
Supplementary Figures 

 
Supplementary Figure S1. a) Region fraction distributions divided by the percentage of ISUP-
grade tumor spots. Kruskal-Wallis test p-value is displayed. Asterisks indicate Wilcoxon rank-
sum test p-values; *: p < 0.05 ; **: p < 0.01 ; ***: p < 0.001. Boxes span the interquartile range 
(IQR) and whiskers extend to points that lie within 1.5 IQRs of the lower and upper quartile. 
Center line is drawn at the median. b, c) Mean region proximity scores across the discovery 
(b) and the validation (c) cohorts. A higher z-score indicates a larger likelihood of the regions 
localizing in adjacent spots. Low cancer %: (n = 11), % of spots labeled as ISUP1-5, ISUPX, 
ISUPY or PNI ≤ 0.05; Mid cancer % (n = 11): 0.05 < cancer % ≤ 0.50; High cancer % (n = 10): 
0.50 < cancer %. 



 
Supplementary Figure S2. Side-by-side H&E staining, histopathology assessment, and 
SCM regions for a representative set of discovery cohort samples. The first two samples are 
BPH, samples three and four are untreated tumors, and sample five is a bicalutamide-treated 
tumor. cr: cribriform pattern, PIN: prostatic intraepithelial neoplasia. Scale bar is 2 mm. 
 



 
Supplementary Figure S3. Differential expression analysis results between the Club regions 
of benign prostatic hyperplasia (BPH, n = 4), treatment-naïve prostate cancer (TRNA, n = 17), 
neoadjuvant-treated prostate cancer (NEADT, n = 22) and castration-resistant prostate cancer 
(CRPC, n = 5) samples. Individual comparisons are shown for a) BPH vs. TRNA, b) TRNA vs. 
NEADT, c) TRNA vs. CRPC, and d) NEADT vs. CRPC. Genes with absolute log2 fold-change 
≥ 1 and padj < 0.05 (two-sided Wilcoxon rank-sum test) are colored according to the sample 
category in which they are overexpressed. 
 



 
Supplementary Figure S4. Spotwise gene set activity scores in the Club region (n = 5,595) 
compared to other epithelial regions (n = 59,198). a) Androgen signaling activity-related gene 
sets. b) Club-, stem-cell-, and progenitor-like gene sets. c) Inflammation-related MSigDB 
hallmark gene sets. d) Pan-cancer meta-program1 gene sets. Asterisks indicate two-sided 
independent samples t-test p-value (p < 0.05) and effect size: *: Other 70th percentile < or > 
Club region mean; **: Other 80th percentile < or > Club region mean; ***: Other 90th percentile 
< or > Club region mean. 



 
Supplementary Figure S5. Region markers enrichment analysis results for a) MSigDB 
Hallmark b) and pan-cancer meta-program gene sets. Dot size represents the Benjamini-
Hochberg adjusted p-value of a one-sided Fisher’s exact test. Colors represent regions: Tumor 
(n = 23,712), Luminal epithelium (n = 23,210), Basal epithelium (n = 12,276), Club epithelium 
(n = 5,595), Immune (n = 5,816), Endothelium (n = 2,020), Fibroblast (n = 17,206), Muscle (n 
= 20,846). 



 
Supplementary Figure S6. Correlation between the proportion of Club region spots and the 
mean gene set activity score in the non-Club region spots for discovery (left) and the validation 
cohorts (middle). Spearman correlation coefficient and Benjamini-Hochberg corrected p-
values are displayed. The boxplots depict score distributions of non-recurrent and recurrent 
samples of the validation cohort. a) Calcinotto et al. 2018 MDSC signature2 b) Hirz et al. 2023 
MDSC signature3 c) Alshetaiwi et al. 2020 MDSC signature4. BPH: benign prostatic 
hyperplasia (n = 4), TRNA: treatment-naïve prostate cancer (n = 17); NEADT: neoadjuvant-
treated prostate cancer (n = 22); CRPC: Castration-resistant prostate cancer (n = 5). Low 
cancer % n = 11, Mid cancer % n = 11, High cancer % n = 10. 



 
Supplementary Figure S7. Multiplex immunohistochemistry (mIHC) staining of whole-mount 
untreated primary prostate tumors. a) Four representative club-like positive regions of interest 
(ROIs) from four samples (total n = 16). DAPI, PanCK, LTF, PIGR, CD66b, CD11b, and CXCR2 
staining of the same ROI is shown separately for four ROIs. Scale bars are 500 μm. b) 
Violinplot of the total number of detected cells in club-like positive (n = 47) and club-like 
negative (n = 54) ROIs. c) Violinplot of the number of panCK+LTF+/PIGR+ club-like cells in 
ROIs divided according to club-like positivity status. Two-sided Wilcoxon rank-sum test p-
values are shown.  
 



 

 
Supplementary Figure S8. Ligand-receptor interaction analysis in SCM region interfaces. a) 
Illustration of region interfaces for the Club region against Luminal (n = 36), Immune (n = 24), 
Fibroblast (n = 34), and Tumor (n = 26). b) Ligand-receptor signaling activity for ligands 
expressed in the Club region. Edge weights represent the number of interfaces where a ligand-
receptor interaction was active, colors represent unique ligands. c) Same as b, but for 
receptors expressed in the Club region. d) Ligand-receptor interaction prevalence on Club 
region interfaces. Boxes span the interquartile range (IQR) and whiskers extend to points that 
lie within 1.5 IQRs of the lower and upper quartile. Center line is drawn at the median.Total 
number of samples where a Club region interface was present: Tumor (n = 26), Luminal (n = 
36), Basal (n = 28), Immune (n = 24), Fibroblast (n = 34), Muscle (n = 26).  
 



 

Supplementary Figure S9. Spatial transcriptomics data from metastatic prostate cancer 
samples. a) Expression-based clustering overlaid on spatial sections. b) Cluster-specific gene 
set scores. The dashed line marks the overall score median. Asterisks indicate two-sided 
independent samples t-test p-value (p < 0.05) and effect size (*: cluster 30th percentile > 
overall median; **: cluster 20th percentile > overall median; *: cluster 10th percentile > overall 
median). c) Scatterplot of adjusted p-values for one-sided Fisher’s exact test of region-specific 
markers (rows) among each cluster’s (columns) overexpressed genes. Total number of spots 
in each sample: MET A (n = 2,190), MET B (n = 2,346), MET C (n = 2,255), MET D (n = 3,162). 



 
Supplementary Figure S10. GSVA correlations in the discovery cohort for pseudo-bulk 
discovery cohort ST-data (left, n = 48), TCGA-PRAD (middle, n = 551), and SU2C-PCF (right, 
n = 266). Spearman correlation coefficients and their two-tailed Benjamini-Hochberg corrected 
p-values are displayed. a) AR-signaling signature5 b) Calcinotto et al. 2018 MDSC signature2 

c) Hirz et al. 2023 MDSC signature3 d) High NLR associated-signature6. 



 
Supplementary Figure S11. Inferred cell count weights overlaid on spatial sections for five 
representative samples of the discovery cohort. 



 
Supplementary Figure S12. NMF factor weights for 26 mapped cell types for the number of 
components k where 5 ≤ k ≤ 12. Iteration k = 8 was chosen for downstream analysis (denoted 
with a black rectangle). Darker blue indicates a higher contribution of a cell type to a factor. 



 
Supplementary Figure S13. Single-cell mapping-based (SCM) regions overlaid on the spatial 
sections for a) the discovery cohort (scale bar 3 mm) and b) the validation cohort (scale bar 2 
mm). 

  



Supplementary methods 

Dataset assembly 

We assembled single-cell RNA-sequencing data from 7 previously published prostate cancer 

studies with samples from normal prostate tissue, low- and high-grade primary tumors, as well 

as locally recurrent and metastatic castration-resistant prostate cancer tumors3,7–12. For Dong 

et al. 2020, Chen et al. 2021, Song et al. 2022, Wong et al. 2022, and Hirz et al. 2023 count 

matrices were downloaded from the Gene Expression Omnibus (GEO) under their accession 

numbers (GSE137829, GSE141445, GSE176031, GSE185344, GSE181294, respectively). 

For Cheng et al. 2022, bam files were downloaded from the Sequence Read Archive (SRA) 

under accession number PRJNA699369, converted back fastq files using cellranger 

bam2fastq (cellranger v3.0.2), and processed using cellranger count (aligned to GRCh38) to 

yield transcript counts. For Chen et al. 2022, raw FASTQ-format sequencing data were 

acquired from a collaborator and similarly processed identically using cellranger count. In total, 

the aggregated raw transcript counts comprised data from 64 patients, 98 samples, and 

354,885 cells. 

Dataset preprocessing 

For preprocessing, normalization, and integration of the datasets, we relied on the pipeline 

laid out in a comprehensive single-cell RNA-seq data integration benchmark by Luecken et 

al13. The single-cell integration benchmark pipeline (scib v1.1.1) was installed as a conda 

environment with scanpy v1.9.1, python v3.7.12, and R v.4.0.5. Quality control was performed 

on each dataset individually. We used scanpy to filter cells with less than 600 UMI counts and 

less than 300 gene counts. Genes with less than 10 total counts across each dataset were 

discarded. scanpy.pp.calculate_qc_metrics was used to count the percentage of counts 

originating from mitochondrial genes, and cells with > 20% were filtered. 

Scanpy’s implementation of scrublet v0.2.3 was used to model and remove cell duplets14. Data 

normalization was performed on each dataset individually by running 

scib.preprocessing.normalize with parameters precluster=False, and sparsify=False. 

Following normalization, the datasets were concatenated into a single object with 

anndata.concat v0.8.0 using the default parameters. The resulting aggregate dataset 

consisted of 327,771 cells and 14,819 genes. 



Dataset integration 

scib.preprocessing.scale_batch was next used to jointly scale the data with the dataset of 

origin used as the batch key. Highly variable genes (HVGs) were identified by running 

scib.preprocessing.hvg_batch with parameters target_genes=2000, flavor=’seurat’, and the 

dataset of origin as batch key. To perform dataset integration, we used the scvi method in scvi-

tools v0.1.16.1. We used the unnormalized counts of the identified HVGs and dataset as batch 

keys. A model was constructed using scvi.model.SCVI with the following parameters: 

n_layers=2, n_latent=30, gene_likelihood=’nb’. The model was trained on an NVIDIA Tesla 

V100 architecture GPU. A 30-dimensional latent representation of the dataset was extracted 

from the trained model. This representation was then graph-clustered by using 

scanpy.pp.neighbors and scanpy.tl.leiden with the default parameters. A UMAP representation 

was constructed using sc.tl.umap. 

Broad cell-type annotation 

Leiden clustering of the 30-dimensional latent space resulted in 50 unique clusters 

(VI_clusters, Supplementary Figure S14). From these clusters, we discarded those that had 

more than 80% of their cells originating from a single sample. This resulted in the exclusion of 

16 clusters (42,917 cells), or 41.8%, 11.6%, and 5.3% of cells originating from CRPC, PCa, 

and normal samples, respectively. 

 
Supplementary Figure 14. UMAP representation of the 30-dimensional latent space inferred 
through integration with scvi. Individual cells are colored by dataset (7), sample (98), and cell 
clusters yielded by Leiden clustering of the latent space (50). 

To annotate these data, we assembled a set of consensus gene markers for 11 cell types from 

the original publications used in our integrated dataset. This categorization was intentionally 



broad and contained epithelial, endothelial, fibroblast, muscle, and neuronal cell type markers. 

The immune cell markers were for mast, T-, B-, myeloid-, dendritic-, and plasma cells. 

Cell types were annotated using the following procedure. First, a dendrogram relating the 34 

remaining clusters to each other was calculated from the 30-dimensional latent space with 

scanpy.tl.dendrogram. The gene expression was then plotted using sc.pl.dotplot, with the cell 

type consensus gene markers on one axis and clusters ordered according to the dendrogram 

on the other (Supplementary Figure S15). Starting from left to right, each cluster was then 

annotated as one cell type with ambiguous cases being annotated according to their neighbors 

on the dendrogram. Fibroblasts and muscle cells could not be unequivocally separated based 

on marker gene expression and were thus included in the same cluster for downstream 

analysis. This procedure resulted in 10 unique cell-type clusters (Supplementary Figure 

S15d). 

 
Supplementary Figure S15. Cell type identification of integration-derived VI_clusters. a) 
Expression of canonical marker genes in each cluster. Cell types are shown on top, individual 
genes on the bottom. Rectangles drawn on each cluster at specific cell types indicate inferred 
cluster identities. b,c,d) 34 post-exclusion VI_clusters, datasets, and broad cell-type 
annotations are shown in the UMAP representation of the 30-dimensional latent space. 

Annotating immune cell identity with celltypist 

We used celltypist v1.6.0, a machine-learning model optimized for immune cell identity 

annotation of tumor-derived single-cell RNA-seq data15. The raw counts of cells annotated as 



T-, B-, mast, plasma, dendritic, and myeloid cells were

 jointly normalized and log-transformed using scanpy, after which they were annotated 

using celltypist.annotate with Immune_All_High used as the model. This mode examined the 

expression of 6639 genes and compared them to a high-hierarchy immune cell annotation 

derived from 20 tissues across 18 studies. The model was trained using thresholds 0.99 for 

probability, and 100 for the number of cells. The celltypist predictions corroborated T-, B-, 

mast-, plasma- and dendritic cell annotations given in the upstream analysis, while also 

introducing innate lymphoid cells (ILCs), macrophages, and monocytes, resulting in 98,662 

annotated immune cells across these eight categories (Supplementary Figure S16). 

 

Supplementary Figure S16. NMF-based annotation of broadly categorized cell types. The 
broad annotations were divided into immune, epithelial, fibroblast/muscle, and endothelial 
subsets. The immune subset underwent annotation using celltypist, while the other 3 
underwent an NMF-based algorithmic annotation. 

Using non-negative matrix factorization to infer cell-type specific 
intra-sample heterogeneity 

Based on the broadly annotated cell types, we set out to find the shared intra-tumor 

heterogeneity using a previously described non-negative matrix factorization (NMF) 

approach16. We ran the following algorithm for the epithelial, fibroblast/muscle, and endothelial 

cell types: For each sample individually, cells labeled as the cell type of interest were 

subsetted. Using the unnormalized gene counts from these cells, genes with less than 10 

counts were removed using scanpy. These counts were then normalized, scaled, and 



subsetted to HVGs using scanpy.pp.normalize_total, scanpy.pp.scale, and 

scanpy.pp.highly_variable_genes, respectively. HVGs were determined using parameters 

n_top_genes=2000, flavor=’seurat_v3’, subset=True, and layer=counts. Negative scaled 

expression values were set to 0. On these data, nimfa v1.4.0 was used to perform non-smooth 

NMF for a decreasing number of components k ranging from 25 to 5. Samples with less than 

100 cells annotated as the cell type in question were discarded (epithelial: 12, 

fibroblast/muscle: 52, endothelial: 44 samples discarded). After each iteration, the integrity of 

the resulting components was checked by observing their unique genes as follows. 

One factor at a time, genes were ranked in decreasing order according to the weight 

associated with this factor. This weight was then compared across all the other factor weights 

associated with this gene. If the factor of interest had the highest weight for this gene, the gene 

was annotated as specific to the factor of interest. Iterating through the gene list, this procedure 

was repeated until a factor other than the factor of interest had a larger weight for the gene in 

question, resulting in a set of genes specific to the factor of interest. By repeating this process 

across all factors, a set of factor-specific genes was attached to each factor. If there were less 

than 5 genes in any of the factor-specific gene sets, NMF was performed using a smaller 

number of components by setting k=k-1. The final result of the algorithm was a set of genes 

for k components for each individual sample. 

Following the NMF algorithm, redundant factors were discarded by observing the gene set 

overlap across factors (samples, as each gene was only present in one factor per sample). 

Factors that had a minimum Jaccard index of 0.05 with 2 or more other factors were retained. 

These factors were then used to construct a gene-interaction matrix, where each entry 

represented the number of factors in which the two genes co-occurred. 

Defining gene modules and their activity in single-cell data 

The gene-interaction matrix could be interpreted as a graph, where each gene is a node and 

each entry, representing the number of co-occurrences in the NMF factors, is an edge 

connecting two nodes. Gene-gene connections that were observed in less than 4 factors and 

genes with less than 5 unique connections were determined redundant and removed. Next, 

igraph v0.10.3 was used to build the gene adjacency matrix into an undirected graph, which 

was then clustered with igraph.community_leiden. Clusters with 10 or more genes were 

included as the final gene modules (Supplementary Data S2). To annotate cells according to 

these gene modules, scanpy.tl.score_genes was run for each module in each cell that 



belonged to the corresponding broad cell type annotation. Each cell was given a label 

according to its highest-scoring module. Modules with less than 1000 top-scoring cells were 

omitted. 

In total, this approach yielded 124,703 annotated cells across ten epithelial, four 

fibroblast/muscle, and three endothelial subtypes. Combined with the annotated immune cells 

and neuronal cells, this intricately annotated single-cell reference comprised 223,881 cells 

across 26 cell states. These data were used as a single-cell mapping reference for 

deconvolving the spatial transcriptomics data, as described in Methods.  
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