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Fig. S1. 

Overview of Generator Architecture and Study Analysis. The HistoXGAN architecture is 

based on StyleGAN2, with simultaneous training of a generator G and discriminator D. During 

training, latent image features (z) are extracted using a pretrained self-supervised feature encoder 

E. These latent features are transformed into style vectors (s0, …, sn) which are used to recreate a

pathology image tile.  An additional L1 loss ℒ𝑟𝑒𝑐 is added for the comparison of the encoded

features from the reconstructed pathology tile 𝑧𝑔𝑒𝑛 and the input tile 𝑧𝑟𝑒𝑎𝑙.



Fig. S2. 

Reconstruction Accuracy in Training and Validation Datasets for RetCCL Encoders. We 

compare reconstruction accuracy from the real and reconstructed images for HistoXGAN and 

other architectures for embedding images in GAN latent space. For comparison, we use encoders 

designed to recreate images from a StyleGAN2 model trained identically to the HistoXGAN 



model. The Learned Perceptual Image Patch Similarity (LPIPS) / Deep Image Structure and 

Texture Similarity (DISTS) encoder uses an equal ratio of LPIPS / DISTS loss between the real 

and reconstructed images to train the encoder. The Single Layer and Encoder4Editing encoders 

are trained to minimize L1 loss between RetCCL feature vector of the real and reconstructed 

images. (A) HistoXGAN provides more accurate reconstruction of RetCCL features across the 

TCGA dataset used for GAN training (n = 8,120) and CPTAC validation (n = 1,328) dataset, 

achieving an average of 30% improvement in L1 loss over the Encoder4Editing encodings in the 

validation dataset. (B) HistoXGAN reconstructed images consistently provided more accurate 

representations of features from the input image across cancer types in the CPTAC validation 

dataset. 



Fig. S3. 

Reconstruction Accuracy in Training and Validation Datasets for UNI Encoders. We 

compare reconstruction accuracy from the real and reconstructed images for HistoXGAN and 

other architectures for embedding images in GAN latent space. Feature extraction was done with 

the UNI encoder – notably, this encoder was trained on a dataset completely external to TCGA / 

CPTAC, highlighting the generalizability of HistoXGAN. For comparison, we use encoders 



designed to recreate images from a StyleGAN2 model trained identically to the HistoXGAN 

model. The Learned Perceptual Image Patch Similarity (LPIPS) / Deep Image Structure and 

Texture Similarity (DISTS) encoder uses an equal ratio of LPIPS / DISTS loss between the real 

and reconstructed images to train the encoder. The Single Layer and Encoder4Editing encoders 

are trained to minimize L1 loss between UNI feature vectors of the real and reconstructed 

images. (A) HistoXGAN provides more accurate reconstruction of UNI features across the 

TCGA dataset used for GAN training (n = 8,120) and CPTAC validation (n = 1,328) dataset, 

achieving an average of 28% improvement in L1 loss over the Encoder4Editing encodings in the 

validation dataset. (B) HistoXGAN reconstructed images consistently provided more accurate 

representations of features from the input image across cancer types in the CPTAC validation 

dataset. 



Fig. S4. 

Dependency of Reconstruction Accuracy on Choice of Training Dataset. We compared 

accuracy of reconstruction of CTransPath features across four HistoXGAN models, with 

identical training parameters aside from choice of training dataset. One model was trained 

exclusively on TCGA-LUSC, one was trained exclusively on TCGA-LUAD, one was trained on 

all eight cancer subtypes listed above, and one was trained across twenty-nine tumor types in 

TCGA as previously described. (A) Performance across eight cancer types in TCGA / CPTAC 

are shown. Models trained on single cancer subtypes had worse performance than models trained 

on multiple cancer types, although minimal difference in performance was seen between the 

eight and twenty-nine subtype models. The TCGA-LUSC model outperformed TCGA-LUAD 

model in all squamous tumor types (including the TCGA-HNSC, CPTAC-HNSC, and CPTAC-

LSCC datasets); the TCGA-LUAD model outperformed in some adenocarcinoma subsets 



(including TCGA-COADREAD) – but overall had worse reconstruction accuracy in external 

datasets. (B) Example reconstructions from CPTAC image tiles are shown for the four models. 

Some of the TCGA-LUSC reconstructions have less evident gland formation than the source 

images, such as the reconstructions from CPTAC-PDA and CPTAC-UCEC, which may be due 

to lack of gland formation in image tiles available during training in the squamous dataset. 



Fig. S5. 



Evaluation of Reconstruction Accuracy Across Histologic Subtypes and Rare Cancer 

Types. We compared reconstruction accuracy from the real and reconstructed images for 

HistoXGAN across histologic subtypes and rare cancer types, with the results illustrated here 

with the CTransPath encoder. (A) Reconstruction accuracy is listed for the breast cancer, lung 

squamous cell carcinoma, lung adenocarcinoma, and colorectal adenocarcinoma datasets from 

the training TCGA cohort and the validation CPTAC and University of Chicago Medical Center 

(UCMC) datasets. As illustrated, performance was robust across histologic subtypes that were 

both common in training and rare or absent in training – although the worst numeric performance 

was seen for reconstruction of mucinous tumors in breast, lung, and colon adenocarcinomas. (B) 

As shown, HistoXGAN can reconstruct tumors with features illustrative of uncommon breast 

cancer subtypes, with source image tiles taken from the UCMC validation cohort. Of note, the 

worst validation performance was seen in the UCMC mucinous breast cancers – two slides of 

mucinous breast tumor were available in this cohort, one of which was out of focus, as illustrated 

– explaining this poor performance. (C) Among 176 unique OncoTree diagnoses, HistoXGAN

demonstrated the worst reconstruction accuracy for one slide each of nasopharyngeal cancer

(mean loss 0.087), bladder urothelial carcinoma (mean loss 0.060), and low-grade glioma not

otherwise specified (mean loss 0.058). Visualization of these three cases demonstrated that the

low reconstruction accuracy was largely due to artifacts such as pen markings and oil in the slide

images. Conversely, in the CPTAC AML cohort (mean loss 0.066), the high reconstruction loss

was due to errors in reconstruction, with excessive stellate cytoplasm generated along with

stroma more reminiscent of a solid tumor, demonstrating that this approach is not extensible to

reconstruction of blood smear images.



Fig. S6. 

Perceptual Consistency of Histologic Subtype in Reconstructed Images Across Cancer 

Types. (A) Illustration of transition between tumor histologic subtypes across a single image 

from four cancer types. A vector differentiating the two most frequent subtype classes is derived 

from the coefficients of a logistic regression predicting subtype from CTransPath features. This 

vector is subtracted from the base image to visualize the first class and added to the base image 

to visualize the second class. (B) Correlation between predictions of histologic subtype from real 

and reconstructed tiles, averaged per patient, across cancer types, demonstrating a high 

perceptual similarity of the histologic subtype of the real and generated images. For the TCGA 

datasets, a deep learning model was trained to predict subtype from real tiles for each cancer type 

using three-fold cross validation. The correlation between predictions for real / generated images 

is aggregated for the three held out validation sets. For the CPTAC and University of Chicago 

Medical Center (UCMC) validation, a deep learning model trained across the entire 

corresponding TCGA dataset was used to generate predictions. True pathologist determined 

subtype is indicated by the color of each datapoint. 



Fig. S7. 

Quantifying Contributions of Batch Effect to Model Predictions. Transitions between readily 

identifiable histologic features such as tumor subtype and grade with HistoXGAN occasionally 

demonstrate changes in staining or other visual characteristics of the image patch. We thus 

evaluate if these changes represent confounding related to HistoXGAN or are due to batch 

effects present in the dataset used to fit the transition. (A) Transitions between lung 

adenocarcinoma and squamous cell carcinoma demonstrate a visual color shift when fit on cases 

from all sites within TCGA. There is minimal color shift when the transition is fit using cases 

from a single site (Asterand Bioscience). (B) To further test this hypothesis, we evaluate the 

impact of stain color normalization using the standard Reinhard algorithm to normalize image 

tiles to appear similar to HistoXGAN generated tiles after transition to adenocarcinoma (i.e. the 

top left image in A) and transition to squamous cell carcinoma (i.e. the top right image in A). A 

sample tile post-normalization is shown. (C) Predicted probability of adenocarcinoma was 

calculated after color normalizing tiles ‘like adenocarcinoma’ and ‘like squamous cell 

carcinoma’ using a model trained on TCGA lung squamous / adenocarcinoma aggregated from 

all sites, demonstrating that model predictions can vary significantly with changes in stain color. 



Fig. S8. 

Identifying Orthogonal Features that Contribute to Model Predictions. Tile based weakly 

supervised models were trained to predict grade and contributing site for TCGA-BRCA (n = 

943). The gradient with respect to a prediction of these outcomes (grade low / high; site A / B) 

was calculated for the average feature vector across each slide in the dataset. Principal 

component analysis was applied to these gradients, and components were sorted by the 

magnitude of difference of the component between gradients toward each outcome class, i.e. the 

strength of the contribution of the component to the prediction. (A, D) Gradients to predict high 

grade / site B were projected into spaces of pairs of principal components. Magnitude of the 

gradient is indicated by arrow thickness. Whereas the component that led to a stronger prediction 

of high / low grade was highly variable, for nearly all images application of the first principal 

component led to a stronger prediction for site B (i.e. all arrows pointing to the right in the first 

plot in figure D). The tile with the maximum gradient for each component is selected for plotting 

(labeled A - D for principal components 1 – 4). (B, E) The top four principles components for 

grade and site were used to perturb images. The first principal component in site clearly caused a 

shift in the stain color of the image. (C, F) The relative contribution of the component to the 



gradient and the proportion of variance explained by the component are listed. Approximately 

70% of the gradient towards a higher prediction could be explained by the first principal 

component for site, illustrating the site model is relatively simple and based nearly entirely on 

stain color difference. 



Fig. S9. 

Interpretability of Attention-based / Multiple Instance Learning Models. We demonstrate 

that this HistoXGAN approach can be used to understand attention-based multiple instance 

learning (MIL) approaches or other multi-step models. Attention-MIL models were trained to 



predict grade and histologic subtype across multiple cancers in TCGA. Image tiles were 

generated with HistoXGAN, and gradient descent was used to perturb the image features to 

increase the predicted likelihood of grade / subtype class or increase attention towards the image 

tile. Grade and subtype prediction demonstrated expected histologic findings, and tiles 

demonstrated a more fibrous and acellular appearance as attention decreased. 



Fig. S10. 

Validating Predicted Gene Signatures as a Method of Assessing the Biologic Similarity of 

Histologic Images. Deep learning models were trained with three-fold cross validation to predict 

775 clinically relevant gene expression signatures from digital histology in the TCGA-BRCA 

cohort, and predictions in the held-out test set were compared to the true values of gene 

expression from RNA sequencing. (A) Correlation matrix (illustrating Pearson correlation 

coefficient) of gene signatures in the TCGA cohort, demonstrating that the 775 signatures yield 

several orthogonal groups of highly correlated signatures, illustrating some degree of redundancy 

– especially in the immune / hypoxia signatures. (B) Correlation matrix of the gene signatures

predicted from digital histology in the pooled held-out cohorts, demonstrating a highly similar

pattern of signature grouping to the true gene expression signatures. (C) Pearson correlation

between the gene signatures calculated from RNA sequencing, and the predicted signatures in

the pooled held-out cohorts. Clinically relevant gene expression signatures could be accurately

predicted from histology, with an average correlation coefficient between real and predicted

signature of 0.45.



Fig. S11. 

MRI Virtual Biopsy Facilitates Application of Prognostic AI Histology Models. Deep 

learning models were trained to predict clinically relevant gene expression signatures, including 

a histologic grade signature (PMID 27861902) and a p53 expression module (PMID 20335537). 

High histologic grade signature and intact p53 expression – both defined by a top 20% quantile 

and predicted from whole slide tumor images from the aforementioned models – were associated 

with significant improvements in freedom from recurrence. When these same deep learning 

models were applied to reconstructed histology from a virtual biopsy, similar prognostic value 

was seen, although there was only a trend towards significance in those with predicted high 

tumor grade signature. 



Table S1. Reconstruction Accuracy in Training and Validation Datasets for RetCCL 

Encoders. 

We compare reconstruction accuracy from the real and reconstructed images for HistoXGAN 

and other architectures for embedding images in GAN latent space. For comparison, we use 

encoders designed to recreate images from a StyleGAN2 model trained identically to the 

HistoXGAN model. The Learned Perceptual Image Patch Similarity (LPIPS) / Deep Image 

Structure and Texture Similarity (DISTS) encoder uses an equal ratio of LPIPS / DISTS loss 

between the real and reconstructed images to train the encoder. The Single Layer and 

Encoder4Editing encoders are trained to minimize L1 loss between RetCCL feature vector of the 

real and reconstructed images. 

Source n n Tiles 
LPIP / DISTS 

L1 Loss 

Single Layer 

L1 Loss 

Encoder4Editing 

L1 Loss 

HistoXGAN 

L1 Loss 

TCGA ACC 56 78789 0.019 (0.004) 0.012 (0.005) 0.011 (0.002) 0.009 (0.002) 

TCGA BLCA 378 342463 0.020 (0.004) 0.017 (0.051) 0.012 (0.002) 0.010 (0.002) 

TCGA BRCA 943 454985 0.022 (0.004) 0.021 (0.068) 0.012 (0.002) 0.010 (0.002) 

TCGA CESC 267 165088 0.020 (0.004) 0.026 (0.076) 0.012 (0.002) 0.010 (0.002) 

TCGA CHOL 38 51414 0.023 (0.004) 0.028 (0.092) 0.013 (0.003) 0.011 (0.002) 

TCGA COADREAD 428 195493 0.023 (0.004) 0.085 (0.283) 0.013 (0.002) 0.011 (0.002) 

TCGA DLBC 43 32073 0.016 (0.004) 0.089 (0.306) 0.010 (0.003) 0.008 (0.002) 

TCGA ESCA 147 99625 0.022 (0.004) 0.018 (0.048) 0.013 (0.002) 0.011 (0.002) 

TCGA HNSC 401 166061 0.020 (0.004) 0.131 (0.408) 0.012 (0.002) 0.010 (0.002) 

TCGA KICH 101 105461 0.020 (0.003) 0.013 (0.003) 0.012 (0.002) 0.010 (0.002) 

TCGA KIRP 270 234740 0.022 (0.004) 0.044 (0.169) 0.013 (0.003) 0.010 (0.002) 

TCGA LGG 464 155579 0.016 (0.004) 0.025 (0.136) 0.009 (0.002) 0.007 (0.002) 

TCGA LIHC 359 331769 0.019 (0.004) 0.018 (0.062) 0.011 (0.003) 0.009 (0.002) 

TCGA LUAD 467 335499 0.022 (0.004) 0.037 (0.179) 0.013 (0.002) 0.011 (0.002) 

TCGA LUSC 474 370542 0.020 (0.004) 0.031 (0.114) 0.012 (0.002) 0.010 (0.002) 

TCGA MESO 73 42242 0.021 (0.004) 0.013 (0.006) 0.012 (0.002) 0.010 (0.002) 

TCGA OV 104 108620 0.021 (0.004) 0.024 (0.092) 0.012 (0.002) 0.011 (0.002) 

TCGA PAAD 168 119144 0.022 (0.004) 0.018 (0.090) 0.013 (0.002) 0.011 (0.002) 

TCGA PCPG 173 207803 0.021 (0.004) 0.027 (0.089) 0.012 (0.002) 0.010 (0.002) 

TCGA PRAD 394 202439 0.024 (0.004) 0.025 (0.083) 0.014 (0.003) 0.012 (0.002) 

TCGA SARC 250 326262 0.019 (0.003) 0.024 (0.113) 0.010 (0.002) 0.009 (0.002) 

TCGA SKCM 418 322527 0.017 (0.004) 0.045 (0.160) 0.011 (0.002) 0.009 (0.002) 

TCGA STAD 371 283734 0.022 (0.004) 0.020 (0.068) 0.013 (0.003) 0.011 (0.002) 

TCGA TGCT 129 109128 0.019 (0.003) 0.023 (0.107) 0.011 (0.002) 0.009 (0.002) 

TCGA THCA 480 279362 0.023 (0.004) 0.024 (0.066) 0.014 (0.003) 0.011 (0.002) 

TCGA THYM 114 157626 0.017 (0.005) 0.412 (0.791) 0.010 (0.003) 0.009 (0.003) 

TCGA UCEC 477 351784 0.022 (0.004) 0.059 (0.168) 0.013 (0.002) 0.011 (0.002) 

TCGA UCS 53 67853 0.020 (0.004) 0.028 (0.088) 0.011 (0.002) 0.009 (0.002) 

TCGA UVM 80 35766 0.017 (0.004) 0.026 (0.097) 0.011 (0.003) 0.009 (0.002) 

CPTAC BRCA 105 56318 0.024 (0.005) 0.017 (0.023) 0.014 (0.003) 0.012 (0.002) 

CPTAC COADREAD 104 76915 0.025 (0.004) 0.022 (0.045) 0.016 (0.003) 0.013 (0.002) 

CPTAC GBM 177 143858 0.019 (0.004) 0.020 (0.073) 0.011 (0.002) 0.009 (0.002) 

CPTAC HNSC 108 35064 0.020 (0.004) 0.017 (0.030) 0.012 (0.002) 0.011 (0.002) 



CPTAC LUAD 221 425473 0.023 (0.004) 0.019 (0.066) 0.014 (0.002) 0.012 (0.002) 

CPTAC LUSC 202 359394 0.020 (0.003) 0.053 (0.178) 0.012 (0.002) 0.011 (0.002) 

CPTAC PAAD 164 99093 0.021 (0.004) 0.022 (0.095) 0.012 (0.003) 0.010 (0.002) 

CPTAC UCEC 247 184767 0.022 (0.004) 0.042 (0.150) 0.013 (0.002) 0.011 (0.002) 



Table S2. Reconstruction Accuracy in Training and Validation Datasets for UNI Encoders. 

We compare reconstruction accuracy from the real and reconstructed images for HistoXGAN 

and other architectures for embedding images in GAN latent space. For comparison, we use 

encoders designed to recreate images from a StyleGAN2 model trained identically to the 

HistoXGAN model. The Learned Perceptual Image Patch Similarity (LPIPS) / Deep Image 

Structure and Texture Similarity (DISTS) encoder uses an equal ratio of LPIPS / DISTS loss 

between the real and reconstructed images to train the encoder. The Single Layer and 

Encoder4Editing encoders are trained to minimize L1 loss between UNI feature vectors of the 

real and reconstructed images. 

Source n n Tiles 
LPIP / DISTS 

L1 Loss 

Single Layer 

L1 Loss 

Encoder4Editing 

L1 Loss 

HistoXGAN 

L1 Loss 

TCGA ACC 56 78789 1.107 (0.067) 0.998 (0.089) 0.800 (0.093) 0.697 (0.092) 

TCGA BLCA 378 342463 1.103 (0.076) 0.971 (0.082) 0.855 (0.089) 0.662 (0.112) 

TCGA BRCA 943 454985 1.133 (0.058) 0.983 (0.076) 0.866 (0.094) 0.528 (0.087) 

TCGA CESC 267 165088 1.041 (0.082) 0.918 (0.090) 0.847 (0.091) 0.670 (0.101) 

TCGA CHOL 38 51414 1.131 (0.055) 0.981 (0.076) 0.861 (0.081) 0.611 (0.091) 

TCGA COADREAD 428 195493 1.110 (0.061) 0.983 (0.078) 0.912 (0.095) 0.717 (0.120) 

TCGA DLBC 43 32073 1.021 (0.098) 0.903 (0.090) 0.810 (0.106) 0.642 (0.105) 

TCGA ESCA 147 99625 1.113 (0.061) 0.967 (0.083) 0.860 (0.083) 0.655 (0.102) 

TCGA HNSC 401 166061 1.092 (0.077) 0.964 (0.096) 0.883 (0.102) 0.742 (0.131) 

TCGA KICH 101 105461 1.094 (0.077) 1.056 (0.068) 0.834 (0.089) 0.763 (0.099) 

TCGA KIRP 270 234740 1.121 (0.072) 1.017 (0.075) 0.851 (0.092) 0.717 (0.103) 

TCGA LGG 464 155579 1.078 (0.090) 0.994 (0.088) 0.789 (0.103) 0.846 (0.109) 

TCGA LIHC 359 331769 1.089 (0.076) 0.978 (0.092) 0.807 (0.091) 0.676 (0.099) 

TCGA LUAD 467 335499 1.140 (0.062) 1.003 (0.077) 0.892 (0.091) 0.725 (0.123) 

TCGA LUSC 474 370542 1.087 (0.073) 0.942 (0.087) 0.877 (0.091) 0.696 (0.111) 

TCGA MESO 73 42242 1.119 (0.066) 0.988 (0.083) 0.846 (0.087) 0.653 (0.096) 

TCGA OV 104 108620 1.122 (0.061) 0.999 (0.088) 0.884 (0.095) 0.676 (0.103) 

TCGA PAAD 168 119144 1.146 (0.057) 1.016 (0.068) 0.893 (0.081) 0.661 (0.109) 

TCGA PCPG 173 207803 1.127 (0.061) 0.988 (0.084) 0.844 (0.106) 0.713 (0.105) 

TCGA PRAD 394 202439 1.129 (0.060) 1.021 (0.065) 0.877 (0.085) 0.703 (0.110) 

TCGA SARC 250 326262 1.091 (0.082) 0.987 (0.092) 0.849 (0.093) 0.765 (0.112) 

TCGA SKCM 418 322527 1.079 (0.080) 0.959 (0.090) 0.829 (0.098) 0.686 (0.116) 

TCGA STAD 371 283734 1.107 (0.066) 0.971 (0.085) 0.867 (0.097) 0.662 (0.117) 

TCGA TGCT 129 109128 1.117 (0.059) 1.014 (0.067) 0.855 (0.103) 0.704 (0.093) 

TCGA THCA 480 279362 1.124 (0.054) 1.020 (0.077) 0.870 (0.096) 0.713 (0.112) 

TCGA THYM 114 157626 0.997 (0.115) 0.907 (0.119) 0.849 (0.120) 0.678 (0.110) 

TCGA UCEC 477 351784 1.084 (0.064) 0.966 (0.078) 0.869 (0.089) 0.680 (0.091) 

TCGA UCS 53 67853 1.112 (0.069) 1.005 (0.072) 0.892 (0.089) 0.747 (0.112) 

TCGA UVM 80 35766 1.008 (0.077) 1.008 (0.111) 0.817 (0.135) 0.821 (0.162) 

CPTAC BRCA 105 56318 1.128 (0.082) 1.059 (0.081) 0.973 (0.098) 0.714 (0.134) 

CPTAC COADREAD 104 76915 1.131 (0.068) 1.070 (0.079) 0.976 (0.089) 0.812 (0.131) 

CPTAC GBM 177 143858 1.100 (0.080) 1.047 (0.084) 0.916 (0.096) 0.820 (0.117) 

CPTAC HNSC 108 35064 1.081 (0.071) 1.008 (0.074) 0.930 (0.079) 0.750 (0.115) 

CPTAC LUAD 221 425473 1.131 (0.055) 1.031 (0.058) 0.920 (0.078) 0.682 (0.113) 



CPTAC LUSC 202 359394 1.115 (0.074) 1.005 (0.082) 0.939 (0.093) 0.731 (0.127) 

CPTAC PAAD 164 99093 1.124 (0.069) 1.049 (0.073) 0.949 (0.088) 0.697 (0.130) 

CPTAC UCEC 247 184767 1.078 (0.068) 1.055 (0.088) 0.958 (0.098) 0.766 (0.128) 



Table S3. Dependency of Reconstruction Accuracy on Choice of Training Dataset. 

The accuracy of reconstruction of CTransPath features across four HistoXGAN models was 

compared, with identical training parameters aside from choice of training dataset. One model 

was trained exclusively on TCGA-LUSC, one was trained exclusively on TCGA-LUAD, one 

was trained on all eight cancer subtypes listed above, and one was trained across twenty-nine 

tumor types in TCGA as previously described.  

Source n n Tiles 
LUSC Model 

L1 Loss 

LUAD Model 

L1 Loss 

 8 Subtype Model 

L1 Loss 

All TCGA Model 

L1 Loss 

TCGA ACC 56 78789 0.040 (0.006) 0.042 (0.006) 0.038 (0.005) 0.035 (0.004) 

TCGA BLCA 378 342463 0.037 (0.006) 0.039 (0.006) 0.035 (0.005) 0.034 (0.004) 

TCGA BRCA 943 454985 0.039 (0.007) 0.040 (0.007) 0.033 (0.004) 0.033 (0.004) 

TCGA CESC 267 165088 0.036 (0.006) 0.040 (0.006) 0.035 (0.005) 0.034 (0.004) 

TCGA CHOL 38 51414 0.038 (0.006) 0.039 (0.005) 0.035 (0.005) 0.034 (0.004) 

TCGA COADREAD 428 195493 0.045 (0.012) 0.042 (0.007) 0.034 (0.004) 0.035 (0.004) 

TCGA DLBC 43 32073 0.037 (0.006) 0.039 (0.008) 0.035 (0.006) 0.032 (0.005) 

TCGA ESCA 147 99625 0.038 (0.007) 0.040 (0.007) 0.036 (0.005) 0.035 (0.005) 

TCGA HNSC 401 166061 0.036 (0.005) 0.041 (0.006) 0.035 (0.004) 0.035 (0.004) 

TCGA KICH 101 105461 0.049 (0.008) 0.052 (0.010) 0.047 (0.007) 0.036 (0.005) 

TCGA KIRP 270 234740 0.044 (0.008) 0.043 (0.008) 0.042 (0.007) 0.036 (0.005) 

TCGA LGG 464 155579 0.042 (0.006) 0.044 (0.007) 0.032 (0.005) 0.031 (0.005) 

TCGA LIHC 359 331769 0.041 (0.007) 0.043 (0.007) 0.039 (0.006) 0.033 (0.004) 

TCGA LUAD 467 335499 0.039 (0.006) 0.035 (0.004) 0.035 (0.004) 0.035 (0.004) 

TCGA LUSC 474 370542 0.034 (0.004) 0.039 (0.005) 0.035 (0.004) 0.035 (0.004) 

TCGA MESO 73 42242 0.039 (0.006) 0.040 (0.006) 0.036 (0.005) 0.034 (0.004) 

TCGA OV 104 108620 0.039 (0.006) 0.039 (0.006) 0.036 (0.005) 0.035 (0.005) 

TCGA PAAD 168 119144 0.040 (0.007) 0.041 (0.008) 0.035 (0.005) 0.035 (0.005) 

TCGA PCPG 173 207803 0.039 (0.005) 0.040 (0.005) 0.037 (0.005) 0.035 (0.004) 

TCGA PRAD 394 202439 0.044 (0.008) 0.043 (0.008) 0.038 (0.006) 0.034 (0.004) 

TCGA SARC 250 326262 0.040 (0.008) 0.044 (0.009) 0.037 (0.006) 0.033 (0.005) 

TCGA SKCM 418 322527 0.037 (0.005) 0.039 (0.005) 0.036 (0.005) 0.034 (0.004) 

TCGA STAD 371 283734 0.041 (0.008) 0.041 (0.008) 0.036 (0.006) 0.035 (0.005) 

TCGA TGCT 129 109128 0.039 (0.005) 0.039 (0.006) 0.037 (0.005) 0.034 (0.005) 

TCGA THCA 480 279362 0.047 (0.009) 0.046 (0.009) 0.042 (0.008) 0.035 (0.005) 

TCGA THYM 114 157626 0.037 (0.006) 0.040 (0.007) 0.036 (0.006) 0.033 (0.006) 

TCGA UCEC 477 351784 0.039 (0.005) 0.040 (0.006) 0.035 (0.004) 0.035 (0.004) 

TCGA UCS 53 67853 0.039 (0.006) 0.040 (0.005) 0.036 (0.005) 0.035 (0.005) 

TCGA UVM 80 35766 0.037 (0.006) 0.041 (0.006) 0.038 (0.006) 0.033 (0.005) 

CPTAC BRCA 105 56318 0.042 (0.006) 0.048 (0.007) 0.039 (0.005) 0.040 (0.005) 

CPTAC COADREAD 104 76915 0.045 (0.007) 0.050 (0.008) 0.040 (0.005) 0.041 (0.005) 

CPTAC GBM 177 143858 0.043 (0.006) 0.044 (0.007) 0.038 (0.006) 0.038 (0.006) 

CPTAC HNSC 108 35064 0.041 (0.007) 0.045 (0.006) 0.038 (0.005) 0.038 (0.005) 

CPTAC LUAD 221 425473 0.041 (0.006) 0.041 (0.005) 0.038 (0.004) 0.038 (0.004) 

CPTAC LUSC 202 359394 0.038 (0.005) 0.041 (0.005) 0.037 (0.004) 0.036 (0.004) 

CPTAC PAAD 164 99093 0.043 (0.008) 0.045 (0.008) 0.038 (0.006) 0.037 (0.006) 



CPTAC UCEC 247 184767 0.043 (0.007) 0.045 (0.007) 0.039 (0.006) 0.038 (0.006) 



Table S4. Homogenous Loss for Models Predicting Tissue Source Site. 

Tile based weakly supervised models were trained to predict site four datasets within TCGA. 

The gradient with respect to site prediction was calculated for the average feature vector across 

each slide in the dataset. Principal component analysis was applied to these gradients, and 

components were sorted both by the magnitude of difference of the component between 

gradients toward each outcome class, i.e. the strength of the contribution of the component to the 

prediction. This process was repeated when applying Reinhard and CycleGAN normalization. 

Predictions are dominated by a single uniform principal component without normalization and 

with Reinhard normalization, but this effect is largely mitigated by CycleGAN normalization. 

Without Normalization Reinhard Normalized CycleGAN Normalized 

Source n 
Contribution 

(Std) 

Variance 

Explained 

Contribution 

(Std) 

Variance 

Explained 

Contribution 

(Std) 

Variance 

Explained 

BRCA 943 0.691 (0.937) 0.189 0.616 (0.562) 0.28 0.160 (0.830) 0.068 

BLCA 378 0.686 (0.711) 0.28 0.402 (1.711) 0.381 0.258 (1.586) 0.277 

COADREAD 428 0.566 (0.713) 0.166 0.315 (0.636) 0.098 0.186 (0.402) 0.052 

ESCA 147 0.207 (0.323) 0.067 0.164 (0.637) 0.169 0.442 (0.580) 0.118 



Table S5. Correlation of Annotated Histologic Features with PIK3CA mutational status. 

Previously reported annotations for epithelial, nuclear, and mitotic grade, as well as for necrosis, 

fibrous foci, and inflammation were compared between cases with / without PIK3CA mutations. 

Adjusted odds ratio was computed for the association of each feature with PIK3CA (association 

listed for high tubule formation score, high nuclear pleomorphism score, high mitosis score, and 

present necrosis, fibrosis, and inflammation). Additionally, to determine how many annotated 

cases would be needed to identify these correlations, we calculated these adjusted odds ratios for 

subsets of 50, 100, 200, and 400, 800 cases of the whole cohort, with these subsets selected at 

random and repeated 100-fold. The median odds ratio over these 100 iterations is listed below. 

Feature 
Adjusted Odds Ratio 

(95% CI) 

z-

stat 

p-

value 

Median adjusted odds ratio (95% CI) computed with 100 iterations from 

subset of cases 

50 cases 100 cases 200 cases 400 cases 800 cases 

Decreased Tubule 

Formation 
0.6 (0.44 - 0.82) -3.22 0.001

0.61 (0.16 - 
2.28) 

0.64 (0.24 - 
1.67) 

0.62 (0.30 - 
1.27) 

0.61 (0.38 - 
1.00) 

0.60 (0.43 - 
0.84) 

Nuclear Pleomorphism 0.61 (0.43 - 0.87) -2.77 0.006 
0.55 (0.07 - 

4.48) 
0.61 (0.20 - 

1.83) 
0.59 (0.27 - 

1.25) 
0.60 (0.35 - 

1.03) 
0.62 (0.42 - 

0.90) 

Mitosis 0.86 (0.58 - 1.28) -0.75 0.45 
1.0 (0.14 - 

7.35) 
0.82 (0.23 - 

2.99) 
0.90 (0.38 - 

2.12) 
0.88 (0.48 - 

1.62) 
0.86 (0.56 - 

1.32) 

Necrosis 0.58 (0.4 - 0.84) -2.9 0.004 
0.57 (0.08 - 

4.27) 
0.57 (0.17 - 

1.89) 
0.59 (0.26 - 

1.34) 
0.59 (0.32 - 

1.09) 
0.59 (0.39 - 

0.88) 

Fibrous Focus 1.08 (0.79 - 1.47) 0.49 0.62 
1.12 (0.23 - 

5.52) 
1.06 (0.35 - 

3.26) 
1.04 (0.48 - 

2.25) 
1.07 (0.66 - 

1.73) 
1.09 (0.77 - 

1.53) 

Inflammation 1.02 (0.73 - 1.43) 0.1 0.92 
1.15 (0.21 - 

6.46) 
1.08 (0.35 - 

3.36) 
1.03 (0.50 - 

2.14) 
0.98 (0.58 - 

1.66) 
1.01 (0.69 - 

1.48) 



Table S6: Correlation of Annotated Histologic Features with Homologous Recombination 

Deficiency. 

Previously reported annotations for epithelial, nuclear, and mitotic grade, as well as for necrosis, 

fibrous foci, and inflammation were compared between cases with high / low HRD scores. 

Adjusted odds ratio was computed for the association of each feature with HRD status 

(association listed for high tubule formation score, high nuclear pleomorphism score, high 

mitosis score, and present necrosis, fibrosis, and inflammation). Additionally, to determine how 

many annotated cases would be needed to identify these correlations, we calculated these 

adjusted odds ratios for subsets of 50, 100, 200, and 400, 800 cases of the whole cohort, with 

these subsets selected at random and repeated 100-fold. The median odds ratio over these 100 

iterations is listed below. 

Feature 
Adjusted Odds 

Ratio (95% CI) 
z-stat p-value

Median adjusted odds ratio (95% CI) computed with 100 iterations from subset of cases  

50 cases 100 cases 200 cases 400 cases 800 cases 

Decreased Tubule 

Formation 
1.65 (1.0 - 2.73) 1.95 0.05

1.84 (0.19 - 

17.89) 

1.82 (0.47 - 

7.11) 

1.63 (0.55 - 

4.90) 

1.62 (0.77 - 

3.39) 

1.64 (0.97 - 

2.75) 

Nuclear 

Pleomorphism 

2.69 (1.64 - 

4.42) 
3.91 9.38E-05 

5.25 (0.26 - 

106.46) 

2.84 (0.57 - 

14.07) 

2.79 (1.09 - 

7.12) 

2.80 (1.39 - 

5.64) 

2.68 (1.61 - 

4.48) 

Mitosis 
3.29 (2.11 - 

5.13) 
5.26 1.45E-07 

4.34 (0.17 - 

109.34) 

3.86 (0.95 - 

15.63) 

3.58 (1.46 - 

8.82) 

3.35 (1.66 - 

6.77) 

3.29 (2.07 - 

5.23) 

Necrosis 
2.45 (1.61 - 

3.74) 
4.16 3.23E-05 

3.39 (0.41 - 

28.15) 

2.77 (0.74 - 

10.43) 

2.46 (0.95 - 

6.34) 

2.41 (1.31 - 

4.41) 

2.45 (1.59 - 

3.78) 

Fibrous Focus 1.0 (0.66 - 1.5) -0.02 0.98 
1.00 (0.0 - inf) 

0.97 (0.25 - 

3.75) 

0.95 (0.39 - 

2.35) 

0.98 (0.53 - 

1.81) 

1.00 (0.65 - 

1.53) 

Inflammation 
0.97 (0.64 - 

1.47) 
-0.13 0.89 

0.84 (0.11 - 

6.60) 

0.95 (0.26 - 

3.53) 

1.03 (0.43 - 

2.45) 

0.94 (0.48 - 

1.86) 

0.98 (0.64 - 

1.50) 



Table S7. Demographics of Included Patients from All Analyzed Cohorts. Of note, 

demographic details were not collected / are not available form the UCMC OncoTree cohort. 

The TCGA cohort includes the n = 8120 training cohort along with cases from TCGA-KIRC 

used in a validation experiment. 

Variable 
TCGA 

(n = 8213) 

CPTAC 

 (n = 1415) 

UCMC MRI Cohort 

(n = 934) 

Age 
Age at Diagnosis, mean (SD) 59.0 (14.7) 62.3 (11.2) 55.7 (12.0) 

Missing Age 48 313 102 

Gender 

Male 3973 379 0 

Female 4240 220 832 

Missing 0 816 102 

Race 

White 6061 410 495 

Black 748 39 274 

Asian 608 39 50 

American Indian / Alaska Native 21 2 1 

Native Hawaiian / Pacific Islander 10 0 2 

Missing / Not Reported 765 922 112 

Ethnicity 

Hispanic / Latino 302 406 28 

Not Hispanic / Latino 6223 30 799 

Missing / Not Reported 1688 979 107 



Table S8. Additional Demographics of Included Patients from University of Chicago with 

Dynamic Contrast Enhanced Magnetic Resonance Imaging and Digital Histology. 

Variable Missing Overall (n = 934) 

Age at Diagnosis, mean (SD) 102 55.7 (12.0) 

Histologic Subtype, n (%) 

Invasive ductal carcinoma 50 664 (75.1) 

Invasive lobular carcinoma 116 (13.1) 

Other 104 (11.8) 

Grade, n (%) 

1 54 100 (11.4) 

2 457 (51.9) 

3 323 (36.7) 

Estrogen Receptor Status, n (%) 
Negative 48 162 (18.3) 

Positive 724 (81.7) 

Progesterone Receptor Status, n (%) 
Negative 54 261 (29.7) 

Positive 619 (70.3) 

HER2 Status, n (%) 
Negative 76 749 (87.3) 

Positive 109 (12.7) 

Pathologic Stage Group, n (%) 

1 402 278 (52.3) 

2 166 (31.2) 

3 87 (16.4) 

4 1 (0.2) 



Table S9. Feature Classes Extracted from MRI Images. 

Class 
Number of 

Features 
Description 

Shape-Based 14 

Describe the size and shape of the region of interest using the 

segmentation mask and do not depend on gray-scale values. 

Examples include sphericity and compactness. 

First Order Statistics 3,348 

Describe the distribution of voxel intensities within the region 

of interest. Examples include mean, minimum, and maximum 

gray-scale values. 

Gray Level Co-

occurrence Matrix 
4,462 

Describe the distribution of co-occurrence of gray-scale values 

at a given offset distance. Examples include joint average and 

correlation. 

Gray Level Run 

Length Matrix 
2,960 

Quantify runs of consecutive pixels with the same gray level 

value. Examples include short run emphasis and long run 

emphasis. 

Gray Level Size Zone 

Matrix 
2,960 

Describe the number of zones of voxels with the same gray-

scale values. Examples include small area emphasis and large 

area emphasis. 

Neighboring Gray 

Tone Difference 

Matrix 

45 

Describe the difference between the gray-scale values of a 

voxel and its neighbors up to a specified distance. Examples 

include coarseness and busyness. 

Gray Level 

Dependence Matrix 
2,590 

Describe the number of voxels that are dependent on the center 

voxel. Two voxels are dependent if their gray-scale value 

differences are below a specified threshold. 



Data S1. Accuracy of Image Generation with HistoXGAN Across Rare Histologic Subtypes 

of Breast, Colon, and Lung Cancer.  

L1 loss is listed for CTransPath features from the reconstructed versus source image, categorized 

by histologic subtype of breast, colon, and lung cancer in the TCGA (training), CPTAC 

(validation), and University of Chicago Medical Center (UCMC, validation) datasets.  

Data S2. Accuracy of Image Generation with HistoXGAN Across OncoTree Diagnoses. 

A dataset of 786 cases with 176 unique OncoTree diagnosis codes curated from University of 

Chicago was used for this analysis. 

Data S3. Accuracy of Image Generation with HistoXGAN Across Specimen Source Sites. 

A dataset of 786 cases with annotations for specimen source curated from University of Chicago 

was used for this analysis. 

Data S4. Accuracy of Prediction of Clinically Relevant Breast Cancer Gene Signatures in 

the TCGA Cohort. 

Predictions were made for n = 938 cases using three-fold cross validation, and predictions in the 

held-out cohort were pooled for assessment of accuracy.  

Data S5. Accuracy of Prediction of Clinically Relevant Breast Cancer Gene Signatures 

from Histology Generated from MRI, and Prediction Directly from MRI. (separate file) 

Predictions were made for n = 934 cases from University of Chicago with matched histology and 

MRI. An encoder was trained with five-fold cross validation to translate MRI radiomic features 

into a histology feature vector, which was then reconstructed to a tile image for prediction of 

signatures. Histology feature vectors were generated for cases in the held-out test set for each 

fold of cross validation. Similarly, predictions were made from MRI features directly, using the 

same cross folds to train simple logistic regression models to predict gene signatures from MRI 

radiomic features and make predictions in the held-out test sets. 


