SUPPLEMENTARY MATERIAL Figure S1 and Figure S2

Cannabinoid regulation of angiotensin II-induced calcium signaling in striatal neurons

Rafael Rivas-Santisteban^{1,2*}, Ana Muñoz^{2,3}, Jaume Lillo^{2,4}, Iu Raïch^{2,4}, Ana I. Rodríguez-Pérez^{2,3}, Gemma Navarro^{2,4,5#}, José L. Labandeira-García^{2,3#}, Rafael Franco^{2,6,7#}.

- ¹ Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona. Campus Bellaterra. 08193 Barcelona. Spain
- ² Network Center for Biomedical Research in Neurodegenerative Diseases. CiberNed., Spanish National Health Institute Carlos iii. Av. Monforte de Lemos, 3-5. 28029 Madrid. Spain.

³ Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela; Spain.

- ⁴ Department of Biochemistry and Physiology. School of Pharmacy and Food Sciences. Universitat de Barcelona. 08028 Barcelona. Spain.
- ⁵ Institute of Neuroscience of the University of Barcelona. Universitat de Barcelona. 08028 Barcelona. Spain.
- ⁶ Molecular Neurobiology laboratory. Dept. Biochemistry and Molecular Biomedicine. Facultat de Biologia. Universitat de Barcelona. 08028 Barcelona. Spain.
- ⁷ School of Chemistry. Universitat de Barcelona. Barcelona. Spain.

equal contribution

* Corresponding authors

Rafael Rivas-Santisteban rrivasbioq@gmail.com

Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, 08193 Barcelona. Spain

Rafael Franco <u>rfranco@ub.edu</u>; <u>rfranco123@gmail.com</u>

Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain.

Supplementary Figure S1. cAMP control assays testing the antagonists of the two receptors: candesartan and rimonabant. HEK-293T cells expressing AT₁ (A) or CB₁ (B) receptors were pretreated with the solvent of ligands (vehicle) or receptor antagonists (1 μ M candesartan for CB₁R or 1 μ M rimonabant for AT₁R) and subsequently treated with selective agonists (100 nM Ang II for AT₁R and/or 100 nM ACEA for CB₁R). Panels A-B. G_i protein-coupling was assessed by measuring the decreases in forskolin (FK)-induced cAMP levels; 0.5 μ M FK was used (added 15 min after the treatment with agonists). Values are the mean ± S.E.M. of 3 independent experiments performed in triplicates. One-way ANOVA followed by Bonferroni's *post-hoc* test was used to compare cAMP levels (***p< 0.001, versus FK condition) and (ns. versus Ang II (A) or ACEA (B) condition).

Supplementary Figure S2. CellprofilerTM segmentation of nuclei and red dots for PLA quantification in neurons. A) Neurons labelled for NeuN were were detected by a CellProfilerTM pipeline (blue shadow mask) and distinguished from those without the neuronal marker (orange shadow mask). Only red dots surrounding cells presenting NeuN are quantified (red circles). Scale bar: 10 µm. B) Cells labeled with MAP2 were detected by a CellProfilerTM pipeline. Only red dots in MAP2⁺ cells were considered (green circles), excluding the other red dots (red circles). Scale bar: 20 µm.