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Supplementary Note A: Analysis of the zero-field resistivity

A.1. Extraction of characteristic temperatures T1 and T2

T1 and T2 in the zero-field normal state are extracted by two methods: the derivative and

linear-fitting method. For the derivative method, T1 corresponds to the lower limit at which

dρab/dT deviates outside of the noise level set by the data above 250 K; T2 corresponds to

the upper limit above which dρab/dpT 2q departs from the plateau value set at lower T , as

illustrated in Supplementary Figs. 1a and 1c. For the linear-fitting method, ρabpT q are fitted

to ρpT q “ ρ0 ` A1T at high T and ρpT q “ ρ0 ` A2T
2 at low T , and divided by the respective

fitted curves. T1 and T2 then correspond to the temperature at which ρab{ρfit deviate more than

1%, as illustrated in Supplementary Fig. 1b. An average of T1 and T2 extracted using the two

methods are used to construct Fig. 1 in the main text. The full ρabpT q data set measured in

zero applied field are shown in Supplementary Fig. 2.
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Supplementary Figure 1: Extraction criteria for Tc, T1, and T2. a, Zero-field T -
dependent in-plane resistivity for x = 0.125 (left axis) with the corresponding T -derivative
(right axis). T 1

c corresponds the temperature at which dρab/dT shows a steep upturn,
which in turn defines the normal-state resistivity value ρn “ ρabpT

1
cq used for defining Tc

and µ0Hc2. Filled arrows correspond to the characteristic temperature scales T1 (and T2)
defined as the temperature at which the measured ρabpT q deviates from the T -linear fit
ρ1pT q (and T 2 fit ρ2pT q) by 1% (panel b), respectively; open arrows correspond to the
same temperature scales defined by a deviation of dρab/dT (and dρab/dpT 2q) from the
plateau values at high T (and low T ; panel c), respectively. An average of the values
extracted using the two methods are used for Fig. 1 in the main text. The same method
is used to extract T1, T2, and Tn from ρabpT q curves obtained in large magnetic fields.
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Supplementary Figure 2: Zero-field resistivity of the entire Nd1´xSrxNiO2

doping series. a, Zero-field ρabpT q for 0.05 ď x ď 0.325 and b, the corresponding
T -derivatives. ρabpT q traces are shifted vertically by 400 µΩ cm for clarity. T0 is defined
as the temperature at which dρab/dT = 0 (outside of the superconducting state). The
horizontal shaded bars show the dρab/dT at the high-T plateaus with the noise levels.
Filled (open) triangles are the corresponding T1 (T2) values extracted using the derivative
method, respectively. Note that the dips at around 50 K in some of the dρab/dT curves
are experimental artefacts due to thermometer calibration of the commercial measure-
ment system (PPMS by Quantum Design Inc.) used. For x “ 0.325 (and x “ 0.3125 to
a lesser extent), the gradual increase in dρab/dT with decreasing T below 250 K (which
may be due to the higher level of disorder as reflected by the larger residual resistivity)
makes it difficult to reliably extract T1 using the derivative method, though we could
still estimate its A1 from dρab/dT above 250 K. c, Slope of T -linear resistivity at high
temperatures A1 versus x and d, the inverse of A1 versus x. 1{A1 decreases approxi-
mately linearly with increasing x, contrasting to that found in the hole-doped cuprates1

and possibly suggesting a reduction of electronic density of states at the Fermi level with
increasing x. The error bars in A1 and 1{A1, assumed to be 15%, correspond to the
geometric uncertainties of measured samples.
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A.2. Quantitative evaluation of in-plane resistivity

The largest contributor to the uncertainty in determining the in-plane resistivity values in our

films is the determination of effective film thickness. Given the films have a total thickness of

roughly 15 unit cells, a sharp step in the substrate would lead thickness variation of 1-2 unit cells,

which translates to an uncertainty in thickness within 7–14%. In previous work conducted on

the same set of samples,2 we have demonstrated that the high-T dρab/dT in NSNO and LSCO

near respective optimal doping have nearly identical magnitudes (« 1.1 µΩ cm K´1). The fact

that the absolute values of dρab/dT between these two systems show striking similarity suggests

that level of residual disorder does not play a dominant role in determining the prefactor of

T -dependent resistivity. We also note that dρab/dT at high T for films with 0.15 ď x ď 0.30

increases with x (Supplementary Fig. 2c), meanwhile ρ0 decreases slightly as x increases in this

doping range. This observation shows that the magnitude of T -dependent resistivity is not

dictated by residual resistivity of our films, and the findings reported here on charge transport

in NSNO thin films is not significantly impacted by the level of excess disorder.

A.3. Comparison with LSCO

The fan of T -linear resistivity that spans the NSNO phase diagram – depicted in Fig. 1 of the

main article – is highly reminiscent of the fan previously reported in LSCO.3 In the latter,

this fan has been interpreted as emerging from a singular QCP near the doping level p˚ at

which the pseudogap phase closes.4 The expectation within such a picture is that a FL ground

state is restored at sufficiently low temperatures with ρpT q 9 T 2 with a coefficient that grows

(diverges) as p Ñ p˚. High-field transport studies, however, indicate that in contrast to expec-

tations, ρabpT q in overdoped LSCO retains a dominant T -linear component down to the lowest

temperatures, with a coefficient α1p0q that dropped monotonically with increasing p,5 while the

sub-dominant T 2 term shows very little change with doping.

The presence of a small resistive upturn in our NSNO films beyond xopt makes it difficult

to identify a pure T -linear component in ρabpT q (finite intercept in dρab/dT ) at low-T , and

as discussed in the main text, the T -dependence is best described by a single power-law with

a non-integer exponent. Nevertheless, given the similarities in the form of ρabpT q at higher

temperatures, it is perhaps prudent to examine whether or not we can rule out a similar evolution

in the form of ρabpT q (dρab/dT ) in NSNO to that observed in LSCO.

The high-T coefficient α1p8q is extracted directly from the dρab/dT curves plotted in Sup-

plementary Fig. 2. To obtain α1p0q, we performed a linear extrapolation of the intermediate-T

slopes of dρab/dT down to 0 K and read off the intercept. This process inevitably invokes a
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larger uncertainty, but we note that uncertainty in the absolute values of ρabpT q – notoriously

difficult to determine precisely in such thin films – is removed by taking the ratio of the two

coefficients.

The result of this exercise is shown in Supplementary Fig. 3. The blue squares are taken

directly from ref.3 The agreement between the two data sets is indeed striking. While this

analysis does not confirm that ρabpT q = α0 + α1p0qT + α2T
2 in NSNO at low T , it is important

to acknowledge that this possible link does exist.

Supplementary Figure 3: Comparison of T -linear coefficients in NSNO and
LSCO. Doping dependence of the ratio α1p0q{α1p8q as a function of Sr concentration in
NSNO (red circles) and LSCO (blue suqares). Here, α1p8q is the coefficient of the high-
T T -linear resistivity and α1p0q is the corresponding low-T T -linear coefficient obtained
by linearly extrapolating the intermediate-T slopes of dρab/dT shown in Supplementary
Fig. 2 down to 0 K. The error bars correspond to the uncertainty in extrapolated α1p0q

values by fitting the low-T resistivity data.

Supplementary Note B: Form of normal-state MR near xopt

The validity of established MR functional forms in describing the normal-state MR in NSNO is

critically examined. Supplementary Fig. 4 illustrates the violation of Kohler’s scaling

(∆ρpHq{ρp0q 9 H{ρp0q), known to be successful to capture the orbital MR in conventional

metals, and quadrature scaling ∆ρpHq{T 9 H{T , recently found to be valid in hole-doped

cuprates as well as several quantum critical metals. We further examine whether the T = 25 K

MR traces for x « xopt can be fitted to a conventional two-carrier model or other empirical

models, as shown in Supplementary Fig. 5. While all the trial models can fit the 25-K data
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reasonably well, we find that the power-law fit ∆ρpHq 9 Hm shows highest R2 and lowest χ2

values, demonstrating a quantitative superiority of the power-law function in describing the

normal-state MR in NSNO.
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Supplementary Figure 4: Absence of scaling collapse in the normal-state
MR for x “ 0.1625. a, ∆ρ{ρp0q versus µ0H{ρp0q, known as the Kohler’s plot,
for T ą Tc. b, ∆ρ{T versus µ0H{T , which will lead to a scaling collapse
if ∆ρpH,T q 9

a

pαkBT q2 ` pγµBµ0Hq2. No scaling of either kind is found for
Nd1´xSrxNiO2 at x “ 0.1625.

To inspect the MR evolution below Tc, we first have to identify the field scale at which

the normal-state behaviour is recovered. As the field-derivative of magnetoresistivity always

increases with field (i.e. d2ρab/dpH2q ą 0) at T ą Tc, we use the manifestation of a positive

slope in dρab/dH as indicative of the normal-state recovery, and fitted the MR data below Tc

using the power-law expression (as well as the other two functions trialed in Supplementary

Fig. 5), as shown in Supplementary Fig. 6-9. We find that the extrapolated zero-field resistivity

below Tc, regardless of the fitting function, does not follow a pure T -linear behaviour as T Ñ 0

(Supplementary Fig. 6-8). Furthermore, we find that the MR slope (dρab/dµ0H) increases by

more than one order of magnitude as T decreases from 95 to 1.4 K (Supplementary Fig. 10a),

whereas dρab/dµ0H at a constant T = 25 K does not correlate with the zero-field resistivity

(Supplementary Fig. 10b), indicating the MR magnitude is not set by the level of disorder itself

but controlled by the level of Sr doping.
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Δρ(H) = βmHm Δρ(H) = β1H + β2H2Δρ(H) = aH2/(1+bH2)
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Supplementary Figure 5: Comparison of model fitness to measured magne-
toresistivity in nearly optimally doped films. ρabpHq traces measured at 25 K for
each sample (x = 0.15, top row; x = 0.165, middle row; x = 0.175, bottom row) are
fitted to an empirical two-carrier function (left column), a power-law function (middle
column), and a dual-component function (right column). The 25-K MR trace is used
as it is closest to the zero-field T 1

c values for these films, which allows us to access the
normal state over the widest field range. The corresponding R2 and reduced χ2 values
of the fits are specified. The power-law function consistently yields the highest R2 and
lowest χ2 for all x « xopt, indicating a statistical superiority of the power-law function in
describing the normal-state MR.
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Supplementary Figure 6: Field range of normal-state MR and extrapolation of
zero-field resistivity for x “ 0.15. a, dρab/dµ0H below 30 K. Each trace is vertically
shifted by 0.1 µΩ cm T´1 for clarity. (Recall that in Fig. 3a of the main article, these
dρab/dµ0H curves were not vertically shifted.) Open triangles indicate the field strength
(Hn) above which the normal-state behaviour is recovered. b, Fits made to ρabpHq

isotherms at H ě Hn, shown in dashed lines, using ρpHq “ ρp0q `AH2{p1`BH2q (top),
ρpHq “ ρp0q ` βmH

m (middle), and ρpHq “ ρp0q ` β1H ` β2H
2 (bottom), respectively.

c, Extracted zero-field resistivity ρabpT,H “ 0q using each of the trial functions. Very
similar behaviour is found irrespective of the fitting function.
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Supplementary Figure 7: Field range of normal-state MR and extrapolation
of zero-field resistivity for x “ 0.1625. The same figure as Supplementary Fig. 6 with
x “ 0.1625.
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Supplementary Figure 8: Field range of normal-state MR and extrapolation
of zero-field resistivity for x “ 0.175. The same figure as Supplementary Fig. 6 with
x “ 0.175.
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Supplementary Figure 10: Temperature and doping evolution of high-field
MR slopes. a, MR slope at 53 T for x near xopt over wide temperature range 1.4 K ď

T ď 95 K. An order-of-magnitude increase in differential MR dρab/dµ0H is observed
between 1.4 and 95 K. b, MR slope at 33 T (left axis) and zero-field resistivity at 25 K
(right axis) for 0.15 ď x ď 0.25. The error bars in A1 and 1{A1, assumed to be 15%,
correspond to the geometric uncertainties of measured samples. An overall suppression
in dρab/dµ0H with increasing x is found, while ρ25 Kp0q remains largely unchanged with
respect to x.
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Supplementary Note C: Details of Boltzmann MR simulations

Within a Boltzmann theoretical framework, the rapid increase in MR magnitude with decreas-

ing T can only be reconciled by invoking a corresponding and marked increase in the k-space

anisotropy of the mean-free-path ℓ (under the assumption that there is no change in the carrier

density across T “ T0). Such a circumstance, coupled with Fermi surface regions of differing

curvature, was invoked previously to explain the T - and x-dependence of the Hall coefficient

RHpT q in overdoped LSCO.6,7 Intriguingly, RHpT q in near-optimally-doped NSNO also exhibits

a similar T -dependence to that observed in overdoped LSCO.2,8 This correspondence supports

the notion that the MR response in NSNO can be qualitatively understood in terms of strong

anisotropy in the elastic scattering channel (i.e., the impurity-limited mean-free-path ℓ) that

is gradually smeared out with increasing H (due to the ever-increasing cyclotron motion) and

increasing T (due to the growth of an inelastic scattering rate that is effectively isotropic in

k-space). We note that this simulation only serves as an illustration that an unconventional

power-law MR can be qualitatively captured using an approximate Fermi surface parametrisa-

tion with certain models of anistropic scatterings. Clearly, future studies of the Hall response

up to comparable field strengths will confirm whether this picture can capture the full magne-

totransport response in NSNO.

Supplementary Note D: Extrapolations of zero-field resistivity below Tc in

overdoped NSNO

Supplementary Fig. 12 shows magnetoresistivity traces measured at T ď 30 K in overdoped

NSNO with 0.20 ď x ď 0.25. For x “ 0.225 and 0.25, we estimate the zero-field normal-

state resistivity below Tc by fitting the (nearly) normal-state MR using the dual-component

expression: ρpHq “ ρp0q ` β1H ` β2H
2, as the narrow field range of normal-state behaviour

prevents a reliable extraction of ρabpT,H “ 0q using the single power-law expression. For

x “ 0.20, the normal-state MR cannot be accessed below 34 T for T À 10 K.
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Supplementary Figure 11: Simulations of MR in superconducting nickelates
using Boltzmann transport formalism with k-dependent anisotropic scatter-
ing. a, Fermi surface parameterisation of NSNO near optimal doping. Solid and dashed
red lines correspond to Ni dx2´y2 band at kz “ 0 and kz “ π{c, respectively, and purple
line corresponds to the Nd pocket. All electronic bands are derived from the tight-binding
model developed in ref.9 Corresponding Fermi velocity vF as a function of azimuthal an-
gle ϕ are shown on the right panels. b, Experimental MR data measured on NSNO
(x “ 0.1625q. Zero-field resistivity and dρab/dH values at selected temperatures are used
as benchmarks for consistency check of simulated results. c, Effect of Fermi surface pa-
rameterisation and scattering anisotropy on simulated MR at T = 25 K. The inclusion
of two Ni sheets increases the simulated MR in all scattering anisotropy scenarios con-
sidered, whereas the inclusion of Nd pocket decreases the MR magnitude. The antinodal
hotspot scenario (τ´1 “ τ´1

0 ` τ´1
k |cosp2ϕq|ν) produces a simulated dρab/dH closest to

the experimental dρab/dH at 25 K. d, MR simulations at selected temperatures with
different forms of antinodal hotspot parametrisation, using a two Ni-sheet Fermi surface.
For the constant 1{τk scenario, a T -independent 1{τkp“ 523 ps´1) and ν “ 12 is used with
1{τ0 tuned to match the zero-field resistivity ρp0q to experimental values within 1 µΩ cm.
For the fixed ‘peaky-ness’ scenario, a T -independent ν is used with τk{τ0 and τ´1

0 tuned
to match the experimental dρab/dH at 54 T and ρp0q at each T , respectively. For the
softened hotspot scenario, a trial set of ν “ p12, 10, 8, 4q is used at T “ p4.2, 25, 48, 95q K
with τk{τ0 and τ´1

0 tuned to match the experimental dρab/dH at 54 T and ρp0q at each
T , respectively. Parameters used to generate the simulated results are shown in Table 1.
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Supplementary Table 1: Parameters used for MR simulations within scenar-
ios considered. Isotropic-τ : 1{τ “ 1{τ0; nodal hotspot: 1{τ “ 1{τ0 ` 1{τk|sin(2ϕq|ν ;
antinodal hotspot: 1{τ “ 1{τ0 `1{τk|cos(2ϕq|ν . I, II, III corresponds to the Fermi surface
parameterisation using a single Ni Fermi sheet (kz “ 0), two Ni Fermi sheets (kz “ 0
and π{c), and two Ni Fermi sheets plus Nd pocket, respectively. For the T -dependent
simulations, the two-Ni-Fermi-sheet scenario is used for Fermi surface parametrisation.

Scenario T (K) ρp0qpµΩ cm) 1{τ0 (ps´1) 1{τk (ps´1) ν

Experiment 25 134.4 - - -

Isotropic-τ (I) 25 121.1 90 0 -

Isotropic-τ (II) 25 138.4 90 0 -

Isotropic-τ (III) 25 110.2 90 0 -

Nodal hotspot (I) 25 159.3 90 450 12

Nodal hotspot (II) 25 185.8 90 450 12

Nodal hotspot (III) 25 138.2 90 450 12

Antinodal hotspot (I) 25 163.0 90 450 12

Antinodal hotspot (II) 25 190.2 90 450 12

Antinodal hotspot (III) 25 140.6 90 450 12

Constant 1/τk 4.2 121.5 51.2 523 12

25 135.1 58.1 523 12

48 155.5 68.8 523 12

95 207.5 97.0 523 12

Fixed peaky-ness 4.2 121.6 42.3 1400 12

25 134.4 57.7 525 12

48 155.9 77.5 280 12

95 207.6 115 180 12

Softened hotspot 4.2 122.0 42.1 1470 12

25 134.0 52.1 585 10

48 156.1 69.8 262 8

95 207.5 113 70.7 4
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Supplementary Figure 12: Magnetoresistivity isotherms and corresponding
field-derivatives for x = 0.20, 0.225 and 0.25 films. The same colour coding is
shared by x “ 0.225 and 0.25.
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Supplementary Note E: Form of low-T normal-state resistivity

In Supplementary Figs. 13 and 14 we examine the validity of three expressions to describe the

low-T normal-state resistivity in OD-NSNO: a purely T 2 resistivity (∆ρpT q “ A2T
2), a dual-

component resistivity (∆ρpT q “ α1T ` α2T
2), and a power-law resistivity (∆ρpT q “ αnT

n).

As discussed in the main text, a purely T 2 resistivity is only valid within a narrow T window,

especially for x “ 0.275 in which the normal-state resistivity can be accessed over the widest

T window. Comparing the two alternative cases, the power-law expression is consistently valid

over a wider T window for all x (Supplementary Figs. 13 and 14d). Therefore, we conclude that

a single power-law resistivity ∆ρpT q “ αnT
n with n « 1.5 provides the best description for the

low-T normal-state resistivity in OD-NSNO.
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Supplementary Figure 13: Power-law versus dual-component description for
the low-T normal-state resistivity. a, A dual-component expression (ρpT q “ ρ0 `

α1T ` α2T
2; blue dashed line) is used to fit the experimental ρabpT q between 3 and

18 K, within which the corresponding dρab/dT (measured at 14 T) shows apparent T -
linearity with a finite intercept. In comparison with the power-law fit (ρpT q “ ρ0 `

αnT
n; orange dashed-dotted line), the experimental agreement of the dual-component

fit is confined within a much narrower T -window, making it difficult to perform any
quantitative analysis of such fits. Blue dotted line corresponds to a purely T 2 resistivity
(ρpT q “ ρ0 ` A2T

2) as T Ñ 0. (b, c) The same analysis applied to b, moderately
overdoped films (0.25 ě x ě 0.175) and c, heavily overdoped films beyond the SC region
(x ě 0.30). For x ď 0.275, the power-law and dual-component expressions are fitted
to the same T -window between 3T0 and the highest temperature at which resistivity is
measured in applied magnetic fields (34 T for 0.25 ě x ě 0.175; 14 T for x “ 0.275). For
x “ 0.30 and 0.3125, fitting 12-T data between 3T0 and 20 K (at which dρab/dT shows
a kink) finds α1 « 0, therefore the same constraint is applied to x “ 0.325 using the
dual-component description.

16



0.175 0.225 0.275 0.325
0.0

0.5

1.0

0.00

0.02

0.04

0.06

0.175 0.225 0.275 0.325
0

20

40

60

0.0

0.1

0.2

0.3

x

1(
0)

 (µ
Ω

 c
m

 K
-1

)

0.00

0.02

0.04

0.06

2(
0)

 (µ
Ω

 c
m

 K
-2

)

A
2 (
µ
Ω

 c
m

 K
-2

)

T 
(K

)

x

∆ (T) = A2T
2 

1T + 2T
2

nT
n

n (
µ
Ω

 c
m

 K
-n

)

α 1
 (µ
Ω

 c
m

 K
-1

)

α 2
 (µ
Ω

 c
m

 K
-2

)

a

b

c

d

Supplementary Figure 14: Doping dependence of fitting parameters and win-
dow of validity for ρpT q models considered. a, Pure T 2 resistivity: ρpT q “ ρ0`A2T

2.
b, Dual-component resistivity: ρpT q “ ρ0 ` α1T ` α2T

2. c, Power-law resistivity:
ρpT q “ ρ0 ` αnT

n. The error bars in A2 and α1,2,n correspond to the geometric uncer-
tainties of measured samples, assumed to be 15%. d, Valid T -window for each resistivity
model considered, with filled (open) bars correspond to data measured in large (ą 10 T)
and zero magnetic field, respectively. Open circles correspond to T0pxq. For x ď 0.275,
the low-T T 2 behaviour which applies only to a very narrow T -window is likely caused by
the onset of the very low-T resistive upturns; whereas for x ě 0.30, the T 2 behaviour is
valid over a more extended T -window in the T Ñ 0 limit and crossovers to T 1.45 behaviour
above « 20 K.

17



0.175 0.225 0.275 0.325
0

2

4

6

8

0 50 100 150 200 250
0

2

4

6

8

0 1 2 3 4
0

5

10

15

20

25

0.175 0.225 0.275 0.325
0

5

10

15

20

25

T 0
 (K

)

x
T 0

 (K
)

0 (µΩ cm)
T 2

 (K
)

T0 (K)

1.8 T0

3.6 T0

2.8 T0T 2
 (K

)

x

a b

c d

H = 0

H ≫ 0

T 
(K

)

T 
(K

)

Tn, lower

T2, upper

T2, lower

T0

T0

T0

Supplementary Figure 15: (a, b) T0 as a function of a, x and b, ρ0 for OD NSNO
(x ě 0.175). Open and filled symbols correspond to T0 measured in zero and large applied
magnetic fields, respectively. (c, d) Upper and lower bound in which T 2 resistivity is
found (T2,upper and T2,lower) and lower bound of T 1.45 resistivity, plotted against c, x and
d, corresponding T0. Filled and open symbols correspond to temperature scales extracted
from high-field measurements (µ0H “ 34, 14, and 12 T for 0.175 ď x ď 0.25, x “ 0.275,
and x ě 0.30, respectively). Error bars in T2 and Tn are given by the uncertainty
in extracted values between the two methods defined in Supplementary Note A. For
0.175 ď x ď 0.275, both T2,upper and T2,lower are found to track T0 closely, suggesting
the apparent T 2 behaviour results from the onset of resistivity upturn. In contrast, for
x ě 0.30, while T2,lower also tracks T0, T2,upper extends to higher temperatures (« 20 K)
and is largely uncorrelated to T0, indicating the apparent T 2 resistivity is not caused
by the resistive upturn occurring below 4 K, therefore signifying a recovery of low-T T 2

resistivity beyond x “ 0.30.
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Supplementary Figure 16: T 1.45 resistivity power law in overdoped La- and Pr-
nickelate superconductors. ρab versus T 1.45 for a, high-quality La1´xSrxNiO2 (x “

0.28; ref.10) and b, Pr1´xSrxNiO2 (x “ 0.24; ref.11). An approximate linear-in-T 1.45

behaviour in ρabpT q is found between T 1
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Pr1´xSrxNiO2 beyond optimal doping.
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Supplementary Note F: Possible influence of charge/spin fluctuations on charge

transport

The convergence of the extrapolated critical doping level at which 1) the sign change in Hall

coefficient RHpT Ñ 0q, 2) the elimination of the correlation-driven resistive upturn, and 3)

the most extended T -linear resistivity all occur, suggests that a transition of the underlying

electronic ground state takes place at xopt. Moreover, the extension of the T -linear resistivity

down to À 50 K, substantially lower than the Debye temperature ΘD « 340 K (ref.12), and

the marked asymmetry observed in the fan-like region of T -linear transport are both inconsis-

tent with a dominant electron-phonon interaction and is more indicative of an unconventional

scattering mechanism. Notwithstanding, ρabpT q in the x “ 0.1625 film deviates markedly from

perfect linearity in the (field-induced) normal state below Tc. This circumstance is distinct from

that found in hole-doped cuprates near optimal doping e.g. LSCO,5,13 despite the similarities

in the form of ρabpT q of NSNO and LSCO above Tc.
2 Given the fact that the lower temperature

bound of T -linearity in the x “ 0.1625 film largely coincides with the upper bound of T 1.5

behaviour in the OD region, we speculate that the T and T 1.5 dependence may originate from

electron scattering off critical fluctuations of distinct sectors, namely charge and spin. In such a

scenario, in the OD region at low T where charge fluctuations are absent, current dissipation is

dominated by scattering off spin fluctuations that are found to occupy much of the T ´x phase

space.14–17 Near xopt, charge fluctuations could become dominant and give rise to the observed

‘quantum critical fan’. The scenario of charge-fluctuation-driven criticality has recently been

proposed for hole-doped cuprates.18 Evidently, further studies are required to establish the

scattering mechanism responsible for the T -linear resistivity in the nickelates.
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