediff * List studies where there is directly observed ORdualvscig amd computed ORdual vs cig list study DSS DCCS if DSS<. & DCCS<. * Data sources tab sample2, sort * Number of significant and non-significant ORs for E (ecig vs nothing) gen sig=. replace sig=0 if E<. replace sig=1 if (Elo < 1 & Ehi < 1) | (Elo > 1 & Ehi > 1) label var sig "Significant OR for ecig vs nothing" label values sig yesno tab sig outcome, col chi drop sig *Compare E based on whole sample with EF (based on former smokers only) *Just use point estimates (which understates variability so biases the results *toward finding a significant difference. gen EEF_diff=E-EF
gen EEF_ratio=E/EF list study E EF EEF diff EEF ratio if EF<.

ttest EEF_diff==0
ttest EEF_ratio=1
drop EEF_diff EEF_ratio

*MONTE CARLO ESTIMATE OF COMBINED EFFECTS OF SOLE AND DUAL E-CIGARETTE USE log using "MonteCarlo US.log", replace clear *10,000 replications set obs 10000 set seed 5653 *Draw random fraction of dual use based on 2019 US observed 39.1% (95% CI 36.8%-41.4%) dual use gen dualr=rnormal(.391,0.01173) *CVD gen cvECr=exp(rnormal(-0.210721031,0.172386591)) // rnormal(EC ln, ECseI) OR 0.81 (0.58-1.14) gen cvDCr=exp(rnormal(0.207014169, 0.112712437)) // rnormal(DC ln, DCseI) OR 1.23(0.99-1.54) gen Cardiovascular= (1-dualr)*cvECr + dualr*cvDCr hist Cardiovascular, saving(Cardiovascular, replace) xscale(range(.7 1.3)) yscale(off) kdensity /// text (3.7 1.45 "OR=0.98; 95% CI 0.83-1.17", size(small)) graph export Cardiovascular.svg, as(svg) replace summarize Cardiovascular, detail * Find where overall OR crosses 1.0 sort Cardiovascular cumul Cardiovascular, gen(CVcum) replace CVcum=1-CVcum list Cardiovascular CVcum if Cardiovascular>0.9995 & Cardiovascular<1.0005 *Stroke gen sECr=exp(rnormal(-0.314710745, 0.22378577)) // rnormal(EC ln, ECseI) OR 0.73 (0.47-1.13) gen sDCr=exp(rnormal(0.207014169, 0.112712437)) // rnormal(DC ln, DCseI) OR 1.23 (0.99-1.54) gen Stroke= (1-dualr)*sECr + dualr*sDCr hist Stroke, saving(Stroke, replace) xscale(range(.7 1.3)) yscale(off) kdensity /// text (3.7 1.45 "OR=0.93; 95% CI 0.77-1.15", size(small)) graph export Stroke.svg, as(svg) replace summarize Stroke, detail * Find where overall OR crosses 1.0 sort Stroke cumul Stroke, gen(Scum) replace Scum=1-Scum list Stroke Scum if Stroke>0.9995 & Stroke<1.0005 *Metabolic gen mECr=exp(rnormal(-0.010050336, 0.046042953)) // OR 0.99 (0.91-1.09) gen mDCr=exp(rnormal(0.198850859, 0.033230917)) // OR 1.22(1.15-1.31) gen Metabolic= (1-dualr)*mECr + dualr*mDCr hist Metabolic, saving(Metabolic, replace) xscale(range(.7 1.3)) yscale(off) kdensity /// text (15 1.45 "OR=1.08; 95% CI 1.03-1.14", size(small)) graph export Metabolic.svg, as(svg) replace summarize Metabolic, detail sort Metabolic cumul Metabolic, gen(Mcum) *compute upper tail replace Mcum=1-Mcum list Metabolic Mcum if Metabolic>0.9995 & Metabolic<1.0005 *Asthma gen aECr=exp(rnormal(-0.174353387, 0.06030326)) // OR 0.84 (0.75-0.95) gen aDCr=exp(rnormal(0.182321557, 0.034064131)) // OR 1.20 (1.12-1.28) gen Asthma= (1-dualr)*aECr + dualr*aDCr hist Asthma, saving(Asthma, replace) xscale(range(.7 1.3)) yscale(off) kdensity /// text (15 1.45 "OR=0.98; 95% CI 0.92-1.04", size(small)) graph export Asthma.svg, as(svg) replace summarize Asthma, detail sort Asthma cumul Asthma, gen(Acum) replace Acum=1-Acum list Asthma Acum if Asthma>0.9995 & Asthma<1.0005 *COPD gen coECr=exp(rnormal(-0.139262067, 0.070009399)) // OR 1.41 (1.12-1.27) gen coDCr=exp(rnormal(0.343589704, 0.03206332)) // OR 1.48 (1.25-1.76) gen COPD= (1-dualr)*coECr + dualr*coDCr hist COPD, saving(COPD, replace) xscale(range(.7 1.3)) yscale(off) kdensity /// text (10 1.45 "OR=1.08; 95% CI 1.02-1.15", size(small)) graph export COPD.svg, as(svg) replace

summarize COPD, detail sort COPD cumul COPD, gen(COcum) replace COcum=1-COcum list COPD COcum if COPD>0.9995 & COPD<1.0005 *oral gen oECr=exp(rnormal(-0.12783,0.066674685)) // OR 0.87 (0.76-1.00) gen oDCr=exp(rnormal(0.2390169, 0.048352501)) // OR 1.27 (1.15-1.39) gen Oral= (1-dualr)*oECr + dualr*oDCr hist Oral, saving(Oral, replace) xscale(range(.7 1.3)) yscale(off) kdensity /// text (10 1.45 "OR=0.98; 95% CI 1.03-1.11", size(small)) graph export Oral.svg, as(svg) replace summarize Oral, detail sort Oral cumul Oral, gen(Ocum) replace Ocum=1-Ocum list Oral Ocum if Oral>0.9995 & Oral<1.0005 graph combine "Cardiovascular" "Stroke" "Metabolic" "Asthma" "COPD" "Oral", rows(6) saving(All histograms,

graph combine cardiovascular stroke Metabolic Astima corb orar, rows(0) saving(All_Histograms, replace) xcommon ysize(11) xsize(8) title("US (2018-9): 39.1% dual use") graph export All_histograms.svg, as(svg) replace log close