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SUPPLEMENTARY FIGURE LEGENDS 
Supp Figure S1: A-C) Yeast two hybrid domain mapping growth results according to plating layout design in panel 
D) with component constituents in panel E).  A-C are as in Figure 1, spotted cells grown from three isolated colonies 
on agar plates containing the selective media listed above.  SD –Leu,-Trp selects for presence of the bait and prey 
plasmids respectively;  SD –Leu,-Trp,-His additionally tests for interaction via production of the reporter gene 
product His3; and SD –Leu,-Trp,-His, +10 mM 3AT  blocks function of the reporter product. 
Supp Figure S2: A) Multiple sequence alignment (MSA) of LARP4 and LARP4B numbered above 
corresponding to conserved region 2 (CR2) of human LARP4, followed by bracket indicating a proline-rich region; 
asterisks above the sequence denote reciprocal/switched Leu and Pro in LARP4 and 4B.   
Supp Figure S3: Five superimposed LARP4-RACK1 models predicted by AlphaFold-Multimer (AFM) 
corresponding to Fig 2E.  The protein sequences input were LARP4(401-724) and RACK1 full length. A) LARP4 
regions were rendered invisible except for those extending locally from CR1 and CR2 sequence motifs, the 
boundaries of which are indicated by dashed lines. RACK1 is black.  ChimeraX Matchmaker analysis of the five 
AFM predictions revealed good agreement for RACK1 (RMSD across the 317 residue atom pairs whereas 
LARP4(401-724) agreement was limited to the CR1 and CR2 sequence regions. B) Video: see separate MP4 file. 
The five superimposed models predicted by AFM; as in A but with the views of LARP4 amino acids 401-724 visible. 
Supp Fig S4: A) Five superimposed LARP4B-RACK1 models predicted by AFM corresponding to Fig 2J.  
The protein sequences input were LARP4B(433-738) and RACK1 full length. LARP4B regions were rendered 
invisible except for those extending locally from CR1 (green) and CR2 (pink) sequence motifs, RACK1 is black.  
ChimeraX Matchmaker analysis of the five predictions revealed good agreement for RACK1 (RMSD across the 317 
residue atom pairs) whereas LARP4B(433-738) agreement was limited to the CR1 and CR2 sequence regions. B) 
Video: see separate MP4 file. The five superimposed AFM-predicted models as in A but with LARP4B amino acids 
433-738 visible. C-D) Results of AFM random seed iterative model predictions. C) Protein sequence inputs were: 
RACK1 and only the 17-mer CR2 sequence, LARP4B(644-660). The figure shows converged predicted models (124 
out of 125 models). D) Protein sequence inputs were: RACK1 and the 13-mer CR1 within a longer sequence, 
LARP4B(513-555); Left: RACK1 in ribbon view in orientation as in Fig 2I. Middle and right: rotated views. 
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Supp Figure S5: A) Northern blot oligo probes specific for b-Globin or b-Globin ARE reporter mRNAs 
corresponding to figures 3C and 4I. Schematic representation of the mature b-globin mRNA and b-globin-ARE 
mRNA reporters. The gene-specific probes used for the blots in the main figures are indicated by the 2 or 3 color 
bars below the cartoons. The b-globin-CDS probe indicated above the cartoons was used for the blots in this 
supplementary figure, for demonstrative purposes, as annotated. A single blot loaded with four lanes of b-glo mRNA 
on the left side and four lanes of b-globin-ARE mRNA on the right side, revealed all lanes by the b-globin-CDS 
probe. After stripping of the probe and subsequent reprobing, each gene-specific probe detected its target mRNA but 
not the other. B) Schematic representation of the plasmid reporter genes used in transient transfection experiments. 
Blue regions represent coding sequences; the stop codon is indicated by a thick vertical line. The b-globin and b-
globin-ARE reporters differ only by the presence/absence of the 38 nt ARE in the 3’-UTR. 
Supp Figure S6:  Replicate polysome profile data supporting figure 4, and quantitative analysis of b-globin-
ARE mRNA distribution in polysome and pre-polysome fractions from three biological replicates. The layout 
is like figure 4. A) Immunoblot of input lysates from samples with transfected constructs indicated above the lanes, 
EV (empty vector), L4-WT and L4-R1 probed with anti-FLAG Ab.  B) Polysome profiles of the lysates run in 
parallel, representing EV, L4-WT and L4-R1 under which are an Ethidium Bromide-stained agarose gel, an 
immunoblot processed as indicated to the left (C-E), and a northern blot probed for various mRNAs (F-L), stacked 
in columns i-iii.  M-O) Triplicate data set based on quantification of the distribution of b-glo-ARE mRNA among 
polysome profile fractions of three independent sucrose gradient sedimentations as in Fig 4, Supp Fig S5 and another. 
M: Graph of % b-glo-ARE mRNA in polysome vs. pre-polysome fractions; collective % in fractions 9-13 and in 
fractions 1-7 as indicated by bar patterns for EV, LARP4-WT and LARP4-R1. P value  *** p <0.001 determined by 
two-tailed student’s T test; ns = non-significant. N: Triplicate b-glo-ARE mRNA polysome profile distribution in 
which amounts in each fraction set was plotted as bars. O: Same as in N, plotted as lines.  
Supp Figure S7:  Analysis of LARP4 cosedimentation with ribosomes by S100 sucrose cushion; replicate data 
related to figure 4F.  Here are the three replicate sucrose cushion S100 sedimentation analysis, each on an 
immunoblot processed for detection of FLAG-L4, RPS6 and RPL9.  The inputs (in), supernatants (S), and pellets (P) 
for the lysates from EV, LARP4-WT and LARP4-R1 samples are as indicated.   
Supp Figure S8:  Co-IP of PABP with FLAG-LARP4; replicate data sets related to figure 4H.  A) Panels i, ii, 
iii and iv are immunoblot results of a single IP experiment in which all samples were processed side-by-side but too 
numerous to fit on one gel. The LARP4 mutated proteins indicated above the lanes were expressed as FLAG-tagged 
by transfection. Extracts were prepared and IPed using anti-FLAG Ab. The blots in each panel show input extracts, 
IP products and supernatants, as indicated, processed for detection using anti-PABP (upper) and anti-FLAG (lower). 
B) Independent experiment in which IP samples were on one blot and inputs on another; FLAG-La was a negative 
control. C) An independent experiment in which only L4-WT, L4-R1 and La protein were compared for co-IP of 
PABP. The anti-FLAG and anti-PABP are distinguished by color; FLAG-La was a negative control. 
Supp Figure S9: LARP4 activity increases translation efficiency of nanoLuciferase (nLuc) reporter mRNA. 
A-E) As in figure 5, 48 h after cotransfection of the nLucP-ARE reporter plasmid and the LARP4-CS (codon swap) 
expression plasmid, cells were harvested and half processed for protein and half for RNA. To each of the transfection 
reaction mixtures containing equal amounts of the nLucP-ARE reporter plasmid, was added the different amounts of 
LARP4-CS plasmid in µg indicated above the lanes (0 = empty plasmid). A-C: Analysis of LARP4-CS expression 
by immunoblot developed using anti-FLAG (A), anti-actin (B), and the results were quantified and graphed (C).  D: 
Northern blot analysis of nLucP-ARE mRNA expression in the same samples as in A-B as indicated above the lanes.  
The nLucP-ARE RNA reactive with the probe was quantified and indicated below the lanes. The double ended arrow 
at the left annotated with long and short refers to poly(A) length differences characteristic of LARP4 activity. A 
dashed line rectangle helps discern the lower and upper boundaries of that reflect poly(A) lengths that contribute to 
the mobility shift1-3.  E: The upper graph plots nLucP luciferase activity in relative light units (RLU)/µg extract (Y-axis) 
versus LARP4-CS protein levels (X-axis). The R2 value derived from a linear fit trendline is shown as a dashed line. The 
lower graph plots TE, (nLucP luciferase activity/µg extract)/(nLucP-ARE mRNA/µg extract) on the Y-axis versus LARP4-
WT levels (X-axis). The R2 value derived from a linear fit trendline is shown as a dashed line.         
F-I) Analysis of four nLuc reporters integrated in Flp-In HEK293 cells, and responses to LARP4-WT and LARP4-
R1.  F: Diagram showing experimental schema as in Figure 5. G: Northern blot analysis. The four panels contain 
RNAs from cells treated as indicated above the lanes, from the Flp-In T-Rex line containing the single copy reporter: 
nLuc, nLucP, nLuc-ARE and nLucP-ARE. All samples were processed side-by-side; the two left and two right panels 
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were run on different gels and transferred to different blots which were hybridized with the same antisense nLuc 
probe, washed together, and exposed on the same phosphorImager screen. Quantification of the nLuc signal/GAPDH 
is shown below the lanes. H: Immunoblot analysis of the FLAG-LARP4 levels as indicated. I: Nanoluciferase 
activities in the protein extracts corresponding to the samples in G; note different scales on Y-axes.  J: Translation 
efficiency (TE). The nanoluciferase activity data from I was normalized by the corresponding nLuc-reporter mRNA 
and plotted. 
Supp Figure S10: A) Views of RACK1 as it resides on an existing structure of the human 80S ribosome (PBD: 
6Z6M4 see 5. The upper structure was oriented such that RACK1 is central and facing the viewer; it and the three 
native ribosomal proteins in close contact, RPS3, RPS17, and RPS6, were rendered in surface view as indicated.  For 
the bottom panel, all elements in PBD 6Z6M other than the four shown above in surface view were made invisible, 
and features of RACK1 were annotated (see Fig 2E).  B) AlphaFold-Multimer was used in standard mode to predict 
a model assembled from RACK1, and sequences representing LARP4, RPS3, RPS17, and RPS6 (Methods), 
sequence coverage for each component was >1000. LARP4 residues were rendered invisible except for those 
extending locally from the CR1 and CR2 sequences. The best model is shown. AFM produced a predicted assembly 
similar in general orientation to that in the lower panel of A. In B, the CR2 and CR1 motifs are engaged in much the 
same way as for RACK1 alone. 
Supp Figure S11:  β-glo-ARE mRNA stabilization in LARP4-KO cells is rescued differentially by LARP4-WT and 
LARP4-RACK1 mutants.  A) Immunoblot of extract protein from HEK293 LARP4-KO cells transfected with the LARP4 
(L4) constructs above the lanes; EV: empty vector (see text). B) Northern blot shows simultaneous responses of β-glo-
ARE and GFP mRNAs in the same pool of transfected cells carrying a different LARP4 mutant. C) Quantitation of northern 
blot signals of biological duplicate experiments. Transcript levels were normalized by GAPDH mRNA. 
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Supp Figure S10, Ranjan et al. 

A) Cryo-EM of 80S ribosome, modified/adapted from PDB:6Z6M

B) Predicted by AlfaFold2-Multimer, assembled from RACK1 (salmon), ribosomal proteins uS3, S16 
     and S17 that interact with RACK1, and LARP4 CR1 and CR2 sequences (magenta). 
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Supp Figure S11 Ranjan et al. 
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