iScience, Volume 27

Supplemental information

Distinguishable topology of the task-evoked functional genome net-

works in HIV-1 reservoirs

Janusz Wiśniewski, Kamil Więcek, Haider Ali, Krzysztof Pyrc, Anna Kula-Păcurar, Marek Wagner, and Heng-Chang Chen

Figure S1. Characteristics of enriched signatures in ART-treated patients and elite controllers, related to Figure 1.

(A) A stacked bar plot representing the proportion of genes harboring intact versus defective proviruses in research articles. The left panel lists articles in which provirus-targeted genes were retrieved from ARTtreated patients, while the right panel lists articles where provirus-targeted genes were retrieved from elite controllers. (B) A box plot displaying the enrichment of signatures represented by rich factors. Details on the commands used for rich factors calculation and the inclusion of a random control "hg38" are described in STAR Methods. Statistical significance was determined using the Wilcoxon test in R with default options. The mean and median values for different groups are provided: ART-intact: Mean, 5.655; Median, 5.444. ART-defective: Mean, 2.725; Median, 2.621. EC-intact: Mean, 8.365; Median, 8.030. EC-defective: Mean, 7.304; Median, 6.829. hg38 (control): Mean, 1.039; Median, 1.039. (C) Venn diagram representing the overlap of enriched signatures between different comparisons, with the total number of enriched signatures indicated under the name of respective groups. (D) A box plot, represented on a logarithmic scale, representing host gene expression (tpm) of the genes retrieved from enriched signatures. The mean and median values for different groups are provided: ART-intact: Mean, 1.87; Median, 0.754. ART-defective: Mean, 1.421; Median, 0.672. EC-intact: Mean, 2.016; Median, -0.108. EC-defective: Mean, 0.432; Median, -0.049 (values on a logarithmic scale). Statistical significance was determined using the Wilcoxon test in R with default options. (E) A clustering tree plot representing KEGG pathways enriched by 43 genes retrieved from signatures uniquely enriched in reservoirs harboring intact proviruses in ART-treated patients. (F) A scatter plot representing the mean transcriptional state of eleven common signatures enriched in both reservoirs harboring intact and defective proviruses in ART-treated patients. Each dot represents a unique enriched immunologic signature. Calculations from panels (B) and (D) were represented using box plots, in which the median (the vertical line in the box) of data distribution and the two whiskers were marked. Significance levels are denoted as follows: * *p* 0.05, ** *p* 0.01, *** *p* 0.001, **** *p* 0.0001.

Figure S2. Individual network topologies, related to Figure 2.

(A) Graphs illustrating the topological properties of the network structured by enriched signatures (vertices) linked by edges, representing correlation coefficients using Cat 1, Cat 1 and 2, Cat 1 and 3, and all attributes (ordered from left to right). The graphs, from top to bottom, illustrate the networks associated with intact and defective proviruses in ART-treated patients and elite controllers in a sequential order. Enriched signatures (vertices in the graphs) in reservoirs harboring intact and defective proviruses in ART-treated patients and elite controllers in a sequential order. Enriched signatures (vertices among different category attributes are described in detail in **STAR Methods**. Vertices represent individual enriched signatures, while edges represent the correlation coefficient between two adjacent enriched signatures. (B) A box plot representing the degree assortativity coefficient of individual networks constructed based on different combinations of category attributes using the bootstrapping method detailed in **STAR Methods**. Statistical significance was determined using the Wilcoxon test in R with default options; calculations were represented using box plots, in which the median (the vertical line in the box) of data distribution and the two whiskers were marked. Significance levels are denoted as follows: * p 0.005, ** p 0.01, *** p 0.001.

Figure S3. Topological interactions of two distinct networks, related to Figure 2.

(A) Bipartite graphs illustrating the interaction between two adjacent enriched signatures present in distinct networks using Cat 1, Cat 1 and 2, Cat 1 and 3, and all attributes (ordered from left to right). The graphs, from top to bottom, illustrate the topological interactions of the networks harboring intact (dark blue) versus defective (light blue) proviruses in ART-treated patients, the networks harboring intact (dark green) versus defective (light green) proviruses in elite controllers, the networks harboring intact proviruses in ART-treated patients (dark blue) versus elite controllers (dark green), and the networks harboring defective proviruses in ART-treated patients (light blue) versus elite controllers (light green). Predictor variables among different category attributes are described in detail in STAR Methods. Vertices represent individual enriched signatures, and edges represent the correlation coefficient between two adjacent enriched signatures. (B) A box plot representing the correlation coefficients between two adjacent and distinct enriched signatures present in different networks using Cat 1, Cat 1 and 2, Cat 1 and 3, and all attributes (ordered from left to right). Statistical significance was determined using the Wilcoxon test in R with default options. (C) A box plot representing the Euclidean distance between two adjacent and distinct enriched signatures present in different networks using Cat 1, Cat 1 and 2, Cat 1 and 3, and all attributes (ordered from left to right). Calculations from panels (B) and (C) were represented using box plots, in which the median (the vertical line in the box) of data distribution and the two whiskers were marked. Statistical significance was determined using the Wilcoxon test in R with default options. Significance levels are denoted as follows: * p 0.05, ** p 0.01, *** p 0.001, **** p 0.0001.

Figure S4. Random forest-based classifiers for predicting networks harboring intact versus defective proviruses, related to Figure 3.

(A) A dodged box plot representing the accuracy of classification for networks associated with intact versus defective proviruses using random forest algorithms based on Cat 1, Cat 1 and 2, Cat 1 and 3, and all attributes (ordered from left to right). Statistical significance was determined using the Wilcoxon test in R with default options. Calculations were represented using box plots, in which the median (the vertical line in the box) of data distribution and the two whiskers were marked. Significance levels are denoted as follows: * p 0.05, ** p 0.01, *** p 0.001, **** p 0.0001. (**B**, **C**, **D**) A density plot representing the prediction quality of individual models constructed using different combinations of category attributes to classify networks associated with intact versus defective proviruses in ART-treated patients and elite controllers (**B**), networks associated with intact versus defective proviruses in ART-treated patients (**C**) and (**D**) is provided in STAR Methods.

Figure S5. Longitudinal dynamics of the networks alongside HIV-1 infections associated with ART and in elite controllers, related to Figure 4.

(A) Graphs illustrate the topological properties of the network structured by enriched signatures (vertices) linked by edges, representing correlation coefficients using Cat 1, Cat 1 and 2, Cat 1 and 3, and all attributes (ordered from left to right). The graphs, from top to bottom, illustrate the networks structured by signatures enriched in pretreatment HIV-1-infected individuals, patients subjected to a short and long period of ART, and elite controllers. Enriched signatures (vertices in graphs) in pretreatment HIV-1-infected individuals, patients subjected to a short and a long period of ART, and elite controllers are labeled in violet, marron, green, and deep pink, respectively. Predictor variables among different category attributes are described in STAR Methods. Vertices represent individual enriched signatures, while edges represent the correlation coefficient between two adjacent enriched signatures. (B) A box plot representing the prediction power for classifying networks in pretreatment HIV-1-infected individuals, patients subjected to a short and a long period of ART. The F1 score was calculated based on 1.000 times of individual train-test splits in models. (C) A box plot representing the prediction power for classifying networks in HIV-1-infected individuals subjected to a short and a long period of ART, and elite controllers. The F1 score was calculated based on 1,000 times of individual train-test splits in models. Statistical significance was determined using the Wilcoxon test in R with default options; calculations from panels (B) and (C) were represented using box plots, in which the median (the vertical line in the box) of data distribution and the two whiskers were marked. Significance levels are denoted as follows: * p 0.05, ** p 0.01, *** p 0.001, **** p 0.0001.

 Table S1. List of enriched immunologic signatures harboring intact proviruses in ART-treated patients, related to Figure 1.

Description	GeneRatio	BgRatio	pvalue	p.adjust	qvalue	genelD	Count
NAKAYA_P BMC_FLUA RIX_FLUVI RIN_AGE_1 8_50YO_C ORRELATE D_WITH_H AI_28DY_R ESPONSE_ AT_3DY_N EGATIVE	16/164	364/21355	0,0000002	0,00009860	0,00009226	288/7109/5 4664/37893 8/51735/10 782/3738/2 46175/3716 /54856/5117 6/79066/96 92/54665/7 574/2521	16
NAKAYA_P BMC_FLUA RIX_FLUVI RIN_AGE_1 8_50YO_C ORRELATE D_WITH_H AI_28DY_R ESPONSE_ AT_7DY_N EGATIVE	17/164	475/21355	0,00000016	0,00034464	0,00032248	288/6777/7 109/378938 /6774/1078 2/1997/841 96/23042/11 273/246175 /9882/5485 6/51176/196 528/23049/ 2521	17
GSE5099_ DAY3_VS_ DAY7_MCS F_TREATE D_MACRO PHAGE_DN	10/164	183/21355	0,00000157	0,00225735	0,00211220	1416/57690 /378938/84 18/23397/5 7459/24617 5/8832/5117 6/3183	10
GSE40225_ WT_VS_RI P_B7X_DIA BETIC_MO USE_PANC REATIC_C D8_TCELL_ UP	10/164	199/21355	0,00000333	0,00300956	0,00281604	64853/5146 6/63892/55 770/9873/7 9230/54476 /4306/2896 8/23049	10
GSE2770_I L4_ACT_V S_ACT_CD 4_TCELL_2 H_DN	10/164	200/21355	0,00000348	0,00300956	0,00281604	116984/517 35/23214/9 135/64375/ 84166/1042 5/8178/493 9/10613	10
GSE21927_ BALBC_VS _C57BL6_ MONOCYT E_SPLEEN _UP	9/164	189/21355	0,00001603	0,01069483	0,01000715	64853/1052 1/83852/114 7/104/11273 /51176/5481 1/28968	9
GSE11057_ CD4_CENT _MEM_VS_ PBMC_UP	9/164	197/21355	0,00002228	0,01069483	0,01000715	89894/6777 /55870/230 48/2035/55 690/8832/9 882/90987	9

GSE11057_ NAIVE_CD 4_VS_PBM C_CD4_TC ELL_UP	9/164	197/21355	0,00002228	0,01069483	0,01000715	6777/51466 /9252/2321 4/246175/5 4856/79066 /90987/546 65	9
GSE3982_ MAST_CEL L_VS_BCE LL_DN	9/164	197/21355	0,00002228	0,01069483	0,01000715	51466/6389 2/953/8879/ 3738/10664 /3716/9692/ 4939	9
GSE2935_ UV_INACTI VATED_VS _LIVE_SEN DAI_VIRUS _INF_MAC ROPHAGE _DN	8/164	179/21355	0,00007487	0,03235208	0,03027183	953/493/101 11/54476/11 273/246175 /3683/1061 3	8
GSE32255_ UNSTIM_V S_4H_LPS_ STIM_DC_ UP	8/164	186/21355	0,00009786	0,03489092	0,03264742	953/23048/ 3738/14060 9/54476/88 32/9882/43 06	8
GSE16450_ CTRL_VS_I FNA_12H_ STIM_IMMA TURE_NEU RON_CELL _LINE_UP	8/164	197/21355	0,00014558	0,03489092	0,03264742	63892/9873 /64754/233 15/283450/ 2530/55809 /2521	8
GSE25087_ TREG_VS_ TCONV_FE TUS_UP	8/164	198/21355	0,00015074	0,03489092	0,03264742	953/23048/ 81671/672/ 196/29110/6 4375/3683	8
GSE11057_ CD4_EFF_ MEM_VS_P BMC_UP	8/164	199/21355	0,00015604	0,03489092	0,03264742	288/89894/ 6777/51466 /9252/3835/ 2035/54856	8
GSE17974_ 1H_VS_72 H_UNTREA TED_IN_VI TRO_CD4_ TCELL_DN	8/164	199/21355	0,00015604	0,03489092	0,03264742	23048/9086 1/26263/10 664/2108/2 175/9978/1 0694	8
GSE21927_ C26GM_VS _4T1_TUM OR_MONO CYTE_BAL BC_DN	8/164	199/21355	0,00015604	0,03489092	0,03264742	51466/7328 /23315/199 7/2035/687 2/283450/8 1856	8
GSE10240_ IL22_VS_IL 17_STIM_P RIMARY_B RONCHIAL _EPITHELI AL_CELLS_ UP	8/164	200/21355	0,00016149	0,03489092	0,03264742	51735/1147/ 26263/8419 6/9978/2911 0/7700/546 65	8
GSE1460_ DP_VS_CD 4_THYMOC YTE_DN	8/164	200/21355	0,00016149	0,03489092	0,03264742	7699/51466 /8879/104/9 882/196/92 822/4939	8

GSE22601_ IMMATURE CD4_SIN GLE_POSI TIVE_VS_C D8_SINGLE _POSITIVE _THYMOC YTE_DN	8/164	200/21355	0,00016149	0,03489092	0,03264742	116984/889 7/6774/517 35/3091/54 739/196/64 375	8
GSE5589_ WT_VS_IL6 _KO_LPS_ AND_IL10_ STIM_MAC ROPHAGE _45MIN_UP	8/164	200/21355	0,00016149	0,03489092	0,03264742	7109/9738/ 3835/23397 /90861/672/ 57153/1061 3	8

Table S3. List of enriched immunologic signatures harboring intact proviruses in elite controllers, related to Figure 1.

Description	GeneRatio	BgRatio	pvalue	p.adjust	qvalue	genelD	Count
GSE11057_ CD4_EFF_ MEM_VS_P BMC_UP	8/81	199/21355	0,0000089	0,00289053	0,00251375	114804/925 2/51466/38 35/6777/28 8/89894/54 856	8
GSE40225_ WT_VS_RI P_B7X_DIA BETIC_MO USE_PANC REATIC_C D8_TCELL_ UP	7/81	199/21355	0,00001066	0,01004741	0,00873772	4926/55770 /63892/987 3/51466/64 853/23049	7
GSE31082_ DN_VS_CD 4_SP_THY MOCYTE_ DN	7/81	200/21355	0,00001101	0,01004741	0,00873772	8675/8897/ 55209/2321 4/83852/54 664/116984	7
NAKAYA_P BMC_FLUA RIX_FLUVI RIN_AGE_1 8_50YO_C ORRELATE D_WITH_H AI_28DY_R ESPONSE_ AT_7DY_N EGATIVE	10/81	475/21355	0,00001234	0,01004741	0,00873772	4926/10782 /6774/3789 38/1997/67 77/7109/28 8/23049/54 856	10
GSE25146_ UNSTIM_V S_HELIOB ACTER_PY LORI_LPS_ STIM_AGS _CELL_DN	6/81	166/21355	0,00004040	0,02630925	0,02287983	27327/1052 1/953/5587 0/8418/547 39	6
GSE26488_ CTRL_VS_ PEPTIDE_I NJECTION OT2_THY MOCYTE_ DN	6/81	183/21355	0,00006950	0,02636130	0,02292510	64744/9873 /8418/5173 5/57459/64 853	6
GSE5099_ DAY3_VS_ DAY7_MCS F_TREATE D_MACRO PHAGE_DN	6/81	183/21355	0,00006950	0,02636130	0,02292510	378938/576 90/8418/23 397/57459/ 1416	6
GSE11057_ NAIVE_CD 4_VS_PBM C_CD4_TC ELL_UP	6/81	197/21355	0,00010434	0,02636130	0,02292510	55628/9252 /51466/232 14/6777/54 856	6

GSE16450_ CTRL_VS_I FNA_12H_ STIM_IMMA TURE_NEU RON_CELL _LINE_UP	6/81	197/21355	0,00010434	0,02636130	0,02292510	27327/5562 8/63892/98 73/23315/6 4754	6
GSE20366_ TREG_VS_ NAIVE_CD 4_TCELL_H OMEOSTAT IC_CONVE RSION_DN	6/81	199/21355	0,00011028	0,02636130	0,02292510	57514/6474 4/9873/576 90/23048/7 109	6
GSE22601_ IMMATURE CD4_SIN GLE_POSI TIVE_VS_C D8_SINGLE _POSITIVE _THYMOC YTE_DN	6/81	200/21355	0,00011335	0,02636130	0,02292510	8897/6774/ 54739/3091 /51735/1169 84	6
GSE30971_ WBP7_HET _VS_KO_M ACROPHA GE_UP	6/81	200/21355	0,00011335	0,02636130	0,02292510	114804/503 4/57514/88 97/6774/30 91	6
GSE5142_ CTRL_VS_ HTERT_TR ANSDUCE D_CD8_TC ELL_EARL Y_PASSAG E_CLONE_ UP	6/81	200/21355	0,00011335	0,02636130	0,02292510	4926/11480 4/10521/81 671/3091/6 777	6
GSE6674_ ANTI_IGM_ VS_CPG_S TIM_BCELL _UP	6/81	200/21355	0,00011335	0,02636130	0,02292510	10782/2832 37/9252/51 466/7328/5 4664	6