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Figure S1: Treatment-induced changes in size, cell type composition, and phenotype in 8 day YR1.7 tumors
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Related to Fig. 1. (A) Images of individual 8 day YR1.7 tumors either left untreated (left), or treated
with ICB hi (center) or CD40ag monotherapy (right) 24 hours prior to excision.  
(B) Flow cytometry gating strategy for analyzing immune populations in YUMMER1.7 tumors. 
(C) Bar graphs describing quantification of immune populations as sorted in (B) from control (black) 
and CD40ag-treated (red) tumors as a percentage of total Live+CD45+ cells. Data is represented 
as mean ± SEM.
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Figure S2: Gene expression patterns were consistent across replicate tumors, confirmed cell types 
immediately downstream of therapy 

Related to Fig. 2. (A) UMAP embedding of control, ICB lo-treated, ICB hi-treated, CD40ag-treated, and ICB 
lo + CD40ag-treated scRNA-seq samples  separated by treatment condition and colored by individual
tumor (4 tumors per group). Single cells from identically-treated tumors were generally well-mixed in two-
dimensional space.
(B) Expression of genes which encode for ICB targets (top) and their cognate ligands (bottom) across 
scRNA-seq samples by cell type.  
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Figure S3: NICHES and Milo uncover similar axes of acute myeloid-T cell crosstalk across tumor models 
treated with CD40ag monotherapy   
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Related to Fig. 3. (A) Integrated UMAP embedding of NICHES interactomes in Fig. 3A colored by 
sending (left) and receiving (right) cell subset.
(B) Stacked bar graph summarizing the cell-cell pairs which make up each differentially abundant cluster 
in Fig. 3C by (left) treatment condition, (center) sending cell type, and (right) receiving cell type.   
(C) UMAP embedding of publicly available scRNA-seq data (GSE224400) of untreated (left) and CD40ag-
treated (right) MC38 tumors 9 days post-tumor initiation and 48 hours post-treatment where applicable. 
Data is colored by cell type annotations from the original publication. 
(D) UMAP embedding as in (C) colored by expression of eYFP (IL-12p40).
(E) UMAP embedding of NICHES interactomes for control (n=1 tumor) and CD40ag monotherapy-
treated (n=2 tumors) MC38 samples colored by broad cell type pair. Tumors were collected 9 days 
post-inoculation and 48 hours post-treatment where applicable.
(G) Bar graphs comparing predicted interaction scores across untreated (pink) and CD40ag 
monotherapy-treated (blue) T cell-macrophage (top left), macrophage-T cell (bottom left), and DC-T 
cell (right) pairs for selected ligand-receptor axes. Bar graphs are represented as mean interaction 
score ± 95% CI (calculated with GraphPad). 



Figure S4: ICB rewires myeloid-T cell signaling and cell subset abundance within 24 hours of treatment 
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Related to Fig. 4. (A) Stacked bar graphs summarizing the cell-cell pairs which make up each 
differentially abundant cluster in Fig. 4C by sending cell type (left) and receiving cell type (right). 
(B) Heatmap of per-row scaled interaction scores for selected differentially predicted ligand-receptor axes 
(y-axis) across clusters 0, 14, 25, and 30 and compared to all non-DA neighborhoods (i.e., NS) (x-axis). 
(C) UMAP embedding of control (left), ICB lo-treated (center), and ICB hi-treated (right) samples (n=4 
tumors per group) separated by treatment condition and colored by cell type as assigned by a neural 
network-base classifier. 
(D) UMAP embedding of (left) 365 Milo-assigned ‘neighborhoods’ (nhoods) of single cells colored by 
differential abundance result w.r.t. ICB dose, and of (right) DA nhoods (n=94) colored by grouping for 
downstream analyses. Grey nhoods were not DA (n=271), while blue (n=41) and red n=53) nhoods 
decreased and increased in frequency, respectively, with ICB dose. 
(E) Bar graphs summarizing number of single cells averaged across replicates (y-axis) per treatment 
(x-axis) (top) and distribution of annotated cell types (bottom) for DA clusters 14 and 17. Markers distinguish 
tumor samples from different mice (n=2 per experimental group). 
(F) Expression of proliferation markers Mki67 and Birc5 (top), immunosuppressive signal-encoding genes 
Il10 and Gzmb (middle), and immune checkpoints Tigit, Icos, Tnfrsf4, Tnfrsf9, Tnfrsf18, Havcr2, and Lgals1. 
Violin shape represents the distribution of gene expression across single cells in each cluster, while the 
color fill represents average gene expression of each gene across each cluster. 
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Figure S5: Immunotherapy differentially alters immune composition and relative spatial orientation in the TME 
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Related to Fig. 4. (A-B) Bar graphs demonstrating quantification of (A) CD4+IL-10+ T cell and 
(B) macrophage (F4/80+) density (absolute number of cells divided by tumor area [um2])from control 
(pink), ICB lo- (green), ICB hi- (yellow), and ICB lo + CD40ag-treated (purple) tumor slices (n=2-4 regions
from 1 tumor per treatment condition). Summary data is presented as mean ± SD.
(C-D) Scatter plots demonstrating the fraction of total macrophages (F4/80+) within (C) 100 um and (D) 50
um of CD4+IL-10+ T cells from control (pink), ICB lo- (green), ICB hi- (yellow), and ICB lo + CD40ag-
treated (purple) tumor slices. Summary data is presented as mean ± SD. ****p < 0.0001 by Kruskal-Wallis 
test (calculated in GraphPad).  
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Figure S6: NICHES + Milo identify axes of cell-cell communication specific to combinatorial therapy 
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Related to Fig. 5. (A) UMAP embeddings of NICHES interactomes from control, ICB lo- and ICB lo + 
CD40ag-treated samples separated by treatment condition and colored by broad cell type pair; and 
(B) UMAP embedding of 606 Milo-assigned ‘neighborhoods’ (nhoods) of cell-cell pairs colored by 
differential abundance result w.r.t. effective treatment [i.e., Control, ICB lo = ineffective (0); 
ICB lo + CD40ag = effective (1)]. Grey nhoods were not differentially abundant (n=546), while blue (n=17) 
and red (n=43) nhoods decreased and increased in frequency, respectively, with effective treatment.
(C) Stacked bar graphs summarizing the cell-cell pairs which make up each differentially abundant cluster 
in Fig. 5A by treatment condition (left), sending cell type (center), and receiving cell type (right).
(D) UMAP embedding as in (A) colored by predicted interaction score along H2-Ab1 – Cd4 as 
averaged across single cell-cell pairs in each nhood.   
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Related to Fig. 5. (A) Tumor volume (mm3) curves over time for YUMMER1.7-bearing mice (2 tumors per 
mouse) either left untreated (n=10), treated with ICB lo + CD40ag + IgGa (n=10), or treated with ICB lo + 
CD40ag + IL-12 blockade (n=10). 
(B) Corresponding Kaplan-Meier survival curves for tumor volume data shown in (A).
 

Figure S7: CD40ag-induced IL-12 signaling impacts acute trends in tumor growth but not long-term survival  



Figure S8: CD40ag in combination with ICB primarily alters myeloid heterogeneity    
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as assigned by a neural network-based classifier.
(B) UMAP embedding as in (A) of 362 Milo-assigned ‘neighborhoods’ (nhoods) of single cells colored by 
differential abundance result w.r.t. effective treatment [i.e., Control, ICB lo = ineffective (0); 
ICB lo + CD40ag = effective (1)]. . Grey nhoods were not DA (n=315), while blue (n=14) and red (n=33) 
nhoods decreased and increased in frequency, respectively, with effective treatment.
(C) UMAP embedding of as in (B) of DA nhoods (n=47) colored by grouping for downstream analyses. 
(D) Stacked bar graphs summarizing the cells which make up each differentially abundant cluster in (C) by 
treatment condition (left) and cell type (right).
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Figure S9: Blocking IL-12/IL-18 signaling alters peripheral blood secretion activated by combinatorial therapy
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Related to Fig. 5. Example plots of peripheral blood cytokine expression levels in YUMMER1.7-bearing 
mice for TNF, M-CSF, IL-12p40, and IL-6. Mice were either left untreated (blue) or were treated with ICB 
lo + CD40ag (abbrev. Tx, red), Tx + anti-IL12 (purple), Tx + IL-18BP (orange), or Tx + anti-IL12 + IL-18BP 
(’db block’, green). Summary data is presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, 
***p < 0.0001 by ordinary one-way ANOVA with Dunnett’s multiple comparisons testing (calculated in 
GraphPad). Only showing significant results for comparisons between Tx and other conditions.   
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Related to Fig. 6. (A) mregDC signature scores for each pixel in the spatial transcriptomics spot map.  
(B) Scatter plots demonstrating per-pixel Pearson product-moment correlation coefficients between 
(left) mregDC and CD8+ T cell signature scores and (right) mregDC and Treg signature scores for 
100 20x20 grids randomly sampled from each DBiT-seq sample (control – grey, ICB lo – green, ICB lo + 
CD40ag – purple). Summary data is presented as mean ± SD.

 
  

Con
tro

l

IC
B lo

IC
B lo

 + 
CD40

ag
-0.2

-0.1

0.0

0.1

0.2

Pe
ar

so
n 

r

Con
tro

l

IC
B lo

IC
B lo

 + 
CD40

ag
-0.2

-0.1

0.0

0.1

0.2

Pe
ar

so
n 

r



Table S1. Summary of all differentially abundant neighborhood clusters in Fig. 5A.  
 

Cluster 
no. 

Enriched for: 
Sending cell 

type 
Receiving 
cell type 

Key signaling axes Hypothesized function 
Supporting 
references 

0 Untreated Macrophage Macrophage 
Apoe—Trem2 
Spp1—Cd44 

Anti-inflammatory macrophage 
activation, tumor growth, anti-PD-

1 resistance 

1,2 

1 Tx Macrophage 
CD8+/ 
CD4+ T 

Described in Fig. 5 

2 Untreated mregDC Macrophage 
Ccl5—Ccr(1,5) 

Cx3cl1—Cx3cr1 
Chemotaxis, myeloid infiltration 

into the TME 
3 

3 Untreated Mixed T cell Macrophage 
Ifng—Ifngr(1,2) 

Adam10—Trem2 
Cd47—Sirpa 

Dual pro- and anti-inflammatory 
macrophage polarization 

4 

4 Untreated Macrophage Macrophage 
Ccl12—Ccr2 

Ccl7—Ccr(1, 2,5) 
Monocyte/macrophage 

recruitment into the tumor 
5,6 

5 Untreated CD8+ T Mixed T cell 
Ifng—Ifngr1 

Cd274—Pdcd1 

Suppression of T cell proliferation 
and IFNg production, tumor 

tolerance 

7 

6 Tx mregDC Macrophage 
Ccl5—Ccr(1,5) 
Anxa2—Tlr2 

Chemotaxis, proinflammatory 
macrophage polarization, 

proinflammatory interleukin 
secretion 

8 

7 ICB lo Macrophage Macrophage 
Apoe—Trem2 

C3—C3ar1 

Anti-inflammatory macrophage 
activation, regulation of TIM-3 

expression 

1,9 

8 ICB lo mregDC Mixed T cell 
Cxcl16—Cxcr6 
Cd80/86—Cd28 

Il15—Il2r(b,g) 

Positioning and survival of CTLs, 
sustained tumor control 

10 



9 ICB lo Treg Macrophage Described in Fig. 5 

10 ICB lo Mixed Mixed - - - 

11 Tx Macrophage Macrophage 
Ccl2—Ccr2 

Ccl(2,4, 12)—Ccr(1,5) 

Chemotaxis, myeloid infiltration 
into the TME, macrophage 

maturation  

11 

12 Tx mregDC mregDC Sema7a—Itgb1 DC migration 12 

13 Tx mregDC Treg 

Described in Fig. 5 14 Tx CD8+/CD4+ T Macrophage 

15 Tx Treg mregDC 

16 Tx cDC1 Mixed T cell Described in Fig. S6 

17 Tx CD8+/CD4+ T Macrophage 
Ccl5—Ccr(1,5) 

Adam10—Trem2 
Cd47—Sirpa 

T cell survival, modulation of 
phagocytosis 

13,14 

18 Tx Macrophage mregDC 
Il18—Cd48 
Fn1—Cd44 

Chemotaxis, cell-cell adhesion 15–17 

19 Tx mregDC mregDC Sema7a—Itgb1 DC migration 12 
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