1 2 3 4	Trial Protocol and Statistical Analysis Plan	Supplemental Files
5	y	
6 7		

8		
9		eMethods
10		
11	Trial Proto	col and Statistical Analysis Plan (SAP)
12		
13	Evaluation	of Obstetric Life Support (OBLS) Training Program for Responding to
14	Maternal M	Iedical Emergencies
15		
16	Principal Inv	vestigator: Andrea Shields, MD, MS
17	I.	Associate Professor of Obstetrics & Gynecology
18		University of Connecticut Health
19		Farmington, Connecticut
20		
21	Protocol ide	ntification number: 22X-137
22	ClinicalTria	ls.gov identifier: NCT05355519
23	Author:	Charles Minard, PhD
24		Statistician
25		Baylor College of Medicine
26		Houston, Texas

27 Version Draft 1.0

28		SIGNATURE PAGE
29		
30		
31		
32		
33		
34		(1)
35	Principal Investigator	Clo. MW
36		Andrea Shields (2024-01-31)
37		
38		
39		
40		
41		Charles Minard
42	Author	Churcher Thankell
43		Charles Minard (2024-01-31)

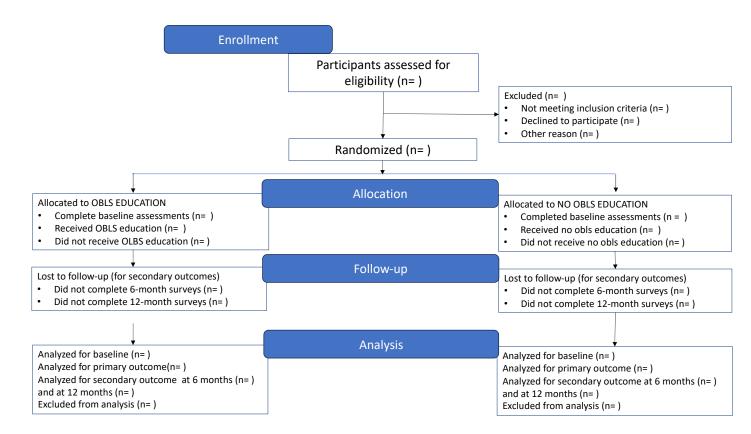
44	Table of Contents	
45	1. Introduction	5
46	2. Study Objectives and Endpoints	;
47	3. Study Methods	
48	3.1 General Study Design and Plan	5
49	3.2 Inclusion-Exclusion Criteria and General Study Population.	7
50	3.3 Randomization and Blinding	7
51	3.4 Study Assessments.	8
52	4. Sample size calculation	8
53	5. General Analysis Considerations	
54	5.1 Timing of Analyses	8
55	5.2 Analysis Populations	9
56	5.2.1 Full Analysis Population (or Intention to Treat or Modified Intention to Treat)	9
57	5.2.2 Per Protocol Population	9
58	5.2.3 Safety Population.	9
59	5.3. Covariates and Subgroups)
60	5.4 Missing Data9)
61	5.5 Multiple Testing)
62	6. Summary of Study Data	
63	6.1 Subject Disposition1	.0
64	6.2 Derived variables1	0
65	6.3 Protocol Deviations1	0
66	6.4 Demographic and Baseline Variables1	0

67	7. Efficacy Analyses
68	7.1 Primary Efficacy Analysis11
69	7.2 Secondary Efficacy Analyses 11
70	7.2.1 Secondary Analyses of Primary Efficacy Endpoint
71	7.2.2 Analyses of Secondary Endpoints 11
72	8. Safety Analyses
73	9. Abbreviations

74	1 Introduction
75	
76	
77	1.1 Preface
78	
79	Obstetric Life Support (OBLS) is a comprehensive training program designed to equip
80	healthcare professionals with the necessary skills and knowledge to manage maternal medical
81	emergencies and maternal cardiac arrest scenarios. This statistical analysis plan (SAP) will give
82	more detailed descriptions of the endpoints in the study and the corresponding analyses.
83	
84	1.2 Scope of the analyses
85	
86	The study design is a prospective, single-blinded, randomized controlled trial with delayed
87	intervention for the control group to evaluate the Obstetric Life Support (OBLS) education. The
88	participants will be providers, nurses and GME learners currently certified in advanced cardiac
89	life support (ACLS) or basic life support (BLS) and recruited from the anesthesiology, OB/GYN,
90	emergency medicine, and critical care departments. Participants will be randomly allocated to
91	receive OBLS education (Intervention arm) or no OBLS education (Control arm).
92 02	2 Study Objectives and Endesints
93	2 Study Objectives and Endpoints
94	
95	2.1 Study Objectives
96	
97	The objectives of this study are to develop and test the effectiveness of an educational
98	program for improving knowledge and skills in managing maternal medical emergencies
99	and maternal cardiac arrest among healthcare professionals.
100	
101	2.2 Endpoints
102	2.2.1 Primary outcome measures
103	1. Cognitive test score
104	
105	2.2.2. Secondary outcome measures
106	1. Confidence scores
107	2. Megacode scores
108	3. Combined assessment pass rate
109	
110	3 Study Methods
111	
112	
113	3.1 General Study Design and Plan
114	

This study will be a single-blind, randomized controlled trial with delayed intervention for controls. Participants will be randomized in a 1:1 ratio to Intervention (OBLS education) or

- 117 Control arm (delayed OBLS education). Participants will be randomized after enrollment.
- 118 Evaluators will be blinded to the assigned study arm.
- 119


120 Participants assigned to the Intervention arm will receive cognitive didactic and interactive

- sessions and deliberate practice on a customized simulator. Cognitive and confidence evaluations
- are assessed at enrollment (Time 0), post-intervention (Time 1), 6-months post-enrollment (Time
- 123 2), and 12-months post-enrollment (Time 3). Megacode evaluations (technical and behavioral)
- will also be completed during Time 1.
- 125
- Participants assigned to the Control arm will receive cognitive and confidence evaluations at
 enrollment (Time 1) but will not receive the educational intervention until 6-months postenrollment (Time 2). Cognitive and confidence evaluations are then assessed post-intervention
 at the 6-month time point (Time 2) and 12-months post-enrollment (Time 3). Megacode
 evaluations are also completed during Time 1.
- 131
- 132 The primary outcome of interest is cognitive scores during Time 1. The superiority of the OBLS
- education will be assessed in the Intervention arm versus the Control arm during Time 1.
- 134 Secondary outcomes include cognitive scores at other time points as well as confidence scores135 and Megacode scores.
- 135 136
- The overall study design is summarized in Figure. At enrollment (Time 0), participants in the
 intervention arm will receive cognitive and self-efficacy assessments followed by receipt of the
 OBLS manual and prework 30-days prior to Time 1. The control arm will not receive any
 supplemental materials or instruction.
- 141

At Time 1, the intervention arm will receive OBLS in-person education with cognitive, self efficacy, and Megacode assessment post-education. The control arm will receive baseline
 cognitive, self-efficacy assessments and Megacode assessment followed by receipt of the OBLS

- 145 manual for prework 30-days prior to Time 2.
- 146
- At Time 2 (6-months post-randomization), the intervention arm will be assessed for 6-month
 retention of cognitive and self-efficacy scores. The control arm will receive OBLS in-person
 education with cognitive, self-efficacy, and Megacode assessment post-education.
- 150
- 151 In Time 3 (12-months post-randomization), both study arms receive cognitive and self-efficacy
- assessments. This represents the 12-month knowledge retention for the intervention arm and 6-
- 153 months for the control arm.

156 Figure. Flowchart of screening and inclusion process.

3.2 Inclusion-Exclusion Criteria and General Study Population

Study subjects will be English-speaking healthcare workers (18 years of age or greater) who work out-of-hospital (OH) or in-hospital (IH) contexts and care for reproductive-age women. For OH OBLS education, teams will have a maximum of four participants each consisting of two pairs of EMS healthcare professionals of varying levels, including law enforcement and firefighters. One participant must have at least five years or more in their current role. For IH OBLS education, teams will have a maximum of six participants consisting of at least one emergency medicine healthcare professional from Emergency Department (ED), Family Practice (FP), Intensive Care Unit (ICU), Surgery (Obstetrics [OB]); one anesthesiologist; one trainee of graduate medical education (GME) and/ one nurse from ED, FP, ICU/NICU, or OB/Labor & Delivery (L&D). Apart from the GME learners, at least one healthcare professional and one nurse must have at least five years of experience within their specialty. Exclusion criteria include anyone who meets eligibility criteria but who participated in our pilot validation trials and who do not consent to be randomized.

3.3 Randomization and Blinding

178 The study is a single-blinded RCT with two study arms. Subjects will be randomized to the

- intervention or control in a 1:1 ratio using a permuted block design with random block sizes. Randomization will be stratified by hospital status (i.e., out-of-hospital versus in-hospital).

181 **3.4 Study Assessments**

182

184 185

192

194

195

196 197

198

199

200 201

- 183 Study assessments include the following validated instruments:
 - 1. Cognitive test

Developed and validated for participants from in- and out-of-hospital for online
administration. Participants designated as out-of-hospital are further assigned to a basic
versus advanced cognitive test based on their roles (e.g., EMTs that cannot administer
medications or use advanced airways will be given the out-of-hospital, basic assessment).
Each test item is equally weighted, and a final score is tabulated by computing the
percent of items correct. Items with missing responses are assumed to be incorrect.

193 2. Megacode checklist

Developed and validated for assessment of the team leader during a Megacode scenario of a maternal medical emergency by blinded evaluators. Participants from out-of-hospital contexts are further assigned to a basic versus advanced Megacode checklist test based on their roles (e.g., EMTs that cannot administer medications or use advanced airways will be given the out-of-hospital -basic Megacode checklist assessment). Each test item is on a Likert scale, and a final score is tabulated by adding up scores for each item and converting to a 100-point scale.

202 3. Self-efficacy assessment

203Developed and validated online assessment of confidence in four categories: clinical204confidence, procedural confidence, knowledge confidence, and communication205confidence. Each item is equally weighted, and a final score is tabulated by adding up all206items and converting to a 100-point scale.

207

208 4 Sample Size Calculation

209 210 The primary outcome of interest is cognitive test scores during Time 1, and the primary 211 hypothesis test will compare mean cognitive test scores during Time 1 between study arms using an independent, two-sample t-test. Preliminary data estimated the standard deviation of cognitive 212 213 test scores to be about 12 points (Shields et al., 2023). A difference between means of 10-points is assumed to be clinically important. A sample size of 24 participants per group (N=48 total) 214 215 provides 80% power to reject the null hypothesis that mean cognitive test scores are equal 216 between study arms using an independent, two-sample t-tests assuming a common SD=12 and 217 two-sided alpha = 0.05.

218

220

222

- 219 5 General Analysis Considerations
- 221 **5.1 Timing of Analyses**

Data will be analyzed after the trial is complete and will be defined as 3-months after Time 3 (12-months post-randomization).

10

225 **5.2 Analysis Populations**

226	5.2.1 Full Analysis Population (or Intention to Treat or Modified Intention to Treat)
227	Intention-to-treat (ITT)
228	All eligible, randomized participants. This will be the primary population for the analysis.
229	Primary and secondary efficacy end points will be analyzed using intention-to-treat, with
230	analyses including all eligible, randomized participants.
231	
232	5.2.2 Per Protocol Population
233	
234	All eligible, randomized participants who completed assessments at all time points. For a
235	specific analysis, study subjects with missing data on any of the variables in the model
236	will be excluded from the analysis. Analyses of this population is seen as a sensitivity
237	analysis to investigate whether conclusions are sensitive to assumptions regarding the
238	pattern of missing data.
239	
240	5.2.3 Safety Population
241	
242	We do not anticipate the need for safety population analysis due to low-risk intervention.
243	
244	5.3. Covariates and Subgroups
245	We plan to analyze Megacode assessment outcomes based on the following subgroups: hospital-
246	based versus out-of-hospital.
247	
248	5.4 Missing Data
249	
250	Cognitive test items that are missing will be scored as incorrect responses. Otherwise, scores for
251	missing assessments (cognitive, self-efficacy, and megacode) will not be imputed. All available
252	scores will be included in the primary analysis of the full population.
253	
254	5.5 Multiple Testing
255	
256	The primary outcome of interest is cognitive test scores. The primary hypothesis test will
257	compare mean cognitive scores between treatment arms using an independent, two-sample t-test
258	assuming homogenous variance and will be assessed at the two-sided 0.05 level. Secondary
259	analysis will compare mean cognitive scores between arms across all time points using a general
260	linear mixed model. If the arm-time interaction term is significant at the 0.05 level, then all
261	pairwise comparisons will be assessed, and p-values will be adjusted for multiple comparisons
262	using Tukey's method.
263	
264	Secondary outcomes include self-efficacy, megacode scores, and combined assessment pass rate
265	(this includes meeting expert-derived minimum score for cognitive and megacode assessments).
266	Self-efficacy scores will be analyzed like the primary outcome. Megacode are observed at a
267	single time point and will be assessed at the two-sided 0.05 level. Combined assessment pass
268	rate will compare the percent of participants who pass using Fisher's exact test assessed at the

two-sided 0.05 level.

270 6 Summary of Study Data

6.1 Subject Disposition

The number and proportion of screened, randomized, treated, and analyzed subjects will be
provided. Where necessary, the CONSORT flow chart will be presented to describe the subject
disposition in the statistical analysis report.

278 **6.2 Derived variables**

Cognitive scores will be computed as the percent of items correct and scores will range from 0% to 100%. Self-efficacy scores will be computed as the sum of item responses and converted to a 100-point scale. Scores will range from 0 to 100 points. Megacode scores will be computed as the percent of items correct and score will range from 0% to 100%. Participant age at enrollment will be computed as the integer age (rounded down) at the time of enrollment.

286 **6.3 Protocol Deviations**

287

285

271

272 273

279

288 For our trial, a protocol deviation is defined as a failure to adhere to the protocol such as the wrong intervention being administered, incorrect data being collected and documented, errors in 289 applying inclusion/exclusion criteria or missed follow-up visits. Major deviations will include 290 errors in randomization to OBLS versus no education, incorrect data being collected and 291 292 documented, and errors in applying inclusion/exclusion criteria. Minor deviations include missed follow-up assessments. We will of summarize protocol deviations in the analysis (e.g., number 293 294 and type of protocol deviations by intervention group or listing of all deviations) and provide details of whether the deviation is major or minor. If deviations occur, a sensitivity analyses will 295 be conducted by removing patients with major deviations to assess impact on overall 296 conclusions. 297

298

299 **6.4 Demographic and Baseline Variables**

Demographic/baseline variables will include age (years), gender identify (woman, man, non-300 binary), race/ethnicity (Asian/Black or African American, White, Hispanic/Latinx, Prefer not to 301 answer), how many times participants have participated in a simulation exercise (< 5, 5-10, >10302 and <20, and >20), if they have experience as a simulation instructor (yes/no),), if they are 303 304 certified in BLS (currently certified, never certified or previously certified), if they are certified in ACLS (currently certified, never certified or previously certified), if they are certified in ATLS 305 (currently certified, never certified or previously certified), if they are certified in PHTL 306 (currently certified, never certified or previously certified), if they are certified in NRP (currently 307 certified, never certified or previously certified), if they are certified as an BLS instructor 308 (currently certified, never certified or previously certified), or if they are certified as an ACLS 309 instructor (currently certified, never certified or previously certified). For normally distributed 310

- 311 data comparing two means We will perform an independent, two sample test.
- 312
- 313 Baseline demographics and professional characteristics will be summarized by means with
- 314 standard deviations, medians with minimum and maximum values, or frequencies with
- 315 percentages. Summary statistics will be stratified by treatment arm and compared using

- 316 independent, two-sample t-tests, Wilcoxon rank sum test, chi-square test, or Fisher exact test as
- appropriate. Approximate normality will be assessed by quantile-quantile plots and Shapiro-Wilk
- test. Homogeneity of variances will be assessed by Levene's test. Table 1 presents an example
- table for summarizing and comparing baseline characteristics.
- 320
- 321 <u>Table 1. Baseline participant characteristics</u>

Characteristic	All	Intervention	Control	P-value
	(n=)	(n=)	(n=)	
Age at enrollment in years				
N	N	Ν	N	
Mean (sd)	Mean (sd)	Mean (sd)	Mean (sd)	Р
Gender, n (%)				
Woman	N (%)	N (%)	N (%)	Р
Man	N (%)	N (%)	N (%)	
Non-binary	N (%)	N (%)	N (%)	
Race and Ethnicity, n (%)				
Asian	N (%)	N (%)	N (%)	Р
Black or African American	N (%)	N (%)	N (%)	
White	N (%)	N (%)	N (%)	
Hispanic or Latino	N (%)	N (%)	N (%)	
Other (Prefer not to answer)	N (%)	N (%)	N (%)	

322

323 7 Efficacy Analyses

324 **7.1 Primary Efficacy Analysis**

325

The primary analysis will compare mean cognitive scores between treatment arms during Time 326 1 using an independent, two-sample t-test assuming equal variances as assessed at the two-sided 327 alpha=0.05 level. Secondary analysis will use a general linear mixed model to compare mean 328 cognitive scores between treatment arms across all time points. The model will include fixed 329 effects for arm, time (i.e., Time 0, 1, 2, 3), and the arm-time interaction term. If the interaction 330 term is significant at the 0.05 level, then all pairwise comparisons will be assessed by the model 331 using linear contrasts and p-values will be adjusted for multiple comparisons using Tukey's 332 method. Statistical significance will be assessed at the two-sided 0.05 level. The model will also 333 estimate means with 95% confidence intervals by arm and time point. The matrix of correlated 334 residuals will assume an unstructured format. 335

336

337 7.2 Secondary Efficacy Analyses

Secondary outcomes include self-efficacy scores, megacode scores, and combined assessment
pass rate. Self- efficacy will be analyzed using a general linear mixed model similar to the
secondary analysis of the primary outcome. Megacode scores will compare mean scores between

342 treatment arms using

- 343 an independent, two-sample t-test. Combined assessment pass rates will estimate the frequency
- 344 with percent of group passing the exam. Fisher exact test will compare percent passing between the two treatment arms. Statistical significance will be assessed at the 0.05 for all secondary 345
- 346 outcomes.
- 347 8 Safety Analyses
- Adverse events occurring during the OBLS education. 348
- Abbreviations 349 9
- 350

- 351 ACLS Advanced Cardiac Life Support
- ATLS Advanced Trauma Life Support 352
- **BLS Basic Life Support** 353
- 354 **CI** Confidence Interval
- IQR Interquartile Range 355
- ITT Intention-to-Treat 356
- 357 NRP Neonatal Resuscitation Program
- **OBLS** Obstetric Life Support 358
- 359 PHTLS Prehospital Trauma Life Support
- PP Per Protocol 360
- 361 **RCT Randomized Clinical Trial**
- SAP Statistical Analysis Plan 362
- 363
- 364
- 365
- References 366
- 367
- Shields, A. D., Vidosh, J., Thomson, B. A., Minard, C., Annis-Brayne, K., Kavanagh, L., Roth, 368
- C. K., Lutgendorf, M. A., Rahm, S. J., Becker, L. R., Mosesso, V. N., Schaeffer, B., Gresens, A., 369
- Epley, S., Wagner, R., Streitz, M. J., Bhalala, U. S., Melvin, L. M., Deering, S., & Nielsen, P. E. 370
- (2023). Validation of a Simulation-Based Resuscitation Curriculum for Maternal Cardiac Arrest 371