nature medicine

Supplementary information

https://doi.org/10.1038/s41591-024-03211-3

Data-driven risk stratification and precision management of pulmonary nodules detected on chest computed tomography

In the format provided by the authors and unedited

Supplementary Information

Supplementary Table 1. Demographics of the lung screening trial participants in the primary dataset and the independent testing dataset. Age is represented as median (25th, 75th percentiles).

Supplementary Table 2. Weighting rule for the use of lung nodules in AI model training. For nodules with pathological findings, their weights are set to 1, reflecting their accurate classification. For nodules without pathological findings, they are considered benign in model training, with weight varying from 1 to 0.25 as the risk level changes from 1 to 4.

Supplementary Table 3. The number of pulmonary nodules with different risk levels in the primary dataset and the independent testing dataset.

Supplementary Table 4. Size distribution of the three types of nodules in the primary dataset and the independent testing dataset. Each number is represented as median (25th, 75th percentiles, mm). Statistical analyses were performed among four categories using Kruskal-Wallis *H* tests, and the number of nodules in each category could be referred to Supplementary Table 3. All two-tailed *P* values among four categories were lower than 0.001.

Supplementary Table 5. AUC values of Lung-RADS v2022 and C-Lung-RADS in distinguishing suspicious malignant nodules at Phase 1. Each number is represented by mean and 95% confidence interval (CI). Statistical analyses were performed using ordinary two-way ANOVA followed by Sidak's multiple comparison tests, with two-tailed *P* values as follows.

Supplementary Table 6. The FNR, FPR, PPV, and NPV in the Lung-RADS v2022 and C-Lung-RADS both based on nodule's density and size in Phase 1. Statistical analyses were performed using chi-square tests, with two-tailed *P* values as follows.

Supplementary Table 7. Demographics of participants at Phase 2. Age is represented as median (25th, 75th percentiles). The age distribution of participants with benign and malignant nodules was compared using the Mann-Whitney *U* test with two-

tailed *P* values as follows. Statistical analysis of categorical variables was performed using the chi-square tests with two-tailed *P* values as follows.

Supplementary Table 8. Distribution of the malignancy probability in single-, dual-, and multi-dimension models at Phase 2. For the malignancy probability with asymmetrical distribution, it is represented as median (25th, 75th percentiles). To quantitatively compare the malignancy probability of the benign and the malignant, statistical analyses were performed using Mann-Whitney U tests, with two-tailed Pvalues as follows.

Supplementary Table 9. Quantitative metrics including AUC, accuracy, sensitivity, and specificity of the single-, dual-, and multi-dimension models in identifying the extremely high-risk nodules at Phase 2. Each number is represented with the mean and 95% confidence interval (CI). Statistical analyses were performed using ordinary two-way ANOVA followed by Tukey's multiple comparison tests. The two-tailed adjusted *P* values were listed below.

Parameters		Primary dataset	;	Independent
N(%)	Overall	Training	Internal testing	testing dataset
No. of participants	45064	36052	9012	14437
Age (median, years)	47 (38, 56)	47 (38, 55)	47 (38, 56)	57 (51, 66)
< 45	18367 (40.8%)	14660 (40.7%)	3707 (41.1%)	842 (5.8%)
\geq 45 to < 60	19237 (42.7%)	15448 (42.8%)	3789 (42.1%)	7369 (51.1%)
≥60	7460 (16.5%)	5944 (16.5%)	1516 (16.8%)	6226 (43.1%)
Sex				
Male	26470 (58.7%)	21171 (58.7%)	5299 (58.8%)	5118 (35.5%)
Female	18594 (41.3%)	14881 (41.3%)	3713 (41.2%)	9319 (64.5%)
Smoking status				
Yes	12361 (27.4%)	9919 (27.5%)	2442 (27.1%)	3309 (22.9%)
No	32198 (71.5%)	25741 (71.4%)	6457 (71.6%)	10866 (75.3%)
Unknown	505 (1.1%)	392 (1.1%)	113 (1.3%)	262 (1.8%)
History of cancer				
Yes	61 (0.1%)	44 (0.1%)	17 (0.2%)	129 (0.9%)
No	44255 (98.2%)	35425 (98.3%)	8830 (98.0%)	11130 (77.1%)
Unknown	748 (1.7%)	583 (1.6%)	165 (1.8%)	3178 (22.0%)
Family history of can	cer			
Yes	5835 (13.0%)	4647 (12.9%)	1188 (13.2%)	3723 (25.8%)
No	38679 (85.8%)	30973 (85.9%)	7706 (85.5%)	8611 (59.6%)
Unknown	550 (1.2%)	432 (1.2%)	118 (1.3%)	2103 (14.6%)
Family history of lung	g cancer			
Yes	1754 (3.9%)	1422 (3.9%)	332 (3.7%)	259 (1.8%)
No	42572 (94.5%)	34050 (94.5%)	8522 (94.6%)	12075 (83.6%)
Unknown	738 (1.6%)	580 (1.6%)	158 (1.7%)	2103 (14.6%)
Ground truth				
Label 1	35291 (78.3%)	28253 (78.4%)	7038 (78.1%)	11344 (78.6%)
Label 2	6918 (15.4%)	5559 (15.4%)	1359 (15.1%)	2208 (15.3%)
Label 3	877 (1.9%)	685 (1.9%)	192 (2.1%)	304 (2.1%)
Label 4	1978 (4.4%)	1555 (4.3%)	423 (4.7%)	581 (4.0%)
Pathologically confirm	med lung cancer			
Yes	1153 (2.6%)	909 (2.5%)	244 (2.7%)	139 (1.0%)
No	43911 (97.4%)	35143 (97.5%)	8768 (97.3%)	14298 (99.0%)

Supplementary Table 1. Demographics of the lung screening trial participants in the primary dataset and the independent testing dataset. Age is represented as median (25th, 75th percentiles).

Supplementary Table 2. Weighting rule for the use of lung nodules in AI model training. For nodules with pathological findings, their weights are set to 1, reflecting their accurate classification. For nodules without pathological findings, they are considered benign in model training, with weight varying from 1 to 0.25 as the risk level changes from 1 to 4.

		With patholo	Without pathological	
		Malignant (Label = 1)	5	
	Risk level = 1	Weight = 1.00	Weight = 1.00	Weight = 1.00
Clinicians	Risk level = 2	Weight = 1.00	Weight = 1.00	Weight $= 0.75$
rating	Risk level = 3	Weight = 1.00	Weight = 1.00	Weight = 0.50
	Risk level = 4	Weight = 1.00	Weight = 1.00	Weight = 0.25

Туре	• •		Grou	nd truth	
N(%)	Overall	Label 1	Label 2	Label 3	Label 4
Primary dataset					
	45064	35291	6918	877	1978
All nodules	(100%)	(78.3%)	(15.4%)	(1.9%)	(4.4%)
Solid nodules	25129	22053	2416	239	421
Solid nodules	(100%)	(87.8%)	(9.6%)	(0.9%)	(1.7%)
CON-	2215	674	749	118	674
mGGNs	(100%)	(30.4%)	(33.8%)	(5.4%)	(30.4%)
	17720	12564	3753	520	883
pGGNs	(100%)	(70.9%)	(21.2%)	(2.9%)	(5.0%)
Independent testing	dataset				
	14437	11344	2208	304	581
All nodules	(100%)	(78.6%)	(15.3%)	(2.1%)	(4.0%)
Solid nodules	9807	8447	1014	167	179
Solid nodules	(100%)	(86.1%)	(10.4%)	(1.7%)	(1.8%)
mCCNs	703	251	214	41	197
mGGNs	(100%)	(35.7%)	(30.5%)	(5.8%)	(28.0%)
nCCNs	3927	2646	980	96	205
pGGNs	(100%)	(67.4%)	(25.0%)	(2.4%)	(5.2%)

Supplementary Table 3. The number of pulmonary nodules with different risk levels in the primary dataset and the independent testing dataset.

mGGN, mixed ground glass nodule; pGGN, pure ground-glass nodule

Supplementary Table 4. Size distribution of the three types of nodules in the primary dataset and the independent testing dataset. Each number is represented as median (25th, 75th percentiles, mm). Statistical analyses were performed among four categories using Kruskal-Wallis H tests, and the number of nodules in each category could be referred to Supplementary Table 3. All two-tailed P values among four categories were lower than 0.001.

Tuno	Overall		Grou	nd truth		- P
Туре	Overall	Label 1	Label 2	Label 3	Label 4	- <i>P</i>
Primary dataset						
All nodules	4.90	4.68	6.10	7.30	10.22	<0.001
	(4.23, 5.81)	(4.13, 5.35)	(5.03, 7.55)	(5.87, 10.02)	(7.01, 14.97)	< 0.001
Calid nadulas	4.68	4.56	6.30	8.96	12.29	< 0.001
Solid nodules	(4.11, 5.43)	(4.05, 5.20)	(5.12, 8.11)	(6.07, 11.93)	(8.51, 18.47)	<0.001
	9.79	5.82	10.62	10.03	14.30	< 0.001
mGGNs	(6.13, 14.50)	(5.13, 7.21)	(6.73, 14.18)	(7.17, 13.82)	(10.40, 19.12)	<0.001
Solid	5.78	3.42	6.62	6.70	9.80	<0.001
components	(3.55, 10.58)	(1.30, 4.98)	(4.14, 10.64)	(4.66, 11.23)	(5.84, 15.05)	< 0.001
	5.10	4.85	5.69	6.70	7.43	<0.001
pGGNs	(4.40, 6.01)	(4.24, 5.54)	(4.86, 6.67)	(5.58, 8.79)	(6.39, 9.97)	< 0.001
Independent testing	dataset					
All nodules	4.79	4.52	5.88	7.47	10.90	-0.001
All nounes	(3.96, 5.96)	(3.81, 5.39)	(4.84, 7.59)	(5.56, 10.82)	(7.40, 15.81)	< 0.001
Solid nodules	4.62	4.48	5.80	7.08	12.71	< 0.001
Sona nouvies	(3.88, 5.60)	(3.79, 5.31)	(4.84, 7.25)	(5.17, 10.63)	(9.63, 20.15)	<0.001
mGGNs	9.52	6.66	9.07	10.70	13.64	<0.001
MGGNS	(6.36, 14.13)	(5.37, 11.70)	(6.41, 12.55)	(8.77, 12.49)	(9.12, 16.83)	< 0.001
Solid	5.49	4.54	4.81	7.90	9.02	<0.001
components	(3.07, 10.07)	(1.50, 7.39)	(2.85, 8.03)	(5.67, 10.35)	(5.13, 14.42)	< 0.001
- CCNa	4.93	4.57	5.64	6.60	7.85	<0.001
pGGNs	(4.05, 6.20)	(3.85, 5.49)	(4.68, 6.97)	(5.53, 9.15)	(6.31, 10.72)	< 0.001

mGGN, mixed ground glass nodule; pGGN, pure ground-glass nodule

Supplementary Table 5. AUC values of Lung-RADS v2022 and C-Lung-RADS in distinguishing suspicious malignant nodules at Phase 1. Each number is represented by mean and 95% confidence interval (CI). Statistical analyses were performed using ordinary two-way ANOVA followed by Sidak's multiple comparison tests, with two-tailed *P* values as follows.

	Overall	Solid nodules	mGGNs	pGGNs
Internal testing data	set			
Lung-RADS	0.761	0.924	0.697	0.506
	(0.759-0.762)	(0.922-0.927)	(0.694-0.699)	(0.506-0.507)
C-Lung-RADS	0.899	0.927	0.710	0.829
	(0.898-0.900)	(0.925-0.930)	(0.708-0.713)	(0.827-0.830)
Р	< 0.001	0.163	< 0.001	< 0.001
Independent testing	dataset			
Lung-RADS	0.820	0.973	0.639	0.499
	(0.817-0.822)	(0.972-0.973)	(0.636-0.641)	(0.499-0.499)
C-Lung-RADS	0.912	0.974	0.704	0.799
	(0.911-0.913)	(0.973-0.974)	(0.701-0.706)	(0.796-0.802)
Р	< 0.001	0.764	< 0.001	< 0.001

mGGN, mixed ground glass nodule; pGGN, pure ground-glass nodule

Supplementary Table 6. The FNR, FPR, PPV, and NPV in the Lung-RADS v2022 and C-Lung-RADS both based on nodule's density and size in Phase 1. Statistical analyses were performed using chi-square tests, with two-tailed *P* values as follows.

Variables -	C-Lung-RADS	Lung-RADS			Р
variables -	% (95% CI)	n/N	<i>n/N</i> % (95% CI)		P
Internal test	ing dataset				
FNR	7.4 (4.7-11.4)	18/244	41.4 (35.4-47.7)	101/244	< 0.001
FPR	20.8 (20.0-21.6)	1823/8768	11.5 (10.8-12.2)	1007/8768	< 0.001
PPV	11.0 (9.8-12.5)	226/2049	12.4 (10.7-14.5)	143/1150	0.233
NPV	99.7 (99.6-99.8)	6945/6963	98.7 (98.4-98.9)	7761/7862	< 0.001
Independent	t testing dataset				
FNR	3.6 (1.5-8.1)	5/139	24.5 (18.1-32.2)	34/139	< 0.001
FPR	23.7 (23.0-24.4)	3393/14298	16.4 (15.8-17.0)	2350/14298	< 0.001
PPV	3.8 (3.2-4.5)	134/3527	4.3 (3.5-5.2)	105/2455	0.353
NPV	99.9 (99.9-99.9)	10905/10910	99.7 (99.6-99.8)	11948/11982	< 0.001

FNR, false negative rate; FPR, false positive rate; PPV, positive predictive value; NPV, negative predictive value.

Supplementary Table 7. Demographics of participants at Phase 2. Age is represented as median (25th, 75th percentiles). The age distribution of participants with benign and malignant nodules was compared using the Mann-Whitney U test with two-tailed P values as follows. Statistical analysis of categorical variables was performed using the chi-square tests with two-tailed P values as follows.

Parameters	Overall	Benign	Malignant	$P_{(Benign \ vs.}$
N(%)	Overan	Denign	Manghant	Malignant)
Training dataset				
No. of participants	5452	4665	787	
Age (median, years)	50 (43, 57)	49 (42, 56)	53 (46, 62)	< 0.001
< 45	1618 (29.7%)	1439 (30.8%)	179 (22.7%)	< 0.001
\geq 45 to < 60	2765 (50.7%)	2401 (51.5%)	364 (46.3%)	
≥ 60	1069 (19.6%)	825 (17.7%)	244 (31.0%)	
Sex				
Male	3168 (58.1%)	2854 (61.2%)	314 (39.9%)	< 0.001
Female	2284 (41.9%)	1811 (38.8%)	473 (60.1%)	
Smoking status				
Yes	1601 (29.4%)	1421 (30.5%)	180 (22.9%)	< 0.001
No	3763 (69.0%)	3225 (69.1%)	538 (68.4%)	
Unknown	88 (1.6%)	19 (0.4%)	69 (8.7%)	
History of cancer				
Yes	8 (0.1%)	2 (0.1%)	6 (0.8%)	< 0.001
No	5189 (95.2%)	4642 (99.5%)	547 (69.5%)	
Unknown	255 (4.7%)	21 (0.4%)	234(29.7%)	
Family history of cancer				
Yes	865 (15.9%)	679 (14.5%)	186 (23.6%)	< 0.001
No	4459 (81.8%)	3969 (85.1%)	490 (62.3%)	
Unknown	128 (2.3%)	17 (0.4%)	111 (14.1%)	
Family history of lung ca	ncer			
Yes	265 (4.9%)	228 (4.9%)	37 (4.7%)	< 0.001
No	4935 (90.5%)	4419 (94.7%)	516 (65.6%)	
Unknown	252 (4.6%)	18 (0.4%)	234 (29.7%)	
Internal testing dataset				
No. of participants	1351	1142	209	
Age (median, years)	50 (42, 58)	50 (42, 57)	54 (45, 64)	< 0.001
< 45	427 (31.6%)	375 (32.8%)	52 (24.9%)	< 0.001
≥ 45 to < 60	628 (46.5%)	545 (47.7%)	83 (39.7%)	
≥60	296 (21.9%)	222 (19.5%)	74 (35.4%)	
Sex			. ,	
Male	774 (57.3%)	685 (60.0%)	89 (42.6%)	< 0.001
Female	577 (42.7%)	457 (40.0%)	120 (57.4%)	

Smoking status				
0	200 (20 10/)	221 (200/)	40 (22 40/)	-0.001
Yes	380 (28.1%)	331 (29%)	49 (23.4%)	< 0.001
No	946 (70.0%)	809 (70.8%)	137 (65.6%)	
Unknown	25 (1.9%)	2 (0.2%)	23 (11.0%)	
History of cancer				
Yes	6 (0.4%)	1 (0.1%)	5 (2.4%)	< 0.001
No	1283 (95.0%)	1139 (99.7%)	144 (68.9%)	
Unknown	62 (4.6%)	2 (0.2%)	60 (28.7%)	
Family history of cancer				
Yes	203 (15%)	173 (15.1%)	30 (14.3%)	< 0.001
No	1117 (82.7%)	967 (84.7%)	150 (71.8%)	
Unknown	31 (2.3%)	2 (0.2%)	29 (13.9%)	
Family history of lung ca	ncer			
Yes	50 (3.7%)	47 (4.1%)	3 (1.4%)	< 0.001
No	1239 (91.7%)	1093 (95.7%)	146 (69.9%)	
Unknown	62 (4.6%)	2 (0.2%)	60 (28.7%)	
Independent testing data	set			
No. of participants	1951	1812	139	
Age (median, years)	62 (54, 68)	62 (54, 68)	62.0 (54, 67)	0.192
< 45	49 (2.5%)	43 (2.4%)	6 (4.3%)	0.233
\geq 45 to < 60	820 (42.0%)	768 (42.4%)	52 (37.4%)	
≥60	1082 (55.5%)	1001 (55.2%)	81 (58.3%)	
Sex				
Male	727 (37.3%)	685 (37.8%)	42 (30.2%)	0.075
Female	1224 (62.7%)	1127 (62.2%)	97 (69.8%)	
Smoking status				
Yes	477 (24.5%)	449 (24.8%)	28 (20.2%)	0.439
No	1440 (73.8%)	1331 (73.4%)	109 (78.4%)	
Unknown	34 (1.7%)	32 (1.8%)	2 (1.4%)	
History of cancer				
Yes	22 (1.1%)	22 (1.2%)	0 (0)	0.005
No	1548 (79.4%)	1450 (80%)	98 (70.5%)	
Unknown	381 (19.5%)	340 (18.8%)	41 (29.5%)	
Family history of cancer				
Yes	1407 (72.1%)	1368 (75.5%)	39 (28.1%)	< 0.001
No	518 (26.6%)	441 (24.3%)	77 (55.4%)	
Unknown	26 (1.3%)	3 (0.2%)	23 (16.5%)	
Family history of lung ca	ncer			
Yes	22 (1.1%)	18 (1.0%)	4 (2.9%)	< 0.001
No	1903 (97.6%)	1791 (98.8%)	112 (80.6%)	
Unknown	26 (1.3%)	3 (0.2%)	23 (16.5%)	
	-		-	

Supplementary Table 8. Distribution of the malignancy probability in single-, dual-, and multi-dimension models at Phase 2. For the malignancy probability with asymmetrical distribution, it is represented as median (25th, 75th percentiles). To quantitatively compare the malignancy probability of the benign and the malignant, statistical analyses were performed using Mann-Whitney U tests, with two-tailed P values as follows.

Datasets	Benign	Malignant	P (Benign vs. Malignant)
Training dataset			
Single-dimension model (Imaging)	0.236 (0.150, 0.290)	0.653 (0.483, 0.742)	<0.001
Dual-dimension model (Imaging + Clinical)	0.282 (0.197, 0.353)	0.713 (0.550, 0.802)	< 0.001
Multi-dimension model (Imaging + Clinical + Follow-up)	0.288 (0.205, 0.363)	0.753 (0.570, 0.870)	< 0.001
Internal testing dataset			
Single-dimension model	0.232 (0.154, 0.290)	0.706 (0.530, 0.783)	< 0.001
Dual-dimension model	0.283 (0.196, 0.353)	0.752 (0.579, 0.832)	< 0.001
Multi-dimension model	0.290 (0.203, 0.358)	0.808 (0.653, 0.911)	< 0.001
Independent testing dataset			
Single-dimension model	0.195 (0.130, 0.290)	0.656 (0.440, 0.767)	< 0.001
Dual-dimension model	0.256 (0.185, 0.353)	0.713 (0.502, 0.830)	< 0.001
Multi-dimension model	0.259 (0.189, 0.354)	0.713 (0.535, 0.834)	< 0.001

Supplementary Table 9. Quantitative metrics including AUC, accuracy, sensitivity, and specificity of the single-, dual-, and multi-dimension models in identifying the extremely high-risk nodules at Phase 2. Each number is represented with the mean and 95% confidence interval (CI). Statistical analyses were performed using ordinary two-way ANOVA followed by Tukey's multiple comparison tests. The two-tailed adjusted *P* values were listed below.

				P (Single-	P (Single-	P(Dual-
Datasets	Single-dimension	Dual-dimension	Multi-dimension	vs. Dual-	vs. Multi-	vs. Multi-
				dimension)	dimension)	dimension)
Internal testing	g dataset					
AUC	0.881	0.882	0.918	0.451	< 0.001	< 0.001
AUC	(0.880-0.882)	(0.881-0.883)	(0.918-0.919)	0.431		< 0.001
Accuracy	0.832	0.828	0.829	< 0.001	< 0.001	0.025
Accuracy	(0.831-0.832)	(0.827-0.828)	(0.829-0.830)	< 0.001		0.025
Sensitivity	79.6%	82.4%	85.1%	< 0.001	< 0.001	< 0.001
Sensitivity	(79.4%-79.7%)	(82.2%-82.5%)	(85.0%-85.3%)	< 0.001		0.001
Specificity	83.4%	82.8%	82.8%	< 0.001	< 0.001	1.000
specificity	(83.4%-0.835)	(82.8%-82.9%)	(82.8%-82.9%)	< 0.001	< 0.001	1.000
Independent te	esting dataset					
AUC	0.924	0.926	0.927	0.876	0.565	0.857
AUC	(0.923-0.926)	(0.924-0.927)	(0.926-0.928)	0.870	0.505	
Accuracy	0.882	0.877	0.877	0.067	0.068	1.000
Accuracy	(0.881-0.882)	(0.876-0.877)	(0.876-0.877)	0.007	0.008	
Sensitivity	64.3%	78.3%	85.6%	< 0.001	< 0.001	< 0.001
Sensitivity	(63.6%-65.1%)	(77.8%-78.9%)	(85.1%-86.1%)	<0.001	~0.001	~0.001
Specificity	88.4%	87.8%	87.7%	0.012	0.004	0.946
specificity	(88.3%-88.5%)	(87.7%-87.8%)	(87.6%-87.7%)	0.012	0.004	0.940

AUC, area under the curve.