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Example 

Figure 𝑆. 1 illustrates the process of identifying driver vertices using the proposed 

GTCA algorithm. We analyzed a network 𝐺(𝑉, 𝐸) with 8 vertices {1,2,3,4,5,6,7,8} 

and 7 edges 𝐸 =  {(1, 2), (4, 3), (4, 5), (6, 3), (6, 5), (7, 4), (8, 6)}, as shown in 

Figure 𝑆. 1 − (𝑎). In this network, the vertices 𝑇 =  {1,2,3,4,5,6} were selected as 

the target vertices for control, indicated in green.  

In the first step, the algorithm identifies vertex 1, a target vertex with an in-degree 

of zero, and adds it to the driver set D. At this stage, as shown in Figure 𝑆. 1 − (𝑏), 

the driver set 𝐷 =  {1} is capable of controlling vertices {1,2}. Next, the algorithm 

identifies the driver vertex that can control the maximal number of remaining target 

vertices. Vertex 7 is selected, and the driver set is updated to 𝐷 =  {1,7}. This new 

driver node can control vertices {4,5}, as shown in Figure 𝑆. 1 − (𝑐). In the 

following step, the algorithm adds vertex 8 to the driver set D, as depicted in Figure 

𝑆. 1 − (𝑑). This vertex can control the remaining target vertices {3,6}. After these 

steps, the algorithm calculates the rank of the control matrix 𝐶𝑀(𝐴, 𝐵_𝐷, 𝐶_𝑇). 

However, this system does not satisfy Kalman's rank-controllability condition.  

To address this, in the second module of the algorithm, vertex 3 is added to the driver 

set, resulting in 𝐷 =  {1,3,7,8}. Now, the matrix 𝐶𝑀(𝐴, 𝐵_𝐷, 𝐶_𝑇) is full rank, as 

shown in Figure 𝑆. 1 − (𝑒). 



In the third module, the algorithm checks if any driver in D can be removed while 

still satisfying Kalman's rank-controllability condition. In this example, none of the 

driver nodes in D can be removed without violating the condition. Consequently, the 

final driver set output by the algorithm is 𝐷 =  {1,3,7,8}.  

In the second module of the algorithm, we verify Kalman's rank-controllability 

condition. If the initially identified set of candidate driver nodes does not satisfy this 

condition, we augment the set by including additional target nodes until Kalman's 

condition is met. In the third module, we derive a minimal set of driver nodes that 

satisfy Kalman's condition by iteratively removing nodes from the candidate set 

obtained in the second module, ensuring Kalman's condition remains satisfied.  

In the provided example, the set {1,3,7,8} satisfies both Kalman's controllability rank 

condition and the requirements for exact controllability. On the other hand, while 

the set {1,7,8} can structurally control the network, it does not meet Kalman's 

controllability rank condition. To meet the Kalman condition and achieve exact 

controllability, the network requires four driver vertices. 

 

 



 

Figure S.1: Identification of driver nodes by the GTCA algorithm. (a) A directed network with 

eight nodes and target set 𝑇 =  {1,2,3,4,5,6}, indicated in green. (b) Node 1 is added to the driver 

set, marked in red, and vertex 2, controlled by it, is colored purple. (c) Nodes {1,2} are removed. 

Node 7, which has the highest control power for the remaining vertices, is added to the driver set, 

and nodes {4,5} are under its control. (d) Nodes {7,4,5} are removed, and node 8 is added to control 

the remaining target nodes. (e) Although each target node is under the control of at least one driver 

node, the set {1,7,8} does not satisfy Kalman's rank-controllability condition. Therefore, node 3 is 

added to the driver set. By removing any node from the driver set {1,3,7,8}, Kalman's rank-

controllability condition would no longer be satisfied, making this the minimal driver set. 

 

 

 



Analysis of Time Complexity for the Proposed Algorithm 

In this section, we provide a detailed analysis of the time complexity of our novel 

algorithm. The algorithm consists of several key steps, each contributing to the 

overall computational complexity. We analyze each step individually and then 

combine the results to determine the total time complexity. In part 1, the algorithm 

identifies the driver nodes with the minimum number necessary to ensure that all 

target nodes are covered—meaning each target node is controlled by at least one 

driver node. Since the initial driver set may not satisfy Kalman’s rank-controllability 

condition, part 2 adds nodes to the driver set to meet this condition. Finally, in part 

3, the algorithm removes nodes from the driver set obtained in the previous step, 

ensuring that Kalman’s rank-controllability condition remains satisfied while 

minimizing the size of the driver set. 

 

Part 1 

Step 1: Initializing an Empty Set 

The operation of initializing an empty set is performed in constant time, denoted as 

𝑂(1). 

Step 2: Finding Vertices with In-degree of Zero 

The overall time complexity for finding nodes with an in-degree of zero in a directed 

graph is 𝑂(𝑁 + 𝐸), where 𝑁 is the number of vertices and 𝐸 is the number of edges. 



This complexity is optimal since each node and edge must be inspected at least once 

to determine the in-degrees and identify nodes with zero in-degree. 

Step 3: Checking if a Set is Empty 

This operation is performed in constant time, denoted as 𝑂(1). 

Step 4: Creating the Control Matrix (CM); 𝐶𝑀(𝐴, 𝐵𝐷, 𝐶𝑇). 

This step involves multiplying a square matrix A of size N×N by itself N times. 

Thus, the total time complexity for this step is 𝑂(𝑁4). 

Step 5: Finding the Maximum Set of Independent Rows of CM of Size 𝑀 × 𝑝𝑁 

where 𝑝 denoted the number of drivers obtained until now. 

The time complexity for this operation is 𝑂(𝑀2𝑝𝑁). Given 𝑝 ≤ 𝑀, this simplifies 

to 𝑂(𝑀3𝑁). 

Step 6: Deleting Elements Using a Linked List 

This operation is of order 𝑂(1). 

Step 7: Deleting Rows and Columns 

Deleting specific rows and columns of CM has a time complexity of at most 𝑂(𝑀𝑁). 

Step 8: Checking if a Set is Empty 

Performed in constant time, 𝑂(1). 

Step 9: Construction of at Most M Matrices 

The time complexity of constructing these matrices is 𝑂(𝑀𝑁3). 

Step 10: Computing the Rank of Matrices of Size 𝑀 × 𝑁.  



When 𝑀 ≤ 𝑁, the time complexity is 𝑂(𝑀2𝑁).  

Step 11: Finding the Maximum Set of Independent Columns 

The time complexity for finding the maximum set of independent columns in N 

matrices is 𝑂(𝑁4). 

Steps 12, 13, 14, 15, and 16 

These steps have a time complexity of 𝑂(1) each. 

Since Steps 8 to 16 are repeated at most M times, the time complexity for this part 

of the method is at most 𝑀(𝑀𝑁3 + 𝑀2𝑁). Given that 𝑀 ≤ 𝑁, the overall time 

complexity of the first module of the method is 𝑀2𝑁3 + 𝑀𝑁3 = 𝑂(𝑀2𝑁3). 

Part 2 

Step 1: Finding the Maximum Set of Independent Rows of CM of Size 𝑀 × 𝑝𝑁 

The time complexity is 𝑂(𝑀2 × 𝑝𝑁).  

Step 2: If CM is Full Rank 

If CM is full rank, we proceed to Part 3 of the method. Otherwise, Step 1 is repeated 

at most M times, so the time complexity of Part 2 is 𝑂(𝑀3 × 𝑝𝑁). 

Part 3 

Computing the Rank of a Matrix of Size 𝑀 × 𝑝𝑁 

This operation has a time complexity of 𝑂(𝑀2 × 𝑝𝑁). Since this part is repeated at 

most p times, the overall time complexity of this part is 𝑂(𝑀2 × 𝑝2𝑁). 



By combining the complexities from all parts, the overall time complexity of the 

proposed algorithm is max {O(𝑀2𝑁3), 𝑂(𝑀3 × 𝑝𝑁), 𝑂(𝑀2 × 𝑝2𝑁)}. Since 𝑝 ≤

𝑀 ≤ 𝑁 we can conclude that the algorithm has a worst-case time complexity of 

O(𝑁5).  However, in most practical scenarios where 𝑝 ≤ 𝑀 ≪ 𝑁, the time 

complexity for large networks with a small number of targets reduces to O(𝑁3). This 

detailed analysis highlights the dominant terms contributing to the computational 

requirements, ensuring an accurate and comprehensive evaluation of the algorithm's 

efficiency. It is important to note that simply checking Kalman’s controllability rank 

condition is of the order 𝑂(𝑁3), and every exact controllability algorithm must 

perform this check. Therefore, while the GTCA algorithm may be slower than 

structural controllability algorithms, its worst-case complexity of 𝑂(𝑁5) remains a 

suitable order for addressing the exact controllability problem. 

In addition to analyzing computational complexity, we evaluated the control effort 

and control performance of the algorithm as functions of the time required for 

various complex networks. Control effort refers to the amount of input needed to 

drive the system to the desired state, while control performance measures the 

effectiveness in achieving the control objectives. Our analysis reveals that for dense 

networks, the control effort tends to be higher due to the increased number of 

connections that need to be managed. Conversely, sparse networks, while often 

requiring more driver nodes, exhibit lower control effort per node because fewer 



connections need simultaneous management. However, the overall control effort in 

sparse networks can still be higher due to the increased number of driver nodes 

required. Control performance, measured by the speed and accuracy in reaching the 

target state, generally improves in networks with well-defined hierarchical structures 

and higher connectivity.  

To further illustrate the algorithm's computational performance, Table S.1 presents 

the execution times of the GTCA algorithm on a selection of well-known and widely 

used real-world networks. The table lists the number of nodes, average degree, and 

total execution time (in seconds) for each network, providing insight into how 

GTCA performs across different network topologies and sizes. The results 

demonstrate that while GTCA is computationally intensive, it remains feasible for a 

wide range of network types, from those with a small number of nodes to those with 

complex and dense structures. In summary, although the GTCA algorithm exhibits 

higher time complexity in its worst-case scenario, its effectiveness in ensuring exact 

controllability, particularly for large and complex networks, justifies the 

computational cost.  

 

Table S.1: Execution times of the GTCA algorithm on a selection of well-known and widely used 

real-world networks. The table lists the number of nodes, average degree, and total execution time 

(in seconds) for each network. These results provide insight into the algorithm's computational 

performance across different network topologies and sizes. 

 



Networks Number_of_Nodes Avg_Degree Total time(s) 

Prison 67 4.23880597 4.2211 

S208 122 3.098360656 14.0165 

Mangrove 97 29.81443299 26.6921 

Silwood 154 4.805194805 52.3867 

S420 252 3.166666667 536.4475 

E.Coli 423 2.73286052 3319.2663 

C.Elegans 306 14.03921569 4630.4397 

 

 

Boxplots of Results 

Figures S.2 and S.3 present box plots corresponding to the results of executing the 

four algorithms on the C-Elegans network and the pancreatic Kp-3 PPI network, 

respectively, using both local and random selection methods for the target selection. 

Additional box plots for other analyzed networks can be found in the Figures S.4 and 

S.5.  

Figure S.2 shows that the GTCA algorithm outperforms the other methods in both 

random and local selection of target vertices, consistently achieving a lower number 

of driver vertices. While all algorithms perform better with local target selection 

compared to random selection, GeneticAlg exhibits the greatest variability in results 

across these selection strategies. 

 



 

Figure S.2: Boxplot showing the number of driver nodes obtained by the GTCA (blue), BAGA 

(orange), TCMM (green), and GeneticAlg (red) algorithms on the C-Elegans network. Each 

algorithm was executed 20 times independently to control the target nodes specified in Table 1. 

The results indicate that the GTCA consistently identifies fewer driver nodes compared to the other 

algorithms. 

 

Figure S.3 compares the four algorithms on the pancreatic Kp-3 PPI network, further 

underscoring the superiority of GTCA. The results indicate that the GTCA algorithm 

is capable of controlling a target set of 167 vertices in this network, which totals 

1134 vertices, using approximately 100 driver vertices on average. 

 



 

Figure S.3: Boxplot showing the number of driver nodes obtained by the GeneticAlg (blue), 

BAGA (orange), and GTCA (green) algorithms on the pancreatic Kp-3 PPI network. Each 

algorithm was executed 20 times independently to control the target nodes specified in Table 1. In 

this network, the GTCA consistently identifies a more appropriate number of driver nodes 

compared to the other algorithms. 

 

 



 

Figure S.4:  Boxplots showing the performance comparison of four different algorithms—GTCA, 

BAGA, TCMM, and GeneticAlg—across seven real-world networks. The results illustrate the 

effectiveness of each algorithm in identifying optimal driver nodes for network control, 

highlighting the variance in performance across different network topologies. 



Figure S.5:  Boxplots depicting the performance comparison of three different algorithms—

GeneticAlg, BAGA, and GTCA—on protein-protein interaction (PPI) networks related to breast 

cancer, pancreatic cancer, and ovarian cancer. The plots demonstrate the relative efficiency of each 

algorithm in identifying driver nodes crucial for controlling these specific biological networks. 

 

 

 

 

 

 



 

Table S.2: This table presents the results of implementing four target controllability algorithms—

TCMM, BAGA, GeneticAlg, and GTCA—across various real networks, considering 5% and 10% 

of the network vertices as the control targets. 

 

 

 

 

 

Table S.3: Comparison of network features between the entire network and the identified driver 

nodes across various networks. The table presents average values for key metrics—degree, 

closeness, betweenness, and eigenvector centrality—showing both the overall network averages 

and the averages specific to the driver nodes selected by the GTCA algorithm. This comparison 

provides insights into the structural characteristics of driver nodes relative to the broader network 

topology. 

 
Networks Network_avg_features Drivers_avarage_features 

Name Selection Avg_ 

Degree 

Avg_ 

Closeness 

 

Avg_ 

Betweenness 

 

Avg_ 

Eigenvector 

 

driver_Avg_ 

Degree 

 

driver_Avg_ 

Closeness 

 

driver_Avg_ 

Betweenness 

 

driver_Avg_ 

Eigenvector 

 

Prison Random 

4.23880597 0.304871787 0.036224472 0.096658822 

3.538461538 0.290810992 0.029997222 0.064857181 

local 4 0.302218978 0.021334953 0.101398428 

Mangrove Random 

29.81443299 0.597013411 0.007293362 0.091626413 

31.47826087 0.610936754 0.014408857 0.0928353 

local 35.33333333 0.625116845 0.014126708 0.105098584 

S208 Random 

3.098360656 0.207611204 0.032731563 0.062872996 

2.573770492 0.197300953 0.026328331 0.040101131 

local 3.076923077 0.207405197 0.032267039 0.05674638 

S420 Random 

3.166666667 0.175875383 0.019225574 0.039056956 

2.595041322 0.166804421 0.012183802 0.021460839 

local 2.987804878 0.17691867 0.019508322 0.025944417 

C.Elegans Random 

14.03921569 0.388333343 0.004509325 0.042317351 

8.280701754 0.313866319 0.006315622 0.020642079 

local 17.78571429 0.385451175 0.024755982 0.032788597 

Silwood Random 

4.805194805 0.298561369 0.015511149 0.042184081 

3.742424242 0.289581839 0.004524069 0.038759803 

local 4.204379562 0.291977775 0.006531746 0.04162342 

E.coli Random 

2.73286052 0.130645908 0.005476412 0.020153362 

2.900302115 0.133320943 0.005496892 0.018520678 

local 2.854395604 0.134399426 0.005663422 0.020345592 

Target 0.05 0.10 

  Algorithm 

Network 
TCMM BAGA GeneticAlg GTCA TCMM BAGA GeneticAlg GTCA 

Prison 0.0171 0.0171 0.0171 0.0171 0.0461 0.0970 0.0970 0.0368 

Mangrove 0.0144 0.0134 0.0134 0.0134 0.0365 0.0853 0.0543 0.0298 

Silwood 0.0454 0.0457 0.0457 0.0454 0.0855 0.0899 0.0855 0.0847 

S208 0.0176 0.0171 0.0171 0.0176 0.0412 0.0934 0.0722 0.0315 

S420 0.0121 0.0307 0.0321 0.0121 0.0198 0.0454 0.0275 0.0158 

C.Elegans 0.0163 0.0478 0.0283 0.0163 0.0452 0.0957 0.0532 0.0426 

E.Coli 0.0449 0.0477 0.0456 0.0410 0.0850 0.0912 0.0896 0.0803 



SignalingPathways size:956 
12.73430962 0.2035322 0.004258536 0.009533199 2.854395604 0.134399426 0.005663422 0.020345592 

CancerNetwork 

(size:478) 

pval:001 8.585774059 

 

 

0.141305406 

 

 

0.007530117 

 

 

0.015200027 

 

 

2.854395604 0.134399426 0.005663422 0.020345592 

pval:0001 8 0.169045383 0.01776777 0.005049 

pval0005 
6.753246753 0.163270794 0.011088189 0.002692184 

BreastCancer DEF 3.361130742 0.186811789 0.001801627 0.012767561 2.016949153 0.161601045 0.000530405 0.00711107 

HCC1428 3.459531773 0.191598522 0.00172374 0.012386537 2.365079365 0.164898844 0.000815539 0.007790756 

MDA-MB 3.422192152 0.183738862 0.001646651 0.012290282 2.253968254 0.154803317 0.000609211 0.007189798 

Ovarian DEF 2.93982808 0.176824106 0.002231731 0.01439903 2.29787234 0.113560903 0.001223805 0.004954474 

O1946 3.085714286 0.186605858 0.002151051 0.013774897 4.04 0.181240144 0.002371151 0.012130038 

OVCA8 3.00605013 0.185006478 0.002072343 0.01374121 2.131313131 0.119927311 0.001025683 0.004178508 

Pancreatic 

 

 

AsPC-1 2.945205479 0.167248977 0.002456305 0.013487365 2.906666667 0.126401393 0.002672551 0.006937679 

DEF 2.946518668 0.166698081 0.002452869 0.014608739 2.472222222 0.123667233 0.001506049 0.006861517 

KP-3 3.028218695 0.17867879 0.002345689 0.014099395 2.515463918 0.131941229 0.00176889 0.007812215 

 

 

Additional Information on the Case Study 

Table S.4: Identification of driver proteins in breast cancer protein-protein interaction (PPI) 

networks. The table lists proteins that were identified as driver nodes across multiple replicates, 

with columns indicating the frequency of each protein being selected as a driver (9 times out of 10 

replicates and 10 times out of 10 replicates) in different breast cancer subtypes (Breast-DEF, 

Breast-HCC1428, and Breast-MDA-MB-361). These results highlight key proteins potentially 

critical for controlling breast cancer-related PPI networks. 

 

network Proteins that were driver 9 times in 

10 replicates 

Proteins that were driver 10 times in 

10 replicates 

Breast-DEF EFNA5, CDK11A, SRSF7, FBXW11, FIP1L1, 

EFNB1, PTPRZ1, XPO1, PSMA6, RPL5, 

KEAP1, BRD4, EIF3I, CDK12, PPP2R1A, 

DDX3X, SUPT5H, NUP98, PTPN22, MYBL2, 

MYH9, PRPF3, TUBA1C, VRK2, NR1D1 

TNK2, GPC4, WNT11, COL1A1, NEK1, 

ANGPT1, MAPKAPK2, NUMB, PPP5C, MTCP1, 

ID1, NCBP1, TAOK3, NRG1, DDR2, KPNB1, 

SMG1, PLRG1, EIF2AK2, TUBB, RPL11, SF3B1, 

UBA1, NACA 

Breast-

HCC1428 

GPC4, RLN2, MAPKAPK2, FBXW11, FIP1L1, 

PTN, DDB1, RPL5, XPO1, NRTN, EIF3I, 

PSMA6, PTPN22, EIF2B4, NR1D1, KEAP1, 

DYNLRB1 

PPP2R1A, GABPB2, IL3, ANGPT1, SRSF7, 

NEK1, TESK2, COL1A1, EFNB1, NPPA, NCBP1, 

CDK12, TAOK3, ID1, IL23A, PLRG1, MTCP1, 

SMG1, NUMB, NRG1, BRD4, RPL11, TUBB, 

NUP98, PRPF3, NACA, RPS3, UBA1, TUBA1C 

Breast-MDA-

MB-361 

GABPB1, GPC4, PLRG1, FBXW11, 

MAPKAPK2, COL2A1, SRSF3, NPPA, 

HSP90AA1, KPNB1, RPL5, SUPT5H, DDR2, 

EIF2B4, NR1D1, EFNB1, BRD4 

FGF6, WNT11, TESK2, FIP1L1, PIM1, VRK2, 

ANGPT1, NEK1, COL1A1, NCBP1, EIF2AK2, 

NUMB, ADCYAP1, MTCP1, NRTN, NRG1, 

CDK12, RPL11, PPP2R1A, XPO1, TAOK3, ID1, 

SMG1, TUBB, NACA, PTPN22, TUBA1C, UBA1, 

NUP98 

 

 

 



 

Figure S.6: PPI network between 68 unique driver proteins based on the STRING database by 

considering physical and functional connections with a confidence score of at least 0.7. 

 

 

 



NCBP1 Gene: 

The NCBP1 gene is essential for cell growth and viability, playing a critical role in 

various cellular processes. It is involved in the formation of the HIV elongation 

complex and the transportation of mature mRNA, particularly in the absence of HIV 

Tat. 

HSP90AA1 Gene: 

The HSP90AA1 gene plays a crucial role in the drug-mediated inhibition of ERBB2 

signaling. As a molecular chaperone, it aids in the maturation, structural 

maintenance, and regulation of specific target proteins essential for cell cycle control 

and signal transduction. 

RPS3 Gene: 

The ribosomal protein encoded by the RPS3 gene is a component of the 40S subunit 

and plays a significant role in translation initiation. This protein is upregulated in 

colon adenocarcinomas and adenomatous polyps and contributes to DNA damage 

repair and apoptosis through its endonuclease activity and involvement in CASP8 

activation. 

RPL5 and RPL11 Genes: 

The proteins encoded by the RPL5 and RPL11 genes are associated with Diamond-

Blackfan Anemia and may have tumor-suppressive effects. They activate 

downstream tumor suppressors and downregulate oncoprotein expression. 



Table S.5: Table listing drugs that target key hub proteins identified in the PPI network analysis. 

Each drug's mechanism of action is detailed, highlighting its therapeutic relevance. Notably, the 

table includes drugs with established roles in cancer treatment, such as Doxorubicin hydrochloride 

and Dorlimomab aritox, as well as Obefazimod, which presents potential for drug repurposing in 

cancer therapy. 

 

Gene Drug Description 

NCBP1 Obefazimod Obefazimod (ABX464) is a potent anti-HIV agent. Obefazimod inhibits 

HIV-1 replication in stimulated peripheral blood mononuclear cells 

(PBMCs) with an IC50 ranging between 0.1 μM and 0.5 μM 

HSP90AA1 Doxorubicin 

hydrochloride 

Doxorubicin (Hydroxydaunorubicin) hydrochloride, a cytotoxic 

anthracycline antibiotic, is an anti-cancer chemotherapy agent. 

Doxorubicin hydrochloride is a potent human DNA topoisomerase I and 

topoisomerase II inhibitor with IC50s of 0.8 μM and 2.67 μM, 

respectively. Doxorubicin hydrochloride reduces basal phosphorylation 

of AMPK and its downstream target acetyl-CoA carboxylase. 

Doxorubicin hydrochloride induces apoptosis and autophagy 

RPS3 Dorlimomab 

aritox 

Dorlimomab aritox (4197X-RA; MDX-RA (ricin A chain) 

immunotoxin) is a mouse-derived monoclonal antibody conjugated to 

ricin A. 

RPL5 & 

RPL11 

Exaluren 

Exaluren (ELX-02) is a synthetic eukaryotic ribosome-selective 

glycoside that induces read through of nonsense mutations, resulting in 

normally localized full-length functional proteins. Exaluren is used for 

the research of cystic fibrosis caused by nonsense mutations. 

 

 


