
 

 

 

GENCODE: massively expanding the lncRNA 
catalog through capture long-read RNA sequencing 

GENCODE experimental protocols employed to survey the human and 
mouse transcriptomes 
GENCODE has been at the forefront of using advanced methodologies to produce targeted 
transcriptomic data aimed specifically at gene and transcript annotation. The focus has been to 
survey the fraction of the transcriptome that is not usually well accessed by standard experimental 
protocols, complementing therefore the wealth of transcriptomic data produced by the scientific 
community and deposited in public data archives. The methodologies have evolved through the 
years towards the automatic production of high-quality full-length transcript sequences that can 
be incorporated in the GENCODE annotation with minimal manual curation effort. During the pilot 
phase of ENCODE, extensive experimental validation of annotated transcripts was performed 
using 5’ RACE and RT-PCR on multiple tissues followed by Sanger sequencing1. With the 
development of tiling arrays, we used their multiplexing capacity to implement the RACEarray 
normalization strategy, by which 5’ RACE products are hybridized into a tiling array2. 
Subsequently, RT-PCR is carried out from detected exons selected to correspond to novel, not 
previously annotated, transcripts3. Massively parallel sequencing superseded genome-wide tiling 
arrays, and we implemented RT-PCR-seq, in which RT-PCR products from primers designed to 
validate exons are pooled and sequenced using Illumina3. As soon as long-read sequencing 
technologies became available, we incorporated them into the GENCODE experimental pipeline. 
We developed RACE-seq in which RACE products were pooled and sequenced using the 
ROCHE 454 FLX+ platform4. More recently, we implemented the Capture Long-read Sequencing 
(CLS) strategy, in which probes against targeted regions of the genome are used to capture 
transcript sequences, which are then sequenced using Pacific Biosciences long-read technology5. 
Over the years, GENCODE has produced, therefore, a unique, massive collection of tens of 
thousands of targeted transcriptome readouts that have contributed significantly to the quality of 
the annotation. 

Data production and processing 

Capture design 
Short DNA sequences (probes), 120 nucleotides in length, were designed to specifically hybridize 
with target regions of interest and enrich them using the CLS protocol5,6. We designed a capture 
array with probes targeting a large fraction of the non-coding transcriptome, including virtually all 
i) non-GENCODE lncRNA annotations5,7–13, as well as ii) small non-coding RNAs, iii) enhancers14, 
iv) RNAs predicted to contain evolutionary conserved structures15, v) regions hosting non-coding 
GWAS hits16,17, vi) showing evolutionary characteristics of protein-coding gene function as 



 

 

 

predicted by PhyloCSF18, or vii) being evolutionarily conserved19. In addition, we designed probes 
against GENCODE+9 catalogs, which is the union of either GENCODE v20 (for human) and 
GENCODE vM3 (for mouse), with CLS5 transcript models from the pilot phase. For clarity, here 
we refer to them as GENCODE20+ and GENCODEM3+, respectively, throughout the text. 
 
Probes were designed in the human genome version hg38 using GENCODE v27 as reference 
annotation (Table S1). Eight key elements in the human genome were lifted over to the mouse 
genome version mm10, and probes were designed against them; miTranscriptome, fantomCat, 
bigTranscriptome, CMfinderCRSs, GWAScatalog, UCE, fantomEnhancers, and 
VISTAenhancers. While for the remaining elements (NONCODE, refSeq, GENCODEM3+, 
phyloCSF, and small RNAs), probes were designed against the corresponding datasets available 
for mouse. In total, 176,435 features summing up to 84,103,329 bp have been targeted in the 
human genome (2.9% of the total ungapped length in hg38), of which 116,383 (66%) intergenic 
with respect to GENCODE v27 and therefore targeting 54,545,313 bp of the unannotated space. 
Similarly, 148,965 features have been targeted in the mouse genome, totaling 66,937,555 bp 
(2.75% of the total ungapped length in mm10), of which 114,926 (77%) intergenic with respect to 
GENCODE vM16, covering 50,735,573 bp of the unannotated space. In total 107,701 features 
were orthologous between human and mouse (Table S2). To measure the efficiency of our 
capture protocol, we employed the ERCC spike-ins20, and designed probes to capture the 42 less 
abundant (rare) spike-ins (Figure S3).  

Library preparation and sequencing 
Ethical statement. Given that this study utilizes commercial human RNA samples, ethical 
approval from an institutional review board was not required. However, all procedures were 
conducted under ethical principles and guidelines for research involving commercial products. 
Ethical approval for the use of animals in this study was granted by the PRBB animal facility, from 
which the animals were purchased. 
 
Samples (Figure 1B). Total RNA was obtained from a diverse set of human and mouse tissues, 
as well as cell lines. Specifically, samples included 19 human tissues, 4 human cell lines, 20 
mouse tissues, and 1 mouse cell line. No biological or technical replicates were included in this 
study. Detailed information about the samples and their sources can be accessed through the 
ENCODE portal, where all relevant metadata has been deposited. 
 
For human samples, tissues include adult and embryonic heart, brain, liver, in addition to white 
blood cells, testis, induced pluripotent stem cells (iPSCs), and placenta. Additionally, a pooled 
library was prepared from four human cell lines (HCT-116, IMR-90, MCF-7, A549) and a separate 
pooled library from 13 human tissues: colon, bladder, lung, thyroid, trachea, thymus, esophagus, 
cervix, adipose tissue, skeletal muscle, spleen, prostate, and small intestine. 
 
Mouse samples were collected from both adult and embryonic mice of the C57BL/6 strain. 
Tissues include heart, brain, liver, white blood cells, testis, and embryonic stem cells (ESCs). A 



 

 

 

pooled library was also prepared from 12 mouse tissues: colon, bladder, lung, thymus, 
esophagus, kidney, ovary, adipose tissue, skeletal muscle, spleen, prostate, and small intestine. 
 
Total RNA extraction from mouse tissues was performed in-house using TRIzol reagent followed 
by purification with the PureLink RNA Mini Kit (Thermo Fisher Scientific). As mentioned above, 
human tissue total RNA was obtained from commercial sources. The purity of RNA samples was 
evaluated using a NanoDrop One spectrophotometer (Thermo Fisher Scientific), while RNA 
concentration was measured using the Qubit High Sensitivity RNA Assay Kit (Thermo Fisher 
Scientific, Cat. No. Q32852). RNA integrity and quality were assessed using RNA Nano chips on 
an Agilent Bioanalyzer system, with RNA Integrity Number (RIN) values used to confirm sample 
quality. 
 
Spike-in controls. A 1:1 mixture of capped ERCC and Lexogen SIRV spike-in controls was 
prepared as previously described21 and added to all samples prior to cDNA library preparation. 
This mixture served as an internal standard to trace and monitor the sample preparation process. 
 
Long-Read Library Preparation and Sequencing Protocol. Total RNA extracted from human 
and mouse samples was used to prepare double-stranded cDNA libraries following the CapTrap-
Seq protocol21, designated as pre-capture libraries. Sample multiplexing was avoided to prevent 
demultiplexing problems, and one flow cell was used for each sample. The CapTrap cDNA 
libraries were then divided into two aliquots to accommodate the requirements of the sequencing 
platforms. Platform-specific sequencing libraries were subsequently prepared from each aliquot 
and loaded onto the Oxford Nanopore (ONT) and PacBio long-read sequencing platforms. 
Sequencing was performed using the respective manufacturing protocols for amplicon 
sequencing (Amplicon by Ligation SQK-LSK109 for ONT and SMRTbellTM Express Template 
Prep Kit 2.0 for PacBio). For ONT sequencing, a MinION device with ONT R9.4 flow cells was 
used, following the standard MinKNOWN protocol script. PacBio data were generated using the 
Sequel II platform and the standard manufacturing protocol for amplicons sequencing. 
 
Concurrently, another aliquot of 1 μg of cDNA was subjected to a capture experiment using a 
capture panel, as described in our previously published CLS protocol5,6. The resulting enriched 
libraries are referred to as post-capture libraries. One aliquot of these libraries underwent 
sequencing using the same long-read sequencing platforms, including ONT and PacBio, and 
sequencing protocols identical to those used for the pre-capture libraries. 
 
PacBio Data Preprocessing and Quality Control. The preprocessing and quality assessment 
of PacBio sequencing data were conducted externally at Cold Spring Harbor Laboratory (CSHL) 
in accordance with the manufacturer’s protocols. To make the PacBio data compatible with the 
downstream LyRic processing, PacBio FASTQ files containing CCS (Circular Consensus 
Sequencing) reads were generated using the pb_gen workflow 
(https://github.com/guigolab/pb_gen).  
 

https://github.com/guigolab/pb_gen


 

 

 

ONT Basecall and Sequencing Quality Control. Basecalling for ONT sequencing was 
performed using Guppy v6 SUP, which converts raw signal data from nanopore sequencing into 
nucleotide sequences. NanoPlot was utilized to generate metrics, including read length 
distributions, quality scores (Q-scores), and the total number of reads, providing insights into the 
overall performance of the sequencing run. Additionally, the split_on_adapter utility from the 
Duplex Tools suite (available on GitHub) was employed to evaluate the presence of concatamers 
in the ONT sequencing data. Concatamers are formed when multiple DNA fragments are 
erroneously linked during the library preparation or sequencing process. The split_on_adapter 
utility from Duplex Tools detects adapter sequences present within the reads, enabling 
researchers to split them into sub-reads, avoiding downstream misalignments. This utility was 
adjusted in accordance with the CapTrap-Seq adapter and primer sequences. In addition to these 
changes, two rounds of “read splitting” were performed. In the first step, the complete set including 
the ONT adapter linked to the CapTrap-Seq primer was used to detect concatemers and split 
them into sub-reads. Due to presence of incomplete ONT adapter within some reads, these 
concatemers were left undetected. Therefore, a second round of splitting was performed wherein 
the splitting was based on presence of only the CapTrap-Seq adapter within the reads. Later, as 
a final step of this quality control, the multi-split reads either reported by the utility or split in both 
the consecutive rounds of splitting were discarded. Overall, the sequencing data was 
preprocessed to meet the necessary quality standards for reliable downstream analysis. 
 
Raw PacBio and ONT reads are available through ArrayExpress accession E-MTAB-14562. 
 
Short-Read Library Preparation and Sequencing Protocol We generated matched short-read 
RNA-seq data using total RNA and the SMARTer Stranded Total RNA-Seq Kit following the 
manufacturer's protocol. All samples were barcoded and multiplexed using the Illumina barcoding 
system (6 mers), and then sequenced in a HiSeq 2500 lane with HiSeq Sequencing v4 Chemistry. 
On average, 27 million 125-base paired-end reads were generated for each sample. Paired-end 
reads were subsequently quality-checked and processed together with long-reads. 
 
Raw reads are available through ArrayExpress accession E-MTAB-14562. 

Sequencing Statistics 
Overall, we get a consistent mapping rate around 99%, with differences in sequencing statistics 
across samples mostly driven by the sequencing technology of choice. As expected, regardless 
of the species, tissue, and capture design, samples sequenced with ONT display a higher 
throughput (measured as number of sequenced reads) with respect to their counterpart 
sequenced with PacBio, which on the other hand is associated with a systematically longer 
mapped read length (Table S3, Figure S2). Across all samples, ONT gives rise to a substantially 
higher number of models with respect to PacBio, which is related to the throughput of the 
technology but does not correlate with the number of sequenced reads. Similarly to what is 
reported for mapped read length, the transcript models originated from PacBio are, on average, 
consistently longer than those generated with ONT (Table S3).  



 

 

 

LyRic 
To streamline the analysis of raw reads obtained from CapTrap-Seq experiments and enhance 
the discovery of novel transcripts while reducing dependence on the pre-existing reference 
annotations, we have developed LyRic22. LyRic is a snakemake-based bioinformatic pipeline that 
automates the identification of full-length transcripts from long-read RNA-seq data (Figure S4) 
and incorporates quality control at every step. It is a conservative pipeline, combining low false 
positives rate with high sensitivity in detecting novel transcript models, as shown in the LRGASP 
project23. First, LyRic maps long-reads to the reference genome using minimap224. In the 
subsequent steps, LyRic performs a filtering process to remove poor-quality alignments. It 
achieves this by identifying the High-Confidence Genome Mappings (HCGMs) which consist of 
only canonical and high-quality sequence splice junctions for spliced reads. This helps eliminate 
spurious introns that may arise from RT template switching. For unspliced reads, HCGMs require 
the presence of a detectable, clipped polyA tail. If short-read RNAseq data is available, LyRic 
performs an additional filtering step on the spliced HCGMs to generate high-quality Hi-Seq-
Supported read mappings (HiSS). Importantly, LyRic includes unspliced HCGMs with a polyA tail 
in the transcript model-building process, even though it does not calculate short-read support for 
them. When short-read data is not utilized to support spliced HCGMs, as in the work presented 
here, HiSS reads are equivalent to HCGMs in terms of representation. 
 
The identified HCGMs (or HiSS, if generated) serve as the basis for constructing transcript models 
using the tmerge software25. With tmerge, compatible reads and transcripts are merged to create 
non-redundant transcript models. Notably, spliced and unspliced reads are treated separately and 
never merged together. To ensure the reliability of the resulting transcript models, tmerge 
incorporates parameters that prevent artificial elongation of intron chains. Additionally, LyRic 
addresses the issue of mismapped splice junctions by correcting exon/intron overhangs. Finally, 
through the buildLoci software26, LyRic can be employed to merge the newly obtained transcript 
models into sets of overlapping transcripts, i.e., loci. Additionally, this utility enables the 
redefinition of gene boundaries in existing gene annotations based on the overlap across 
transcripts.  

Spike-ins and capture efficiency 
After mapping all reads to the 92 ERCC spike-ins, wherein 42 target spike-ins with varying 
abundances were selected after removal of the 8 most abundant ones, we observed a 40-fold 
increase in the proportion of reads mapping to the rare spike-ins post-capture compared to pre-
capture (from 2.5% to 96%) (Figure S3). This substantial fold increase was consistent across 
various tissues and sequencing platforms, underscoring the robustness of our capture method. 
In total, between 7% and 39% of all reads in humans and between 9% and 58% of all reads in 
mice depending on tissues and sequencing platforms, mapped to targeted regions in the post-
capture samples (Figure S3). This variation highlights the influence of biological and technical 
factors on capture efficiency. Specifically, the enrichment of reads mapping to CLS-targeted 
regions demonstrated a substantial increase across different sequencing technologies. For 
PacBio sequencing, the fold increase ranged from 6 to 15 in human samples, and from 9 to 35 in 



 

 

 

mouse samples. Similarly, for ONT, the fold increase varied from 4 to 9 in human samples, and 
from 8 to 27 in mouse samples (Figure S3).  

Building CLS models 

The CLS long-read data was processed with LyRic to obtain high-confidence transcript models 
per sample. Models yielded across tissues, stages and technologies were anchored according to 
the 5’ and 3’ support assigned by LyRic, and merged together to build a comprehensive set for 
this experiment (Figure S5). This way we reduce the redundancy present across samples, while 
preserving potential alternative, tissue-specific, transcriptional start and end sites. The initial set 
of transcripts was manually refined to identify and tag potential artifacts (see TAGENE filters 
below). Accordingly, we filter out those models sharing same-strand exonic overlaps with 
annotated pseudogenes, as well as opposite strand mismapping to annotated genes (see 
TAGENE filters 3 and 4), resulting in the exclusion of 9,120 and 10,754 transcripts in human and 
mouse, respectively. Additionally, we kept track of all the transcripts originally built from any 
proportion of reads having a contrasting polyA tail and canonical splice junctions strand 
assignment. 

As an outcome, we identified 1,212,480 unique transcript models in human and 1,092,208 in 
mouse, which corresponded to 526,307 unique intron chains and monoexonic models in human, 
and 483,425 in mouse (see section on intron chains below). As an initial quality check, the 
accuracy and quality of the models have been assessed using SQANTI327, in comparison to 
GENCODE v27 and vM16, for human and mouse, respectively 
[https://guigolab.github.io/CLS3_GENCODE/SQANTI_reports/Human_CLStranscripts_v27.html, 
https://guigolab.github.io/CLS3_GENCODE/SQANTI_reports/Mouse_CLStranscripts_vM16.html
]. A huge fraction of those models are built from ONT reads (80% and 78%, respectively in human 
and mouse), as well as more than a half have been contributed post-capture (63% and 56%, 
respectively in human and mouse). The higher fraction of models detected in adult tissues with 
respect to embryo ones (64% and 67%, respectively in human and mouse), is mainly attributable 
to the higher number of adult tissues employed. About 11% of the models are detected by both 
ONT and PacBio in the two species, which translates into 35% of the PacBio and 14% of the ONT 
models in human, and 34% of the PacBio and 15% of the ONT models in mouse. On the other 
hand, 8.5% of all the models are commonly detected pre- and post-capture (19% of pre-capture 
and 13% of post-capture models), while 9.6% are shared in mouse (18% and 17% pre- and post-
capture, respectively). The majority of the transcript models (about 95%) originate from one or 
two tissues only; models detected across sequencing technologies, developmental stages, and 
capture strategies are also more broadly detected across tissues. This relatively low overlap can 
be partially explained by the still very-high proportion of redundant intron-chains (see below). 
Indeed, by anchoring 5’ and 3’ supported ends in the attempt to preserve potentially interesting 
alternative TSSs and TTSs, we are intrinsically preserving highly similar transcript models with 
only slight differences at the extremities. This issue is tackled by generating, per species, a 
catalog of unique intron chains, collapsing together all those transcript models sharing the same 

https://guigolab.github.io/CLS3_GENCODE/SQANTI_reports/Human_CLStranscripts_v27.html
https://guigolab.github.io/CLS3_GENCODE/SQANTI_reports/Mouse_CLStranscripts_vM16.html
https://guigolab.github.io/CLS3_GENCODE/SQANTI_reports/Mouse_CLStranscripts_vM16.html


 

 

 

exon-intron structure, keeping the furthest 5’ and 3’ extremities as TSS and TTS, respectively 
(see intron chain section below). 

The utility used for anchor-merging is available at 
https://github.com/guigolab/LyRic/blob/master/utils/anchorTranscriptsEnds.pl 

Novel Transcript models 
To assess the novelty harbored by the aforementioned set of anchored transcript models, we 
compared their structures to the GENCODE v27 and vM16 reference annotations by means of 
gffcompare28, and assigned them to nine simplified categories based on the extent of their 
overlap, further grouped in two disjoint classes; known, and novel (Table S4). Of all transcript 
models, 262,843 were novel in human and 303,996 in mouse; the larger number of novel mouse 
models is likely attributable to the less advanced state of the annotation compared to human. Of 
these, 93,425 mapped to regions implicitly annotated as intergenic in human and 131,618 as 
intergenic in mouse, respectively, corresponding to 17,911 and 25,936 completely novel loci (see 
loci section below).  

Intron chains 
To further reduce the redundancy across the different models, those were collapsed into unique 
intron chains, simply merging the transcripts sharing the same internal exon-intron structure (as 
identified by gffcompare28), ignoring eventual variation at the terminal exons, and therefore 
neglecting end-support information. A different strategy was employed for mono-exonic 
transcripts, which were extended into a single one when overlapping more than 50% of their 
length, again irrespective of the end support. Different tissues produced different yields of models, 
with testis being among the most productive in both human and mouse, followed by brain (both 
in adult and embryo) in human and the pool of tissues in mouse (Figure S7).  
 
The separate projection of spliced and monoexonic transcript models resulted in a set of 468,598 
unique intron chains and 57,709 monoexonic regions in human (Figure S6A), and a total of 
407,194 unique intron chains and 76,231 unspliced regions in mouse (Figure S6B). In the main 
manuscript we use the term “CLS transcript models” to refer to the union of unique intron chains 
and monoexonic transcripts (526,307 in human and 483,425 in mouse). Overall, 161,817 of such 
transcript models were novel in human (with respect to GENCODE v27) and 178,974 in mouse 
(with respect to vM16), of which 62,734 and 79,777 mapped to intergenic regions, respectively, 
corresponding to 17,911 and 25,936 novel loci (Figures S6, S7B). The majority of these novel 
CLS models were spliced (71% in human and 64% in mouse). Spliced models were highly 
supported by independent recount29 reads; about 75% have all splice junctions supported by a 
recount score higher than 50 in human, and 78.7% in mouse (Figure S13).  
 
The extent of agreement between the two technologies now increases, which makes the set of 
models yield through PacBio almost a subset of those gained through ONT (Figure S9BC). More 
precisely, in human, 25.5% of the transcript models are now shared between the two technologies 

https://github.com/guigolab/LyRic/blob/master/utils/anchorTranscriptsEnds.pl


 

 

 

(28% and 76% of the entire ONT and PacBio sets, respectively), while 28.3% are shared in mouse 
(31% and 74% of the entire ONT and PacBio sets, respectively). The overlap also increases when 
comparing the transcript models detected pre- and post-capture; in human, 76.4% of the models 
are detected post-capture, 19.3% are shared across design (45% and 25% of the total number of 
models obtained pre- and post-capture, respectively). Similarly, 67.5% of the transcript models 
are detected post-capture in mouse, and overall 24% are shared across pre- and post-capture 
samples (42% and 35% of the total number obtained pre- and post-capture, respectively).  
 
The consensus of the models across different tissues also increases, with about 20% of the 
transcripts detected in three or more tissues, in accordance with the increase of consensus across 
sequencing technologies, developmental stages, and capture strategies (Figure S9BC). Among 
all the regions targeted by this experiment, 37% in human and 36% in mouse eventually detected 
transcription (Figure S10B). Of these, in human, 28.6% help detect 107,981 completely novel 
transcript chains (Figure S11C), representing 66.7% of all novel transcript chains (Figure S11A). 
While for mouse, 29.6% of the regions helped detect 105,399 completely novel transcript chains, 
representing 58.9% of all novel transcript chains (Figures S10, S11B,D), proving the 
effectiveness of the capture in detecting novel transcripts. With respect to the total number of 
regions targeted, 25.5% and 20.7% of the targeted regions, respectively in human and mouse, 
were detected uniquely post-capture (Figure S10B), further highlighting the efficiency and the 
importance of the capture for refining and detecting these poorly annotated regions. 

Loci 

With the sole intent of grouping together different models in uniquely identifiable loci, we clustered 
CLS transcripts into regions of continuous transcription. For this purpose, upon merging all the 
transcripts together using tmerge to further reduce any redundancy, we employed bedtools30 to 
test for overlap across them. Eventually, transcripts sharing any overlap on the same strand have 
been brought together into a single locus using buildLoci, preserving their structure. An additional 
round of intersection with the reference annotation (GENCODE v27 for human, and GENCODE 
vM16 for mouse) was carried to track whether the newly identified loci overlied previously 
annotated genes, and assign novelty at the loci level accordingly. 

Incorporating CapTrap-CLS models into the GENCODE annotation 

The TAGENE Pipeline 
As a reference annotation resource, GENCODE has strict criteria for the inclusion of models into 
its geneset, and these must evolve when new technologies become available to support 
annotations. Over time, the sequencing quality of long-read data has improved, alongside 
methodological advances in the algorithms used to process and map the data. Nonetheless, 
GENCODE does not incorporate aligned transcriptomics data directly into the geneset, i.e., using 
an unsupervised, computational approach. This is because reference gene annotation strives 
towards perfection in terms of the quality of transcript models included. Thus, it is generally 



 

 

 

considered that the inclusion of incorrect models, e.g., those that do not accurately represent 
genuine biological transcripts, is more harmful to the geneset than the omission of correct models. 
In other words, in this context, reference annotation takes a conservative approach.  
 
Historically, the accuracy of the reference annotation has been ensured by the fact that all 
GENCODE models are constructed manually by expert human annotators, who examine the 
‘evidence’ for each prospective model (e.g., transcriptomics data) in the context of the genome 
sequence. For the first decade of the GENCODE project, human and mouse annotations were 
built almost entirely using cDNAs and EST sequences deposited in INSDC databases, the 
number of which proved to be tractable for a purely manual approach, which was deployed locus-
by-locus, chromosome-by-chromosome.  
 
Today, the primary challenge provided by long-read datasets to reference gene annotation is in 
terms of the sheer volume of reads produced. These numbers are not tractable for GENCODE 
manual annotation, as previously performed. However, we consider that full manual annotation is 
in fact not necessary for long read datasets. Primarily, this is because the size of next generation 
datasets, including short read RNA-seq libraries, provide key information leveraged to support the 
annotation process. Fundamentally, the most important aspect is confidence in the structure of a 
transcript model, i.e., its splice junctions, start, and end points. Historically, the need to individually 
check each of these elements of a prospective model was a major time burden on the manual 
annotation process. It is now well established that splice junction accuracy can be controlled, at 
least to some extent, in model construction through the use of short read data to supplement long-
read alignments. However, prior to our work here, it was not apparent how this should be achieved 
to create reference gene annotations.  
 
Thus, in order to maintain reference annotation standards for the incorporation of CLS data, it 
was first necessary to fully understand the quality of the aligned reads produced by LyRic. At the 
same time, given the size of these datasets, we needed to devise a pathway for the large-scale 
incorporation of these reads into GENCODE that was not dependent on manual annotation, and 
yet nonetheless could achieve high stringency. The combination of these two strands evolved into 
the creation of the TAGENE annotation workflow. 
 
 Principles for the design of TAGENE 
TAGENE, as far as possible, has been designed to replicate the manual annotation process in 
terms of its logistical stages. However, the process is greatly simplified as we are not attempting 
to annotate coding sequences, given that the scope of this phase of the project is entirely focused 
on the annotation of lncRNAs. Thus, in creating GENCODE gene models, TAGENE needs to 
accomplish several things: i) ensure that models have accurate splice junctions, ii) set appropriate 
first and last coordinates for each model, i.e., start and end points, which would ideally correspond 
to transcription start sites (TSSs) and polyadenylation (polyA) sites as discussed below, and iii) 
ensure that ‘merging’ behavior is appropriate, i.e., the process by which two or more overlapping 
models may or may not be ultimately joined together into a single GENCODE model. To ensure 
that TAGENE works in line with the principles of manual annotation, our solution was to develop 



 

 

 

an iterative workflow based on substantial input from the expert annotators in the HAVANA group, 
which were fed back to the development team to make adjustments for the next run.  

Manual assessment of the splicing accuracy of CapTrap-Seq CLS transcripts model 
Splice junction accuracy is crucial to the overall quality and consistency of the GENCODE 
geneset; we take a conservative approach to the assessment of introns for inclusion where only 
canonical splice sites supported by contiguous alignment of transcriptional data are allowed. 
Thus, the HAVANA group at EMBL-EBI performed a manual assessment of the quality of splice 
junctions contained in CLS reads aligned through LyRic. At this point we were specifically 
interested in examining introns that had low expression, based on the consideration that this set 
was more likely to include false splicing reactions. For all aligned reads produced by LyRic, we 
first produced scores for all introns. Specifically, we measured the level of expression of each 
splicing reaction (as opposed to the expression of the overall transcript) using short-read data 
processed by the recount3 project. Next, 10 aligned read introns for each recount3 intron score 
between 0 and 199 were randomly selected to create a set of 2000 introns for manual checking. 
Each intron was assessed for accuracy based on standard GENCODE annotation guidelines, and 
independently of any other evidence. Introns identified as being incorrect, i.e., not annotatable by 
GENCODE, were QC’d a second time by a second annotator. Where annotators were satisfied 
that an intron was incorrect, we attempted to extrapolate a reason for this outcome. This allowed 
for us to classify false introns into several categories, outlined below, and then used to devise 
additional filtering stages for TAGENE. To ensure the high stringency of reference annotation 
reads were screened for i) recount3 score, ii) tandem repeats overlap, iii) pseudogenes overlap, 
iv) opposite strand mismapping to coding genes, and v) splice sites misalignments. 
 
Of the 165 incorrectly spliced introns identified, 115 had a recount3 score below 50. The majority 
fell into one of the “incorrect alignment” categories previously defined. It was therefore decided to 
set a conservative recount3 intron score threshold of 50, attempting at removing the majority of 
the observed alignment errors. We estimate that approximately 50% of introns with a score below 
50 are in fact likely correct, although this proportion is inappropriately low to support reference 
annotation. Further, we identified 14 examples in which the splice junction of a CLS read was 
localized within a genomic tandem repeat, as defined by Tandem Repeats Finder. In short, 
tandem repeats are defined as two or more adjacent copies of a sequence of nucleotides. In these 
cases, we found that it was impossible to unambiguously determine the true splicing structure of 
the CLS read as it aligned equally well to multiple locations. As such, we decided to filter out all 
TAGENE models that contain a splice junction localized within a tandem repeat. In 50 cases CLS 
reads incorrectly aligned at or near a pre-existing GENCODE processed pseudogene due to the 
alignment of the read polyA tail to the genomic polyA sequence inserted at retrotransposition, 
ultimately conferring a higher mapping score to the pseudogene locus over the parent protein-
coding gene. For this reason, we decided to filter out all TAGENE models having same-strand 
exonic overlap with annotated pseudogenes. We note that this was a brute-force approach, and 
that substantial numbers of TAGENE models overlapping pseudogenes are likely genuine. We 
plan to revisit this question in future iterations. We also found 20 examples in which LyRic 
misaligned a CLS read onto the opposite strand of a protein-coding gene. It was determined that 



 

 

 

these reads genuinely belonged to the protein-coding gene, but were incorrectly placed due to 
the pipeline’s alignment software being unable to find canonical splice sites on the true strand. 
This was in turn caused by the poor sequence quality of the underlying reads, and was therefore 
decided to filter out all TAGENE models antisense to annotated genes, when the first and final 
coordinate of such models fell within a window defined by the gene boundaries of the existing 
locus. Finally, 57 cases were identified where the lack of sequence similarity between the CLS 
read and the genomic sequence, particularly around potential splice sites, led to ambiguous 
alignments deemed by a GENCODE annotator to be resolvable to an alternative, better 
supported, splice site. In these cases we suspect that the underlying RNA-seq support from the 
recount3 dataset likely fell victim to the same misalignment issue.  

Merging CapTrap-Seq CLS transcripts models into the existing GENCODE annotation 
The GENCODE geneset (v46) already contained a rich and highly detailed catalog of lncRNA 
annotations (20,310 loci, 59,927 transcripts). The new CapTrap-Seq CLS transcripts therefore 
needed to be integrated into this existing annotation in a logical and consistent manner, and in 
accordance with the current GENCODE manual annotation guidelines. All novel CLS transcripts 
sharing exonic overlap and mapping to an intergenic region were assigned to the same new 
lncRNA locus and provided with a unique, stable Ensembl locus-level ID (ENSG ID) and Ensembl 
transcript-level IDs (ENST IDs). CLS transcripts with exonic overlap to a single pre-existing 
GENCODE lncRNA were automatically designated as part of the existing locus and given new 
Ensembl transcript-level stable IDs. Where CLS transcripts shared exonic overlap with two or 
more pre-existing lncRNA loci, GENCODE expert human annotators provided manual oversight 
to determine whether they should be merged into a single locus or maintained as separate genes. 
If the loci were merged the CLS transcripts were automatically added to the new single gene, 
otherwise manual supervision was required. The decision-making was carried in accordance to 
the current GENCODE manual annotation guidelines, evaluating the presence of transcriptional 
data to support TSSs, polyA sites, and consistent use of the proposed full-length intron chains as 
determined via RNA-seq intron counts from the recount3 dataset. The maintenance of previously 
well defined lncRNA genes was prioritized by manually supervising the addition of CLS transcripts 
to lncRNAs with known gene names/symbols. Additionally we consulted with the HUGO Gene 
Nomenclature Committee (HGNC) at the University of Cambridge with regard to all cases in which 
lncRNAs with known gene names/symbols were to be merged, to determine which gene 
name/symbol should be retained. 
 

Protein-coding genes/transcripts 
To determine which protein-coding genes had already been added to GENCODE due to CLS 
data, we searched for GENCODE v43 protein-coding transcripts whose CDS was entirely 
contained in a CLS transcript and for which some portion was not annotated as transcribed in 
GENCODE v27; GENCODE manual annotators then examined the annotation notes for each 
such gene to determine if CLS data was what had prompted its addition. We found that CLS data 



 

 

 

has already led to the addition of at least three novel human protein-coding genes, namely NFILZ, 
RPSA2, and T-cell receptor ENSG00000289723. 
 
PhyloCSF search. To find CLS transcripts likely to contain additional conserved novel protein-
coding regions not previously annotated we searched for every complete open reading frame 
(ORF) in a CLS transcript, at least 25 codons long, some portion of which was i) not annotated 
as protein-coding or pseudogene in GENCODE v43 or vM32 or ii) antisense to a protein-coding 
region or pseudogene, at least 15 nucleotides of which were not annotated as transcribed in v27 
or vM16, having a positive PhyloCSF score and positive PhyloCSF-Psi score, whose alignment 
had relative branch length at least 0.4, and for which there was no species in which some portion 
of the alignment overlapped the alignment of an annotated coding region (which usually indicates 
a pseudogene). PhyloCSF was run using the 58mammals parameters on alignments extracted 
from the 58 placental mammal subset of the hg38 100 vertebrates whole genome alignment (for 
human) or the 40 placental mammal subset of the mm10 60 vertebrates whole genome alignment 
(for mouse), downloaded from the UCSC Genome Browser. We then manually examined the 
resulting candidates using CodAlignView (https://data.broadinstitute.org/compbio1/cav.php) to 
find regions likely to be novel coding regions. 
 
Manual examination of over 800 top candidates in human and mouse identified one novel protein-
coding gene in each. The human one has a 24 codon ORF having hg38 coordinates 
chr3:117729172-117729179+chr3:117997182-117997248(-). The mouse one has two isoforms, 
a 37 codon ORF having mm10 coordinates chr6:136171799-136171878+chr6:136172263-
136172296(-), and a 16 codon ORF having coordinates chr6:136171861-
136171882+chr6:136172268-136172296(-). Each of these novel genes has a novel ortholog in 
the other species.  
 
In examining the top candidates, we also discovered 11 and 47 other likely novel protein-coding 
regions in human and mouse, respectively, including many cassette exons, novel first or last 
exons, and exon extensions. We expect that a more thorough examination of CLS transcripts 
overlapping known protein-coding genes by GENCODE’s expert manual curators will reveal many 
more novel protein-coding regions. 
 
Proteomic Search. Proteomic evidence for the translation of the CLS data came from large-scale 
mass spectrometry analyses. In the case of the human CLS data, the translated CLS regions and 
the human reference protein sequences annotated in GENCODE v43 were mapped to spectra 
from four large-scale, tissue-based, proteomics experiments31–34, while for mouse we mapped the 
CLS translations and the GENCODE vM32 reference protein sequences to spectra from a single 
compendium of normal tissue experiments35. Spectra from the five experiments were downloaded 
from ProteomeXchange36.  
 
Peptide-spectrum matches (PSMs) were generated with COMET37 using default parameters, 
including a maximum precursor charge of 4, a maximum fragment charge of 3 and a mass 
tolerance of 10.0. Peptides were limited to a minimum length of 7 and a maximum length of 40 



 

 

 

amino acids. We allowed the oxidation of methionines. The PSMs detected by COMET were post-
processed with Percolator38. We used the default parameters in Percolator too, including setting 
the test and training false discovery rate to 0.01. We considered only fully tryptic peptides with up 
to two missed cleavages and PSM that had Percolator posterior error probabilities (PEP) values 
below 0.0002. These filters meant that the false discovery rate of the novel peptides from the CLS 
data was 1.41% for the human CLS data (0.25% at the PSM level) and 2.04% in the mouse 
analysis (0.28% for PSMs). 
 
We further disregarded peptides that were just a single amino acid different from annotated 
protein sequences because these identifications might also be explained as single amino acid 
variants or post-translational modifications of the annotated protein sequences. To validate the 
translation of a CLS ORF, we required at least two non-overlapping peptides.  
 
We found convincing evidence for seven human novel protein-coding genes with multiple 
peptides that were not annotated as coding in the Ensembl/GENCODE reference set. All seven 
proteins have known human paralogues, and four are substantially truncated compared to the 
parent gene (Figure S14). Six proteins were detected principally or wholly in testis. For example, 
C5orf60 is annotated as non-coding in both Ensembl/GENCODE and RefSeq, but we detected 
ten peptides for the protein in our analysis. We detected peptides for the correct WASHC1 gene 
that has recently been uncovered as part of the novel T2T-CHM13 assembly39,40. For mouse, 
analysis of proteomics data led to the discovery of 23 protein-coding genes that were novel to 
GENCODE, most of which were also testis expressed (Figure S14). As with the human proteins, 
the coding status of many of these ORFs was already predicted by other projects (mostly RefSeq 
in the case of mouse), with GENCODE having previously considered many of them to be 
pseudogenes. None of the novel coding genes for which we detected peptide evidence 
overlapped with the PhyloCSF-supported ORFs. 

Pseudogenes 
We used featureCount41 to quantify expression at the CLS loci level. The loci were tagged with 
same-strand annotation overlaps to GENCODE v43 for the human and GENCODE vM16 for the 
mouse. The following parameters were applied: -L -s 0 -T 8 -t exon -g gene_id. In total, we 
quantified 74,073 genes (CLS loci) for human and 88,192 for mouse across all tissues and cell 
lines. On average, 98.75% of alignments were successfully assigned to a feature. 
 
For downstream analysis, we mapped gene IDs from the CLS model to the gene IDs in the 
GENCODE annotation, using bedtools intersect30 with a requirement of at least a 1 bp overlap. 
Next, we categorized protein-coding genes into two groups: parent and non-parent, based on the 
parent protein-coding gene identified by PseudoPipe42 (Table S8.4 for human and Table S8.5 for 
mouse). Using the mapping relationship from CLS model to GENCODE, we established gene IDs 
for pseudogenes and their parent genes in the CLS model. 
 



 

 

 

We then analyzed gene expression patterns across various experimental conditions using 
DESeq243. The experiments involved three variables: i) whether the sample was captured, ii) the 
sequencing technology used, and iii) the tissue origin of the sample. To assess the individual 
effects of capturing and DNA sequencing technology, we controlled for the remaining two 
variables as covariates. We defined significantly differentially expressed genes as those with an 
absolute log2 fold change greater than 1 and FDR-adjusted p-values < 0.001. 
 
In the main manuscript, we analyzed the impact of capturing in the quantification of expression of 
pseudogenes and parent genes. We have also analyzed the impact of the sequencing platform. 
For both the human and the mouse, we observed that more pseudogenes were upregulated using 
ONT compared to PacBio. In contrast, more parent genes showed upregulation with PacBio 
(Figure S16A).  

The unified lncRNA catalog for human and mouse genomes  
The primary goal of this work was to expand the GENCODE lncRNA catalog by integrating various 
lncRNA annotations with GENCODE (Figure S17A). All targeted annotations are detailed in 9, 
and for clarity, GENCODE+ is referred to as GENCODE20+ in this text. Most of the targeted 
annotations rely on GENCODE, while others, like NONCODE44, are integrative, combining 
manual literature searches with other annotations. This leads to significant redundancy across 
individual catalogs, as shown by their gene-level overlap (Figure S17B). To account for variability 
across annotations, we generated gene loci for each catalog (except GENCODE v27 and v47) 
using the buildLoci utility26. To create a non-redundant lncRNA catalog (lncRNA-merge), transcript 
models from all targeted lncRNA annotations were merged using tmerge25, ran using the default 
parameters with the exception of --exonOverhangTolerance, which was set to 8. Notably, tmerge 
handles spliced and monoexonic transcripts separately, as monoexonic transcripts are never 
merged. Finally, gene loci boundaries for the lncRNA-merge catalog were generated using the 
buildLoci software26. The gene-level overlap was calculated using bedtools intersect30, run with 
default parameters along with the additional options -f 1, -F 1, -e and -s. The quality comparison 
of GENCODE v47 with other leading lncRNA annotations was performed following the approach 
described in previous work9, with two key modifications. First, "completeness" (y-axis) has been 
replaced with "support" because FANTOM (Functional Annotation of the Mammalian Genome) 
CAGE (cap analysis of gene expression) clusters are derived from independent experiments, 
whereas the evaluation of 3' end completeness relies on the proximity of a canonical 
polyadenylation signal45. Consequently, the presence or absence of CAGE/polyA support does 
not directly determine transcript completeness. In this analysis, a transcript is considered 
supported if its start overlaps a robust phase 1/2 FANTOM CAGE cluster11 (n = 201,802) within 
±50 bases, and its 3' end contains a canonical polyadenylation motif45 within 10–50 bp upstream. 
Second, to evaluate the accuracy of lncRNA transcript structures, we introduced a new layer 
represented by pie charts. These display the proportion of transcripts with all splice junctions 
supported by recount3 data29, with a minimum of 50 reads per splice junction.  
 



 

 

 

The analysis of catalog specificity was conducted by examining the efficiency of intron chain 
merging. Transcripts with distinct intron chains were considered non-redundant and, therefore, 
catalog-specific. For each catalog-specific lncRNA transcript not included in GENCODE v47, we 
identified and reported its source catalog. As expected, the majority of unannotated catalog-
specific lncRNAs originated from automated annotations such as NONCODE or MiTranscriptome 
(Figure S17C). 
 

LncRNA orthology map between human and mouse 
LncRNA orthology prediction was performed using an updated version46 of the ConnectOR 
pipeline47. ConnectOR operates by performing a LiftOver of syntenic regions between the human 
(hg38) and mouse (mm10/mm39) genomes, in both directions. ConnectOR was run with default 
parameters using exon mode to produce strand-specific orthology predictions. Instances where 
results were classified as “not lifted” or “one to none” were interpreted as no orthology prediction. 
 
The negative control set was generated using an in-house script, shuffleGTF, which randomizes 
gene positions along the genome while preserving their exonic structures. We ran shuffleGTF 
100 times for each comparison to obtain a distribution of values, and the median value was used 
to calculate the false discovery rate. The false discovery rate for lncRNA orthology predictions is 
approximately 3% for v27 and vM16, and around 6% for GENCODE versions v47 and vM36 
(Figure S18B). 
 
The utility used to generate the control set is available at; https://github.com/cobRNA/utilities 

Enhancing the functional interpretability of the human genome  

Extended GENCODE v47 
While thousands of the CLS transcripts were incorporated into GENCODE v47, a fraction of those 
were left out as they failed to meet the initial requirements of the TAGENE workflow (see above). 
However, despite these criteria being meant to ensure high stringency of reference annotation, 
few thousands of spliced CLS transcripts ended up being discarded a priori, of which roughly a 
thousand remain intergenic with respect to GENCODE v47 annotation. Of these, 88% were 
discarded solely because not matching the minimum recount329 score threshold (more than 50 
reads coverage at the lowest supported junction). As deemed still potentially reliable, and to 
evaluate their biological relevance, for some analyses we employ an extended version of the 
current GENCODE v47, complemented with the set of aforementioned CLS transcripts, clustered 
into loci (1,066 genes, 1,039 transcripts). 

Decoy models 
With the objective of building a set of matched transcripts against which to assess the biological 
relevance of our results, we generated a set of decoy models by randomly relocating the spliced 

https://github.com/cobRNA/utilities


 

 

 

CLS loci structures (n=45,819) in the intergenic space. For this purpose, using bedtools 
2.29.230,48, we merged the GENCODE annotation v27 with our generated set of spliced CLS loci, 
extended the boundaries of each entry 10kb on both sides, then subtracting those coordinates 
from the reference chromosomes (GRCh38/hg38, excluding the mitochondrial genome). From 
this newly defined intergenic space were removed the ENCODE blacklist regions 
(ENCFF356LFX) and the centromeres49, as well as other genomic gaps retrieved via the UCSC 
table browser (group 'Mapping and Sequencing', track 'Gap', table 'gap', format 'bed'). For each 
CLS locus, drawn at random, the set of associated spliced transcripts was relocated in one of the 
aforementioned intergenic chunks chosen at random, ensuring no overlap among them. Loci for 
which those requirements could not be fulfilled were excluded. Strand information was not 
propagated. Eventually, we obtain 17,223 random loci (85,283 spliced transcripts), covering 
around 250 million bases (70.2% of the viable intergenic space). 

TSS support 
Sets of non-redundant representative TSSs were built for i) lncRNAs (v27), ii) novel CLS 
transcripts, iii) protein-coding genes (v27) and iv) decoy models. Herein, the consecutive TSSs 
within 100bp from each other were merged and associated to a single representative TSS, chosen 
to be the median among the collapsed ones. Specifically to generate the set for novel CLS, their 
TSSs (extended 100 bp) were intersected to GENCODE v27 (184,093 TSSs) to get a set of novel 
TSSs that do not overlap those already annotated. Further, these novel TSSs were merged to 
give a non-redundant set of 80,284 novel TSSs. 

Support by Histone modifications 
We utilized the ENCODE4 cCRE tissue-agnostic catalog to evaluate the extent to which the 
transcription start sites (TSSs) of our novel CLS models are supported by external epigenetic 
evidence. In this context, cCREs support is defined by a proximity of less than 2 kb between a 
given TSS and the center of a cCRE. Given the stronger overlap of novel TSSs with distal cCREs 
(dELS) compared to previously annotated TSSs (Figure 4B), we explored how this enrichment 
correlates with the expression levels of these novel TSSs across the different tissues. To 
investigate this, we classified novel TSSs into two main groups: ubiquitously and non-ubiquitously 
expressed. Within the non-ubiquitously expressed group, we further identified tissue-specific 
TSSs. For each TSS, we gathered all the corresponding CLS models and recorded the tissues in 
which they were expressed, without distinguishing between adult and embryonic samples. A TSS 
is classified as ubiquitously expressed if its associated CLS models are expressed across all 
tissues. If the CLS models are expressed in only a subset of tissues, the TSS is classified as non-
ubiquitously expressed. Within this latter case, if all CLS models associated with a given TSS are 
expressed in just one tissue, the TSS is defined as tissue-specific. From this latter set, TSSs 
uniquely expressed in tissue-pool or cell-pool samples were excluded from these analyses, as it 
is not possible to determine which specific tissue or cell type contributed to their detection. A 
similar proportion of ubiquitously expressed and non-ubiquitously expressed TSSs are supported 
by cCREs (96% and 95%, respectively). However, while the former are mostly associated with 
proximal (PLS and pELS) cCREs, the latter are predominantly supported by distal (dELS) cCREs 



 

 

 

(Figure S19A). This enrichment in distal regulatory activity was even stronger among tissue-
specific TSSs: 69% of these TSSs, on average across tissues, showed support by at least one 
dELS cCRE (Figure S19A). We also evaluated whether the dELS cCREs intersecting tissue-
specific TSSs showed activity in the same tissue as the corresponding CLS model. For this 
analysis, we focused on three adult tissues (heart, liver, and testis) with available tissue-specific 
cCRE catalogs and maps of H3K27ac and H3K4me3 histone modifications50. On average across 
the three tissues, 11% of the intersecting dELS cCREs showed activity (i.e., were not classified 
as “low DNase”) in the same tissue as the corresponding TSS. This proportion reached an 
average of ~49% (53% heart, 63% liver, and 30% testis) after integrating peaks of H3K27ac and 
H3K4me3 histone modifications (Figure S19B).  

Transcription factors binding 
The ChIP-Atlas 3.0 database51 integrates 428,000 ChIP-seq, ATAC-seq and Bisulfite-seq 
experiments from six species. We downloaded the summary (fileList.tab) file from the ChIP-Atlas 
portal. We filtered this file for the experiments that contain “hg38” in the genome assembly 
(second) column and “TFs and others” in the class (third) column. We next filter the type (fourth) 
column by the valid name of human transcription factors and the cell type (sixth column) for “All 
cell types”. Thus we obtained a list of 1,800 human transcription factors for which there is at least 
one ChIP-seq experiment in ChIP-Atlas. For each transcription factor we downloaded the full 
collection of peaks across all tissues at FDR < 1e-5 (q=5) threshold. We merged the peaks for 
the same TF and obtained 64,122,399 peaks in total (35,624 on average per TF). Peaks for 
different TFs may overlap each other. 

ncORF 
Ribo-seq datasets were obtained from Wang et al.32, which included three samples of testis, three 
of liver and three of brain. Ribo-seq data was processed through an in-house pipeline and 
translated sequences were identified with RibORF v2.052 with default threshold considered (0.6), 
at least 10 reads per sequence detected, and found in at least one of the three samples per tissue. 

GWAS analysis 
We pruned the NHGRI-EBI GWAS catalog53 (downloaded on 24 October 2023) down to 134,059 
unique coordinates, using a greedy approach similar to what previously described at Boix et al.54; 
upon ranking hits by significance, we iteratively collapsed SNPs within a 5 kb window, with a top-
down approach, assigning each pruned entry to its representative signal, to ensure an unbiased 
calculation of GWAS density/100kb. Additionally, all associations falling within the HLA locus (for 
hg38, chr6: 29,723,340 - 33,087,199) were discarded. Bedtools 2.29.230 was employed to 
intersect the whole catalog against i) intergenic CLS transcript models, ii) the set of randomly 
generated decoy models, the reference annotation GENCODE v27, further split into iii) protein-
coding genes, and iv) lncRNAs which overlap with protein-coding genes no longer than 10% of 
their length (n = 8,922), vi) the intergenic space according to GENCODE v27 and vii) to 
GENCODE v47. For the purpose of the current investigation, the genomic space has been 
restricted to reference chromosomes only (mitochondrial excluded), refined as previously 



 

 

 

described for decoy models. With the term “intergenic CLS transcript models” in the current 
analysis we refer to all those models used to build intergenic lncRNAs genes now in GENCODE 
v47 (30,247 CLS transcripts), together with those spliced CLS transcripts belonging to loci still 
intergenic with respect to GENCODE v47, originally excluded because failing the recount3 score 
filter (1,066 genes, 1,309 transcripts). The analysis has been conducted at transcript and exonic 
level, separately. The GWAS density/100kb has been then computed dividing, per each obtained 
set, the total number of unique hits after mapping to their representative proxy, by the total 
genomic area spanned; 

( #Pruned_Hits / Genomic_Length ) * 100,000 

This has been further refined grouping captured CLS models by targeted catalog, in the attempt 
to dissect different trends associated to the different nature of the targeted elements. Finally, the 
significance of our results was assessed by means of pairwise t-tests on the density of GWAS 
per transcript computed across i) the set of intergenic CLS models with respect to GENCODE 
v27, ii) the set of randomly generated decoy models, iii) the protein-coding annotated genes, and 
iv) the annotated lncRNAs refined as reported above. Finally, GWAS density in the ±15kb region 
flanking gene bodies has been computed with deeptools v3.5.255 using a bin size of 200 bp, and 
setting the TSS to TTS window size to 5kb.  
 
Overall, considering the catalog before pruning, 15,406 out of the 92,863 (16.6%) GWAS hits not 
enclosed in GENCODE v27 map now within the boundaries of intergenic CLS loci; number that 
raises up to 30,900 (33%) if we were to consider all the CLS nucleotides not overlapping with the 
annotation, bringing down the percentage of non-genic GWAS from 35% to 29% and 24%, 
respectively. When dissecting the contribution of the different targeted catalogs, models 
originating from phyloCSF, fantomEnhancers, and regions predicted to encode structural RNAs, 
are among the ones showing the highest density of GWAS hits per 100Kb (irrespectively of 
whether whole gene body or exonic space were considered). Remarkably, these are the type of 
elements in which single nucleotide disruptions are likely to have the larger functional impact 
(Figure S21A).  
 
 Sequence conservation across mammals 
We used mammalian conservation of human lncRNAs as a metric to compare the GENCODE 
CLS-based lncRNA annotations with previously existing lncRNAs. We obtained PhyloP scores 
for the Zoonomia 241-way mammalian alignment from the UCSC Genome Browser56. To evaluate 
conservation, we employed two methods: per-transcript and per-unique intron. For the per-
transcript metric, we computed mean exon and splice-junction PhyloP scores. We used the mean 
score of four splice junctions for the per-unique intron evaluation. 
 
Transcripts with more than 10% of the exon bases not having PhyloP scores or having any of its 
splice junction bases lacking scores are excluded. Similarly, all unique intron splice junction bases 
must have scores to be included. 
 



 

 

 

Each method has its trade-offs and biases. The per-transcript analysis counts bases multiple 
times, while the unique intron method may still involve overlapping donor or acceptor sites and 
ignores the overall transcript context. Since we aimed to compare the nature of GENCODE 
annotations rather than examine precise conservation levels, we chose these straightforward 
methods, focusing primarily on the per-transcript analysis. Also, the single alignment column 
nature of PhyloP scores of splice junctions does not consider donor or acceptor sites that may 
have moved location in the orthologous RNAs, although the intron is conserved. Examples of 
moved splice sites can be seen in white-faced saki, tamarin, and white-tufted-ear marmoset in 
MEG9 (Figure 5E). 
 
To avoid confounding conservation signals from protein-coding genes, we separately analyzed 
lncRNAs overlapping protein-coding loci. For GENCODE v47, we only considered novel lncRNAs 
based on CLS LyRic models. In the conservation analysis of miRNA and snoRNA host genes, we 
classified them based on the same-strand genomic overlap from either the transcript or the unique 
intron. GENCODE v27 and v47 annotations are evaluated independently. The annotations within 
each GENCODE release determine the classification of protein-coding loci and host RNAs for 
that release. 
 
Figure 5 shows the distribution of scores from both metrics. We set the neutrally evolving range 
based on the PhyloP score distribution from -1.0 to 1.0. This threshold resulted in 97% of the per-
transcript exons and 91% of the per-transcript introns being conserved. The distribution of decoy 
scores for unique introns was broader, with 84% falling within the neutral range. The breakdown 
of the transcript categories examined and the frequencies of accelerated, neutral, and conserved 
PhyloP scores are given in Table S11. 
 
Remarkably, lncRNAs hosting miRNAs and snoRNAs are significantly more conserved than 
lncRNAs in general, both for previously annotated hosts in v27 (22% of the exons and 58% of the 
splice junctions), and with stronger conservation for the novel CLS hosts (22% of exons and 65% 
of splice junctions, Figure S22). 

Long transcripts act as hosts of orphan small RNAs. 
The small RNA set comprises GENCODE genes of gene types miRNA, snRNA, snoRNA, 
scaRNA, sRNA and Mt_tRNA, as well as tRNAs from a complementary GENCODE annotation 
file. The number of small RNAs has remained stable since v27 and vM16, respectively, with only 
minor changes (Table S12, S13). 
 
The long RNA set contains the remainder, i.e., all but small RNAs described above, with protein-
coding genes, lncRNAs and pseudogenes being the most prominent gene types (Table S12, 
S13). 
 
Genome partitions. To assess the position of small RNAs and their putative host genes in the 
genome, we partitioned the genome into genic and intergenic regions, and the genic partition 



 

 

 

further into exonic and intronic. This way, we assigned a unique label to each nucleotide in the 
genome in a hierarchical fashion (gene over intergenic, exon over intron). Partitions were created 
both for annotations on the same strand, as well as independent of their strand. The former were 
used to identify host transcript regions to exclude any influence on genome composition and 
conservation by genes on the opposite strand. Using this procedure we produced partitions for all 
'long RNAs' (see long RNA set above), for all 'protein-coding genes' (gene types: protein_coding, 
polymorphic_pseudogene, translated_processed_pseudogene, all IG_genes, TR_genes and 
their pseudogenes) and for 'CLS transcripts'. 
 
Intergenic space. The definition of intergenic regions in this study varies slightly depending on 
the goals of the individual analysis. When studying the small RNA-host gene relationships, 
intergenic is defined as the space between long genes on the same strand, because miRNAs and 
snoRNA are co-transcribed with their hosts and post-transcriptionally processed from mostly 
introns. Orphan small RNAs lacking a host are small RNAs in intergenic space, for many of which 
we were able to identify novel host genes. Studying conservation of splice sites in lncRNAs we 
excluded protein-coding genes to avoid any sequence conservation signal interfering. We 
therefore defined intergenic/non-protein-coding space as the intervals between protein-coding 
genes (definition see above), not considering their strand. 
 
Resulting gene sets. By comparing the positions of small RNAs (see above), long RNAs (see 
above), intergenic space and CLS loci, we created new subsets, for which we propose biological 
relations and functions. MicroRNAs and snoRNAs, for instance, reside in introns of host genes, 
i.e., lncRNAs or protein-coding genes. They are transcribed along with their hosts in an operon-
like fashion and are subsequently processed from introns. Host genes therefore require miRNAs 
and snoRNAs to be i) contained in introns and ii) on the same strand. Small RNAs that do not 
fulfill these criteria were labeled as 'orphan'. In human, 1,244 (67%) of 1,869 miRNAs annotated 
in GENCODE v27 have host genes, while 625 (33%) are orphans, whereof 397 (21%) are 
considered true orphans, i.e., they do not even overlap with a long transcript in antisense. In 
mouse, 1,175 (53%) of 2,207 microRNAs annotated in GENCODE vM16 have host genes, while 
1,032 (47%) are orphans, whereof 700 (32%) are true orphans in intergenic regions (IG) (Table 
S12, S13). 
 
Discovering novel host genes. For 16-41% of IG orphans we were able to identify potential host 
genes in our CLS. In humans, we found host genes for 163 (41%) of 397 IG orphan microRNAs, 
where 35 (9%) reside in novel CLS loci and 128 (32%) in extensions of annotated genes. For 
snoRNAs in human, the success rate was slightly lower: 67 (30%) of 220 IG orphan snoRNAs, 
16 (7%) in novel CLS loci, 51 (23%) extensions of annotation. In mouse, we identified CLS hosts 
for 195 (28%) of 700 IG orphan miRNAs (62/9% novel CLS loci) and for 122 (16%) of 760 IG 
orphan snoRNAs (45% in novel CLS loci, Table S14, S15). 



 

 

 

Data and Code availability 
Docker image with reference R packages used for analysis can be pulled at 
docker://tamaraperteghella/r4_gencode_phase3. 
 
The codes, data, and links to the original files can be found at; 
https://github.com/guigolab/CLS3_GENCODE, doi: 10.5281/zenodo.13941033.  

https://github.com/guigolab/CLS3_GENCODE


 

 

 

Supplementary Figures Captions: 
 
Figure S1. GENCODE annotation history. Numbers of genes and transcripts on primary 
assembly chromosomes in every year’s last GENCODE release in human (A, B) and mouse (C, 
D) broken down by broad biotype. IG/TR genes excluded. 
 
Figure S2. Mapped read length distribution. Distribution of reads’ length upon mapping, 
excluding reads mapping to SIRVs and ERCCs. Each sample is shown separately for human (left 
panel) and mouse (right panel). For visualization purposes the x axis has been cut at 3,500bp. 
 
Figure S3. Capture on spike-ins. A) Spiked-in synthetic External RNA Control Consortium 
(ERCC) RNA sequences targeted in the capture design. Read enrichment for the B) targeted 
control ERCC sequences, and C) targeted regions across all catalogs post-capture, in both 
pacBio and ONT samples aggregated across tissues and developmental stages. D) Read 
enrichment for the targeted regions in pacBio and ONT post-capture samples in each tissue and 
developmental stage.  
 
Figure S4. LyRic workflow. The LyRic pipeline workflow for long-read RNA-seq data analysis. 
The process includes seven main steps: (1) Read alignment using Minimap224 (long reads) and 
STAR57 (short reads, if available); (2) Identification of High-Confidence Genome Mappings 
(HCGMs) and HiSeq-supported stranded reads; (3) Orientation based on splice sites and poly(A) 
tails; (4) Merging of stranded alignments into non-redundant transcript models using tmerge25; (5) 
Evaluation of transcript completeness at the 3' and 5' ends using polyA tail clipping and external 
CAGE data58,59; (6) Optional customization steps, where non-overlapping capture-targeted 
regions for each sample are provided in standard GTF format to group features and generate 
summary statistics; (7) Generation of per-sample GTF files containing the final transcript models. 
 
Figure S5. CLS transcript model creation workflow. High-confidence models obtained for each 
sample through LyRic were subjected to "anchored" merging across all tissues and 
developmental stages to obtain a comprehensive set of transcripts. These transcripts were further 
merged together into unique "intron chains" and monoexonic transcripts, then clustered together 
based on same-strand exonic overlap into CLS loci. 
 
Figure S6. CLS transcript model summary. A detailed graphical classification for the obtained 
CLS transcript models (top-right panel) as well as those added to GENCODE (bottom-right panel) 
in A) human and B) mouse. The left-bottom panel shows the proportion of GENCODE lncRNA 
genes and transcripts either refined or incorporated thanks to CLS transcripts. 
 
Figure S7. CLS transcript models yield across experiments. Barplots (left) display A) all; and 
B) novel CLS transcripts obtained across all samples, pre-capture, post-capture, and commonly 
detected in the two. The three panels on the right show (from left to right) the number of CLS 



 

 

 

transcripts obtained across both pacBio and ONT, as well as individually through pacBio and ONT 
sequencing platforms. 
 
Figure S8. CLS transcripts and exons length distribution. From left to right, for A) human and 
B) mouse, the plots display the distribution of transcripts length, exons length and introns length, 
compared across all CLS transcripts, novel CLS transcripts, annotated lncRNAs, and protein-
coding transcripts. The central panel is split in two rows, showing the length of all exons (top) and 
the length of the internal exons (bottom). 
 
Figure S9. Classification of CLS anchored transcripts. A) Extent of tissue sharing across CLS 
transcripts in human (left panel) and mouse (right panel), grouped by novelty status as described 
in Table S4. The CLS transcripts distribution according to several metrics across the experiment 
is shown for A) human and B) mouse. The barplot on the left shows the models yield (from top to 
bottom) for ONT, PacBio, in pre-capture and post-capture, as well as for adult and embryonic 
samples (percentage computed over the totality of the transcripts generated). The intersections 
across these categories are summarized by the upset plot; the dots are colored according to the 
technology of origin (whether unique to ONT, unique to PacBio, or detected through both), while 
the bars display the overlap of transcripts between pre-capture and post-capture experiments. 
The barplot above highlights, for each intersection, the proportion of shared transcripts across 
tissues. 
 
Figure S10. Target regions detected. A) Proportion of probed target regions detected and their 
biotype distribution with respect to GENCODE v27 and GENCODE vM16 for human and mouse. 
B) Proportion of probed target regions detected pre-capture, post-capture, commonly in pre-
capture and post-capture and across all the experiments in human (top) and mouse (bottom). C) 
Proportion of target regions that help detect novel and known CLS transcripts (GENCODE v27 in 
human; top and GENCODE vM16 in mouse; bottom)  
 
Figure S11. Novel CLS transcript models captured. Matrix depicting the number of novel CLS 
transcripts overlapping the probed target regions across each feature type and sample, as well 
as collated across samples and all the catalogs, in addition to the novel transcripts that did not 
have any overlapping probes in A) human and B) mouse. The corresponding proportions are also 
reported for both in C) human and D) mouse. 
 
Figure S12. The TAGENE workflow. Overview of the TAGENE workflow to integrate CLS3 long 
reads into the GENCODE annotation. Long RNA-seq reads are subjected to stringent filtering to 
remove possible misalignments, especially those introducing spurious splice sites, and merged 
into transcript models having unique intron chains. This TAGENE transcript set is then compared 
to the HAVANA annotation, which is the union of the current GENCODE annotation and recently 
added manual annotation, in order to determine what TAGENE transcript models will introduce 
new exon sequences or splice junctions. Finally, this selected subset of the TAGENE transcripts 
is merged into the HAVANA annotation, which can involve the creation of novel transcripts or the 
extension of existing transcripts, in what will be part of the new GENCODE annotation release. 



 

 

 

 
Figure S13. Recount support. Proportion of CLS transcripts (y-axis) supported by increasing 
recount329 score support (x-axis) for human (left) and mouse (right). 
 
Figure S14. Possible coding regions for which we detected at least two non-overlapping 
peptides for transcripts from in the human and mouse CLS analyses. Structures predicted 
using the HHPRED server60 or AlphaFold361. The detected peptides are mapped to the structures 
In yellow. A) Human predicted pseudogene MFFP3 which is expressed in testis and N-terminally 
truncated with respect to its parent. The ORF is also present in mouse, but it is even more 
truncated and would be a single helical protein. B) Human predicted pseudogene CFAP144P1, 
detected in testis and sperm and in higher quantities than the parent gene. C) A Smg5-like ORF 
in mouse with peptides detected in nervous tissues. It is substantially different from the parent 
gene, but it conserves important functional residues - a Smg5 ligand (shown in red) has been 
mapped onto the model and the Smg5-like residues that would bind this ligand are highly 
conserved. D) Mouse Taf7l2, annotated as lncRNA in GENCODE and peptides detected in testis 
and epididymis. E) The globular domain of a mouse Mageb4-like protein, peptides detected in 
testis. F) The N-terminal domain of a mouse Ankrd26-like protein, peptides detected in testis and 
epididymis. We detected peptides for a novel Ankrd26-like protein in human too, but it is not clear 
whether the two genes are related61.  
 
Figure S15. Novel 2-transcript protein-coding mouse gene found by searching CLS 
transcripts for regions with high PhyloCSF score that were not already annotated as 
protein-coding. The 37 and 16 amino acid transcripts share most of the first exon and overlap in 
different frames in the second exon. The human ortholog is also a novel protein-coding gene (not 
shown) but it is not contained in any CLS transcript. A) UCSC Genome Browser image showing 
the two transcripts, overlapping CLS transcripts, and PhyloCSF signal indicating evolutionary 
signature of conserved protein-coding DNA. B) and C) Mammal genome alignments of the two 
transcripts, rendered to show features indicative of protein-coding evolution, including frame 
conservation and predominance of synonymous substitutions (light green), by CodAlignView 
(https://data.broadinstitute.org/compbio1/cav.php) 
 
Figure S16. Comparison of the effect of sequencing technology and capturing on 
expression levels of pseudogenes and parent protein-coding genes. A) Heat map plot 
indicating the number of pseudogenes and parent protein-coding genes that were upregulated 
when comparing the ONT and PacBio sequencing. B) Pairs of pseudogenes and parent protein-
coding genes that were upregulated in pre-capture or post-capture. C) Number of expressed 
pseudogenes and parent protein-coding genes in various tissues depending on the sequencing 
and capturing technology. D) and E) Bar charts indicating the proportion of significantly 
upregulated or downregulated parent and non-parent protein-coding genes when comparing D) 
ONT and PacBio sequencing and E) pre-capture vs post-capture. 
 
Figure S17. Targeting lncRNA catalogs. A) Number of transcripts from individual catalogs 
targeted by the CapTrap-CLS approach and incorporated into GENCODE v47. The unique 
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transcripts represent the non-redundant set of transcript models across all individual annotations. 
The percentage at the top of each bar indicates the proportion of transcripts from each catalog 
with all splice junctions supported by recount3 data29 (at least 50 reads per individual splice 
junction); B) Gene-level overlap between annotations, using a strict definition. The values 
represent the percentage of gene loci in each row’s annotation that overlap with those in each 
column. Overlap is defined as a complete overlap of at least one gene’s span on the same strand. 
Both mono- and multi-exonic genes are included in this analysis. C) Catalog-specificity of lncRNA 
transcripts incorporated to GENCODE v47 (25.4% shared across catalogs; 74.6% catalog 
specific) and those not detected by the CapTrap-CLS experiment (4.2% and 95.8% respectively). 
The catalog composition represents the source of 95.8% catalog-specific transcripts that were not 
included in the GENCODE v47 annotation. 
 
Figure S18. Detecting positionally conserved lncRNAs between human and mouse 
genomes. A) The number of orthologues in each orthology class. One-to-half are species-specific 
orthologs (one-way), that cannot be verified by reciprocal definition; B) Orthology predictions 
using negative controls generated through the shuffle GTF approach46.  
 
Figure S19. cCREs support for novel CLS TSSs. A) Barplot showing the proportion (%, y axis) 
of TSSs of novel CLS models supported by different types of cCREs (x axis), distinguishing 
between ubiquitously expressed and non-ubiquitously expressed TSSs (y axis). The type of cCRE 
is color-coded; “any class” includes additional types of cCREs not shown in the barplot (CA-CTCF, 
CA-TF, CA, TF). In the lower panel, a similar representation focuses on tissue-specific TSSs 
across the five different tissues. B) Barplot showing the proportion (%, y-axis) of dELS cCREs 
intersecting tissue-specific TMs that are characterized by chromatin activity in the same tissue as 
the corresponding TSS. “Active cCRE” means that the cCRE was attributed a category different 
than “low-DNase” in the corresponding tissue, “H3K4me3” and “H3K27ac” means that the TSS of 
the TM was found within 2 Kb from a peak of H3K4me3 or H3K27ac in the corresponding tissue. 
“Any support” is the union of active cCREs, H3K4me3, and H3K27ac-supported TSSs. C) Alluvial 
diagram showing the re-classification of TSS-proximity-dependent cCRE categories in the 
ENCODE registry. Two pairs of categories are shown i) PLS versus H3K4me3 marking in 
accessible regions (CA-H3K4me3), and ii) pELS versus dELS, which share the same histone 
marking signatures, but relying on different proximities to closest TSS (200 bp and 2 kb, 
respectively). The percentages indicate the proportion of cCREs from the entire registry that 
belong to each category in the original classification (left-side of either panel) compared upon 
enhancement with novel TSSs (left panel, right side) and B) decoy model TSSs (right panel, right 
side). 
 
Figure S20. Non-canonical ORF (ncORFs) in novel CLS. A) Percentage of translated 
transcripts (i.e., transcripts containing ncORFs) by class: CLS transcripts, lncRNAs (v27) and 
protein-coding genes (v27). B) Number of translated transcripts per class (as in A), and by the 
tissue in which translation is detected. Testis means only in testis, testis-brain only in testis and 
brain, all in the three tissues including liver. Translated sequences were identified with RibORF 
v2.0, using Ribo-Seq data from Wang et al.32. 



 

 

 

 
Figure S21. GWAS frequency in novel CLS. A) GWAS frequency (hits/100kb) computed along 
the exon projection of novel CLS transcripts across the different targeted catalogs, colored by 
focus of targeted element. On top right the frequency computed for i) protein-coding genes, ii) 
lncRNAs, and iii) decoy models. For visualization purposes, the frequencies for gene body (9.2) 
and exon (58.72) in CLS captured via the GWAS catalog are not reported. B) Distribution of 
GWAS density computed per transcript in i) annotated lncRNA according to GENCODE v27, ii) 
novel CLS models, iii) decoy models, and iv) protein-coding genes annotated as of GENCODE 
v27.   
 
Figure S22. Novel host genes of small RNAs. Frequency of per-transcript exon and splice 
junction, and unique-intron splice junction mean PhyloP scores for lncRNAs hosting miR-NAs or 
snoRNAs outside of protein-coding loci. The dashed red lines indicate the range considered under 
neutral selection. A) 454 GENCODE v27 host lncRNA transcripts with 20% of exons and 64% of 
the splice junctions classified as conserved, and 71% and 28% respectively neutral-evolving and 
307 host unique-introns with 51% conserved, B) 4,087 GENCODE v47 host lncRNA transcripts 
derived from CLS models with 39% of exons and 74% of the splice junctions classified as 
conserved and 74% and 23% respectively neutral-evolving and 1,104 unique host introns with 
48% conserved.  



 

 

 

Supplementary Tables Captions: 
 
Table S1. Targeted regions from various catalogs included in the capture panel. 
 
Table S2. Targeted regions from various catalogs that were liftedOver and from human to mouse 
(liftedOverFeatures) and help detect transcription in mouse. 
 
Table S3. Summary generated by LyRic reporting samples metadata and sequencing details as 
well as several statistics at read and transcript level. 
https://guigolab.github.io/CLS3_GENCODE/summary_GENCODE.html 
 
Table S4. Novelty tags assigned to CLS transcripts based on various GffCompare28 classes.  
 
Table S5. The overlap of TSSs from known and CLS transcripts with repetitive regions within the 
human genome. 
 
Table S6. Counts of current GENCODE genes and transcripts created using CLS data 1) since 
human releases v27 and v46 and 2) mouse releases vM16 and vM35. 
 
Table S7. Exonic span of different GENCODE annotations, for human and mouse, reporting the 
fraction of total genomic area covered. 
 
Table S8. 1) Number of upregulated pseudogenes and parent genes in human and mouse, based 
on whether they are targeted or untargeted. 2) Number of pseudogene-parent gene pairs in 
human and mouse, grouped by upregulation status in pre-capture, post-capture, or non-significant 
categories. 3) Number of differentially expressed pseudogenes and parent genes in human and 
mouse, based on different sequencing technologies and capturing approaches. 4) Pseudogene-
parent pairs in human and 5) mouse. 
 
Table S9. The overlap of TSSs from known and CLS transcripts with peaks of transcription factor 
binding from ChIP-Atlas database (the 500 bp window centered on TSS). 
 
Table S10. Number of GWAS hits and their density along the gene body and exons of novel CLS 
transcript models, decoy models, as well as annotations from GENCODE v27.  
 
Table S11. PhyloP score distributions from 241 species Zoonomia Cactus alignment for 
categories of GENCODE transcripts. The columns show the per-transcript and per-unique intron 
counts with the frequencies of scores categorized as accelerated, neutral, or conserved. The 
datasets are the decoy models, and GENCODE v27 or v47 transcripts.  The GENCODE 
transcripts are divided into subsets based on various attributes. These protein-coding mRNAs, 
existing lncRNAs in v27, and novel, CLS-based lncRNAs in v47. 'PC loci" indicate lncRNAs that 

https://guigolab.github.io/CLS3_GENCODE/summary_GENCODE.html


 

 

 

overlap with protein-coding genes, and 'non-PC loci' are outside of protein-coding genes. The 
"host" category are transcripts or unique introns that overlap miRNAs or snoRNAs on the same 
strand, while "non-host" have no or opposite strand overlap of these small RNAs. 
 
Table S12. Summary table of miRNAs count and their nucleotide span in human across 
annotated and novel genic regions. 
 
Table S13. Summary table of miRNAs count and their nucleotide span in mouse across annotated 
and novel genic regions. 
 
Table S14. Small RNAs in annotated and novel genic regions. The tables list counts of small 
RNAs and nucleotide enrichments/depletion for the respective regions (genic/intergenic, 
exonic/intronic) in human. 
 
Table S15. Small RNAs in annotated and novel genic regions. The tables list counts of small 
RNAs and nucleotide enrichments/depletion for the respective regions (genic/intergenic, 
exonic/intronic) in mouse.  
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Glossary
‘Raw reads’ refers to sequencing reads produced on the PacBio or ONT platforms.
‘Aligned reads’ refers to sequencing reads that have been preprocessed and aligned to the
genome using LyRic.
‘TAGENE models’ are in silico transcripts filtered in by the TAGENE workflow described
below, based on the processing of aligned reads.
‘GENCODE models’ are in silico transcripts that will go into the public GENCODE geneset
as annotations, having been extrapolated from TAGENE models using the workflow
described below.
‘CLS‘ Capture Long-read Sequencing, library preparation protocol in which probes against
targeted regions of the genome are used to capture tailored transcript sequences.
‘CLS anchored transcripts’ are transcript models generated upon anchoring the original
LyRic output according to the 5’ and 3’ ends support, and then merge models across tissues,
technologies and developmental stages.
‘CLS transcripts’ or ‘CLS models’ are intron chain models generated upon merging the
CLS anchored transcripts, across tissues, technologies and developmental stages,
disregarding support information at the 5’ and 3’ ends.
‘CLS loci’ are CLS transcripts merged together to build regions of continuous transcription
on the same strand, thus generating uniquely identifiable loci.
‘pre-capture’ refers to the library preparation employing CapTrap protocol, and therefore
extends to all the samples and models yielded from those.
‘post-capture’ refers to the library preparation employing CapTrap protocol in conjunction
with CLS, and therefore extends to all the samples and models yielded from those.
‘novel lncRNA transcripts’ transcripts now annotated in GENCODE v47 because of CLS
models.
‘Intergenic CLS transcripts’ intron chain models that are located in the intergenic space as
of the annotation GENCODE v47, therefore not overlapping any other entry in such. The
majority of those models have been discarded prior to TAGENE as not fulfilling the minimal
recount score requirement.
‘novel CLS transcripts’ intron chain models used to extend or create the novel lncRNA
transcript in GENCODE v47, complemented with intergenic CLS transcripts.


