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Figure S1: Accuracy of LLMs in differential diagnostic challenges. Summary of performance in 33 previously published studies that reported
the percentage of cases in which the correct diagnosis was placed at rank 1 by the LLM. Cohorts were derived from multiple sources including
published clinical vignettes (vign), New England Journal of Medicine case reports or quizzes (NEJM), JAMA Ophthalmology Clinical Challenges
(ophth), and case reports including clinical data and radiology reports in text form (radiol), and one cohort of real-world data (RWD; 6 patients),
and rare disease (RD). Details are available in Supplemental Table 1.



{
"id": "PMID_15673476_proband",
"subject": {

"id": "proband",
"timeAtLastEncounter": {
"age": {

"iso8601duration": "P49Y"
}
},
"sex": "FEMALE"

},

Figure S2: GA4GH Phenopacket Schema: subject. Figures S2-S6 show the components of a
phenopacket curated for PMID:15673476.
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"phenotypicFeatures": [
{
"type": {

"id": "HP:0000108",
"label": "Renal corticomedullary cysts"

},
"onset": {

"age": {
"iso8601duration": "P44Y"
}

}
},
{
"type": {

"id": "HP:0003259",
"label": "Elevated circulating creatinine concentration"

},
"onset": {

"age": {
"iso8601duration": "P44Y"
}

}
},
{
"type": {

"id": "HP:0012623",
"label": "Stage 1 chronic kidney disease"

},
"onset": {

"age": {
"iso8601duration": "P27Y"
}

}
},
{
"type": {

"id": "HP:0003774",
"label": "Stage 5 chronic kidney disease"

},
"onset": {

"age": {
"iso8601duration": "P49Y"
}

}
},
{
"type": {

"id": "HP:0001997",
"label": "Gout"

},
"onset": {

"age": {
"iso8601duration": "P24Y"
}

}
},

<additional Phenotypicfeature omitted...>
],

Figure S3: GA4GH Phenopacket Schema: list of PhenotypicFeatures. Figures S2-S6 show
the components of a phenopacket curated for PMID:15673476.
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"interpretations": [
{
"id": "proband",
"progressStatus": "SOLVED",
"diagnosis": {

"disease": {
"id": "OMIM:162000",
"label": "Tubulointerstitial kidney disease, autosomal dominant, 1"
},
"genomicInterpretations": [
{

"subjectOrBiosampleId": "proband",
"interpretationStatus": "CAUSATIVE",
"variantInterpretation": {
"variationDescriptor": {

"id": "var_RshQsRSLCTFAfaUYKJTcbKgsi",
"geneContext": {
"valueId": "HGNC:12559",
"symbol": "UMOD"
},
"expressions": [
{

"syntax": "hgvs.c",
"value": "NM_003361.4:c.920A>C"

},
{

"syntax": "hgvs.g",
"value": "NC_000016.10:g.20348276T>G"

}
],
"vcfRecord": {
"genomeAssembly": "hg38",
"chrom": "chr16",
"pos": "20348276",
"ref": "T",
"alt": "G"
},
"moleculeContext": "genomic",
"allelicState": {
"id": "GENO:0000135",
"label": "heterozygous"
}

}
}

}
]

}
}

],

Figure S4: GA4GH Phenopacket Schema: list of genomic interpretations. Figures S2-
S6 show the components of a phenopacket curated for PMID:15673476.
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"diseases": [
{
"term": {

"id": "OMIM:162000",
"label": "Tubulointerstitial kidney disease, autosomal dominant, 1"

},
"onset": {

"age": {
"iso8601duration": "P24Y"
}

}
}

],

Figure S5: GA4GH Phenopacket Schema: list of disease. Figures S2-S6 show the components
of a phenopacket curated for PMID:15673476.
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"metaData": {
"created": "2024-06-12T06:29:49.278273105Z",
"createdBy": "ORCID:0000-0002-0736-9199",
"resources": [

{
"id": "geno",
"name": "Genotype Ontology",
"url": "http://purl.obolibrary.org/obo/geno.owl",
"version": "2022-03-05",
"namespacePrefix": "GENO",
"iriPrefix": "http://purl.obolibrary.org/obo/GENO_"
},
{
"id": "hgnc",
"name": "HUGO Gene Nomenclature Committee",
"url": "https://www.genenames.org",
"version": "06/01/23",
"namespacePrefix": "HGNC",
"iriPrefix": "https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/"
},
{
"id": "omim",
"name": "An Online Catalog of Human Genes and Genetic Disorders",
"url": "https://www.omim.org",
"version": "January 4, 2023",
"namespacePrefix": "OMIM",
"iriPrefix": "https://www.omim.org/entry/"
},
{
"id": "so",
"name": "Sequence types and features ontology",
"url": "http://purl.obolibrary.org/obo/so.obo",
"version": "2021-11-22",
"namespacePrefix": "SO",
"iriPrefix": "http://purl.obolibrary.org/obo/SO_"
},
{
"id": "hp",
"name": "human phenotype ontology",
"url": "http://purl.obolibrary.org/obo/hp.owl",
"version": "2024-04-26",
"namespacePrefix": "HP",
"iriPrefix": "http://purl.obolibrary.org/obo/HP_"
}

],
"phenopacketSchemaVersion": "2.0",
"externalReferences": [

{
"id": "PMID:15673476",
"reference": "https://pubmed.ncbi.nlm.nih.gov/15673476",
"description": "A novel heterozygous missense mutation in the UMOD gene responsible for

Familial Juvenile Hyperuricemic Nephropathy"
}

]
}

}

Figure S6: GA4GH Phenopacket Schema: list of MetaData. Figures S2-S6 show the compo-
nents of a phenopacket curated for PMID:15673476.
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I am running an experiment on a clinical case report to see how your diagnoses
compare with those of human experts. I am going to give you part of a medical
case. In this case, you are "Dr. GPT-4", an AI language model who is providing
a diagnosis. Here are some guidelines. First, there is a single definitive
diagnosis, and it is a diagnosis that is known today to exist in humans. The
diagnosis is almost always confirmed by some sort of genetic test, though
in rare cases when such a test does not exist for a diagnosis the diagnosis
can instead be made using validated clinical criteria or very rarely just
confirmed by expert opinion. After you read the case, I want you to give a
differential diagnosis with a list of candidate diagnoses ranked by probability
starting with the most likely candidate. Each candidate should be specified
with disease name. For instance, if the first candidate is Branchiooculofacial
syndrome and the second is Cystic fibrosis, provide this:

1. Branchiooculofacial syndrome
2. Cystic fibrosis

This list should provide as many diagnoses as you think are reasonable.
You do not need to explain your reasoning, just list the diagnoses.
Here is the case:

The proband was a 49-year-old woman. Disease onset occurred when the proband was
24-year, 0-month old.
She presented with Gout and Hyperuricemia.
At an age of 27 years, she presented with Stage 1 chronic kidney disease.
At an age of 44 years, she presented with Renal corticomedullary cysts and
Elevated circulating creatinine concentration.
At an age of 49 years, she presented with Stage 5 chronic kidney disease.

Figure S7: The prompt generated by phenopacket2prompt for the phenopacket shown in Fig-
ures S2-S6.
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The proband was a 1-month, 21-day old male infant. Disease onset occurred when the
proband was a newborn. He presented with Hypotonia, Brain atrophy, Hypertrophic
cardiomyopathy, and Encephalopathy.

(a) Microcephaly 6, primary, autosomal recessive (OMIM:608393). Individual IV:3 from
PMID:16900296.

The proband was a 2-year, 0-month old boy. Disease onset occurred when the proband was a
newborn. He presented with Pulmonic stenosis, Webbed neck, Short neck, Hypertelorism,
Anteverted nares, Low-set ears, Sparse hair, Sparse eyebrow, Deep palmar crease,
Deep plantar creases, Ptosis, Intellectual disability, Global developmental delay,
and Failure to thrive. However, the following features were excluded: Relative
macrocephaly, Depressed nasal bridge, Coarse facial features, Posteriorly rotated ears,
Cryptorchidism, Pectus excavatum, Pectus carinatum, Shield chest, Dandy-Walker
malformation, Atrial septal defect, Hypertrophic cardiomyopathy, Low posterior
hairline, Redundant skin, Nystagmus, Strabismus, Short stature, and Seizure.

(b) Cardiofaciocutaneous syndrome 2 (OMIM:615278). Patient No 3 from PMID:17056636

The proband was a 5-year, 0-month old boy. Disease onset was not specified.
He presented with Atrial septal defect, Bilateral superior vena cava, Webbed neck,
Short stature, Pectus excavatum, Global developmental delay, Intellectual disability,

mild,↪→
Cryptorchidism, Cubitus valgus, Abnormality of the kidney, and Splenomegaly.

(c) Noonan syndrome 1 (OMIM:163950). Patient 1 from

The proband was a 31-year-old man. Disease onset occurred when the proband was 15-year,
0-month old.↪→

He presented with Aortic root aneurysm, Scoliosis, and Disproportionate tall stature.
However,↪→

the following features were excluded: Pectus carinatum and Self-healing squamous
epithelioma.↪→

At an age of 27 years, he presented with Tortuous cerebral arteries, Mitral valve prolapse,
Malar flattening, Bifid uvula, Pectus excavatum, Arachnodactyly, Downslanted palpebral

fissures,↪→
Hypertelorism, Striae distensae, Dural ectasia, Protrusio acetabuli, Dolichocephaly,
High myopia, Cervical spine instability, and Cystic medial necrosis.

(d) Loeys-Dietz syndrome 1 (OMIM:609192). Patient 1 from PMID: 30701076

Figure S8: Additional examples of clinical vignettes generated by phenopacket2prompt.
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author size rank 1 category LLMs tested evaluation access

Hirosawa et al., [1] 82 40% vignette Bard ma Chatbox
Hirosawa et al., [2] 30 53% vignette GPT-3.5 manual Chatbox
Kanjee et al., [3] 70 39% NEJM GPT-4 manual Chatbox
Hirosawa et al., [4] 52 60% vignette GPT-4 manual Chatbox
Ueda et al., [5] 313 54% radiology GPT-4 manual Chatbox
Shea et al., [6] 6 67% vignette GPT-4 manual API
Rao et al., [7] 36 60% vignette GPT-3.5 manual Chatbox
Shikino et al., [8] 25 12% vignette GPT-4 manual Chatbox
Horiuchi et al., [9] 32 22% vignette GPT-4 manual Chatbox
Horiuchi et al., [10] 100 50% radiology GPT-4 manual Chatbox
Milad et al., [11] 422 42% ophthalmology GPT-4 manual API
Abdullahi et al., [12] 45 47% NEJM ”Bard,GPT-3.5, GPT-4” manual Chatbox
Kikuchi et al., [13] 115 41% radiology ”GPT-3.5,GPT-4” manual Chatbox
Rios-Hoyo et al., [14] 75 22% NEJM ”GPT-3.5,GPT-4” manual Chatbox
Krusche et al., [15] 132 33% vignette GPT-4 manual Chatbox
Rau et al., [16] 50 78% vignette GPT-4 manual API
Chiu et al., [17] 104 32% NEJM ”Bard,Claude 2, GPT-4” manual Chatbox
Barile et al., [18] 100 17% vignette GPT-3.5 manual Chatbox
Li et al., [19] 287 17% radiology ”GPT-3.5, GPT-4” manual Chatbox
Zandi et al., [20] 40 54% vignette ”GPT-4, Bard” manual Chatbox
Luk et al., [21] 81 38% NEJM ”GPT-3.5, GPT-4” manual Chatbox
Tenner et al., [22] 40 28% NEJM GPT-3.5 manual Chatbox
Savage et al., [23] 310 38% NEJM ”GPT-3.5, GPT-4” manual API
Koga et al., [24] 25 52% RWD ”GPT-3.5, GPT-4, Bard” manual Chatbox
Sun et al., [25] 339 66% radiology ”GPT3.5,GPT4” manual Chatbox
Shah-Mohammadi et al., [26] 9681 13% RWD ”GPT-3.5, GPT-4” mapping Chatbox
Kurokawa et al., [27] 322 18% radiology Claude 3.5 Sonnet manual API
Bridges et al., [28] 201 26% NEJM GPT-4 manual Chatbox
Hirosawa et al., [29] 392 55% vignette GPT-4 manual Chatbox
Rutledge et al., [30] 81 80% vignette GPT-4 manual Chatbox
Kumar et al., [31] 20 54% vignette GPT-4 manual Chatbox
Kotzur et al., [32] 9 78% vignette GPT-4 manual Chatbox
Cesur et al., [33] 124 60% radiology GPT-3.5 manual Chatbox
Galetta et al., [34] 29 48% vignette GPT-4 manual Chatbox
Young et al., [35] 61 13% RD GPT-4 manual Chatbox
Flaharty et al., [36] 61 89% RD GPT-4 manual Chatbox

Table S1: Summary of 36 published evaluations of the performance of LLMs in differential diagnosis. The meaning of the columns is as
follows. size: The number of case reports (patients) evaluated. rank 1. The percentage of cases in which the correct diagnosis was placed at rank
1 by the LLM (for articles in which multiple LLMs were assessed, the best performance is indicated here). category: Vignette: A clinical
vignette was derived from a published case report. NEJM: The prompt was derived from the New England Journal of Medicine case reports or
quizes. opthalmology: The prompt was derived from JAMA Ophthalmology Clinical Challenges. radiology: The prompt was derived from
sources such as the Diagnosis Please quizzes in Radiology, American Journal of Neuroradiology Case of the Week. RD: The prompts represented
individuals with rare, genetic disease. evaluation: manual means that the authors evaluated the responses of the LLMs by hand. Access: Chatbox:
The authors entered the prompts via a webinterface such as ChatGPT; API: The prompts were sent to the LLM programmatically.
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