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Methodological Details of Estimation of False Discovery Rate (FDR) and False

Negative Rate (FNR): Data Model. The measurements of the expression of an

individual gene can be represented as d = s + n, where d is the measured data value, s is

the signal value, and n is the noise value, as simplified from refs. 1 and 2. Signal

represents the real biological gene expression level; noise is random fluctuation due to

factors other than actual gene expression.

Fig. 2 shows a single variable case of measured data obtained from one microarray. The

same relationship extends to instances including multiple variables, for example, multiple

microarray slides used to evaluate expression of an individual gene. Probability

distribution is a function in a multidimensional space. The measurement for the

expression of an individual gene can be represented as d = s + n, where the underlined

notation indicates that the variable is a vector (a variable with multiple data points), d is

the measured value, s is the signal value, n is the noise value, and that each of these

values consist of multiple data points.

FDR and FNR. FDR and FNR have been defined in Methods. An example is given in

Fig. 2. Thr is the threshold above which a gene is considered to show overexpression, and

below which a gene is considered to show no change in expression. If Thr = 0.6, a gene

having signal s = 0 and noise n = 0.7 will be determined to be a false positive, whereas a

gene having signal s = 1.0 and noise = –0.4 will be falsely considered negative.

Different definitions of FDRs and FNRs have been proposed (3). As the number of true

positives and true negatives commonly is unknown in microarray studies, we have

followed Tusher (4) and Storey and Tibshirani (5) and have defined the FDR as

FDR = Number of false positives / Total number of genes in the data set satisfying the

specified condition.



FDR also equals 1 less than the positive predictive value, where the positive predictive

value is TP (true positives) / (TP + FP (false positives)). FDR is thus different from false

positive rate (FPR), where FPR = FP / (FP + TN (true negatives)) (3). Similarly, FNR is

defined in our analysis as:

FNR = Number of false negatives / Total number of genes that should satisfy a condition

= Number of false negatives / (Total number of genes satisfying a condition + Number of

false negatives),

whereas the conventional definition has been FNR = FN / (FN + TP) (3).

For example, if 80 genes that satisfy the specified conditions are selected in a data set,

and FDR = 0.05 and FNR = 0.20, these results mean that an average of four genes (5%)

out of these 80 genes satisfy the condition as a result of random fluctuation in the data,

and 20% of genes having an expression level that should satisfy the specified conditions

were falsely removed.

Bootstrapping and the Estimation of FDR. Bootstrapping (4, 6, 7) provides a means

for estimating the random fluctuation distribution based on the data itself. To apply

bootstrapping, many measurements are required, and these data values are randomly

resampled to generate a bootstrapping data set. In a microarray context, assuming there

are n microarrays and g genes in the data set, the measured expression values for each

gene can be represented as

di = (di1, di2,…din), i = 1,…, g,

where di is the multivariate vector for gene i, di1 is the measured expression value for

gene i in microarray slide 1, di2 is the measured expression value for gene i in microarray

slide 2, etc.



In the bootstrapping data set, the observed values are permuted with each other or

replaced with values in which the numerical sign has been randomly flipped of the

original values:

di
B = (di1

B, di2
B,… din

B), i = 1,…, g,

where di
B is the multivariate vector for gene i in this bootstrapping data set, di1

B is the

bootstrapping sampled value for gene i in microarray slide 1, di2
B is the bootstrapping

sampled value for gene i in microarray slide 2, and so on. di1
B can be either di1 or (–1) ×

di1, each with probability 0.5 (4).

To find genes having significant change in expression level, the null hypothesis is that the

gene expression shows no change because the random bootstrapping simulates the

randomness.

The probability that a gene in the bootstrapping data set satisfies specified conditions

provides an estimate of the probability that a gene with no change in expression satisfies

the condition due to random fluctuation (6, 7). Bootstrapping was applied to various

algorithms of GABRIEL (8).

Bootstrapping FDR = Average number of genes satisfying the rule in the bootstrapping

data set / Number of genes satisfying the rule in the original data set.

However, the null hypothesis that genes in the data set show no change in expression at

all is not fully valid, because there may be genes that have changes in expression in real

data sets. The assumption that the simulated data set generated by bootstrapping contains

completely random data are also not exactly true, because some correlation between data

points could still persist after the random sampling, for example, there is a 2 × 1/25 = 1/16

chance that data values in five microarray slides are all nonflipped or flipped at the same

time. Thus, the bootstrapping value provides only an estimate.



Estimation of FNR. FNR is much harder to estimate than FDR because microarrays are

used for novel discovery, and there is no previously known distribution of signal value

(s). To overcome this problem, we used the expression of the proband gene (a gene

known to satisfy specified conditions) to estimate signal value. The noise value was

estimated using bootstrapping again, that is,

di
E = (dp1 + di1

B, dp2 + di2
B,… dpj + din

B), i = 1,…, g,

where dpj is the expression value of proband in slide j, and di
B is generated in the same

way through random sign flipping of the original data as in the FDR estimation.

di
E constitutes a simulated signal perturbed by noise. If random fluctuation (di

B) is small,

this di
E should satisfy the conditions just like the original proband. However, if the

random fluctuation is large, this di
E would not satisfy these conditions. The probability

that di
E does not satisfy the specified conditions provides an estimate of the probability

that a gene having the level of expression described in signal fails to satisfy the

conditions because of random fluctuation of values in the data set. This procedure is

repeated for a large number of times, such as 100 times.

Bootstrapping FNR = Percentage of simulated signal perturbed by noise (di
E) does not

satisfy the condition.

The proband in FNR for GABRIEL proband-based rules can be used as the proband in FNR

estimation. For rules without a predefined proband, such as t score pattern-based rules,

we used the expression of genes that satisfy the rule as “anonymous” probands to

estimate the signal value. For example, the expression level of the genes with t score >

1.0 provides an estimate of the average expression of genes with overexpression. The

procedure can then be carried out for a different gene that satisfies the rule.

Bootstrapping FNR with proband k = Percentage of simulated signal perturbed by noise

(dE = dk + dB) does not satisfy the rule,



where k = 1,…, G, with G = number of genes satisfying the rule, and dk is the expression

of the kth gene satisfying the rule.

The overall FNR is the average of each FNR:

Bootstrapping FNR = ∑
k

FNR with proband k / G,

where k = 1,…,G.

While this manuscript was in preparation, a different nonparametric method for

estimating “miss rate” based on permutation of data recently has been reported by Taylor

et al. (9). “Miss rate” estimates the likelihood of missing a gene in local areas of

threshold boundaries.
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