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Materials and methods 

Computational analysis 

The RNA sequencing data and corresponding clinical information of 17 solid cancer 

types in TCGA (The Cancer Genome Atlas) were collected and processed as previously 

described[1]. The 17 solid cancer types include BLCA (bladder urothelial carcinoma), 

BRCA (breast invasive carcinoma), CESC (cervical & endocervical cancer), COAD 

(colon adenocarcinoma), HNSC (head & neck squamous cell carcinoma), KICH 

(kidney chromophobe), KIRC (kidney clear cell carcinoma), KIRP (kidney papillary 

cell carcinoma), LIHC (liver hepatocellular carcinoma), LUAD (lung adenocarcinoma), 

LUSC (lung squamous cell carcinoma), OV (ovarian serous cystadenocarcinoma), 

PRAD (prostate adenocarcinoma), SKCM (skin cutaneous melanoma), STAD (stomach 

adenocarcinoma), THCA (thyroid carcinoma), and UCEC (uterine corpus endometrioid 

carcinoma)[2]. The RNA sequencing data and corresponding clinical information of the 

remaining 16 cancer types were also collected for validation. The remaining 16 cancer 

types include ACC (adrenocortical cancer), CHOL (cholangiocarcinoma), DLBC 

(diffuse large B-cell lymphoma), ESCA (esophageal carcinoma), GBM (glioblastoma 

multiforme), HNSC (head & neck squamous cell carcinoma), LAML (acute myeloid 

leukemia), LGG (brain lower grade glioma), MESO (mesothelioma), PAAD 

(pancreatic adenocarcinoma), PCPG (pheochromocytoma & paraganglioma), READ 

(rectum adenocarcinoma), SARC (sarcoma), TGCT (testicular germ cell tumor), 

THYM (thymoma), UCS (uterine carcinosarcoma), UVM (uveal melanoma). And the 

corresponding data of normal tissues were obtained from GTEx (Genotype-Tissue 

Expression)[3]. TRPM family members were collected from a previous study[4]. The 

mutation frequency (truncating and missense) scores and somatic copy number 

alteration (SCNA) (amplification and deep deletion) were calculated. Values of the 

SCNA scores equal to 2 and -2 were referred to as amplification and deep deletion, 

respectively[5]. Each TRPM family member was paired with the rest prognostically 

notable genes to form gene pairs. Ea was regarded as the expression value of Gene a, 

and similarly, Eb represented the expression values of Gene b. The corresponding 



GenePair(ab) value was calculated based on their relative expression values: 𝐺𝑒𝑛𝑒𝑃𝑎𝑖𝑟ሺ𝑎𝑏ሻ = ൜1, 𝐸𝑎 > 𝐸𝑏0, 𝐸𝑎 < 𝐸𝑏 

Then C-index analysis of GenePair(ab) was performed, and GenePair(ab) was selected 

as a prognostic risk factor with the largest C-index. The eight TRP-based gene pairs are 

TRPM1_VS_SLC5A8, TRPM2_VS_ENPP5, CYP2C18_VS_TRPM3, 

UBE2C_VS_TRPM4, TRPM5_VS_PCAT18, CYP2C18_VS_TRPM, 

ANLN_VS_TRPM7, and CASC9_VS_TRPM8. Survival analysis was performed on 

the gene pair-related groups (0 and 1). A least absolute shrinkage and selection operator 

regularized Cox regression (LassoCox)-based TRPM-Score was calculated based on 

the eight most potent gene pairs as follows: 0.235*TRPM1_VS_SLC5A8 + 

0.1107*TRPM2_VS_ENPP5 + 0.0917*CYP2C18_VS_TRPM3 + 

0.6346*UBE2C_VS_TRPM4 + 0.1936*TRPM5_VS_PCAT18 + 

0.3083*CYP2C18_VS_TRPM6 + 0.2081*ANLN_VS_TRPM7 + 

0.1399*CASC9_VS_TRPM8. 

The differentially expressed genes (DEGs) between two TRPM-Score groups were 

identified using the R package limma[6]. Six machine learning algorithms for 

classification were used to screen the most potent DEGs, including Random Forest[7], 

support vector machine (SVM)[8], prediction analysis for microarrays (Pamr)[9], 

XGBoost[10], Boruta[11], and least absolute shrinkage and selection operator 

regularized logistic regression (LassoLR)[12, 13]. Another six machine learning 

algorithms for survival, CoxBoost[14], StepwiseCox Forward, StepwiseCox Both, 

StepwiseCox Backward, Random Survival Forest[15], and LassoCox[16], were applied 

to further determine the most prognostic DEGs[17]. A deep learning algorithm, 

Autoencoder, was used to determine the most valuable DEG, CCNE1[18]. A univariate 

Cox proportional hazards regression analysis was performed on TRPM-Score and 

CCNE1 to assess their prognostic value in pan-cancer. Tumor Mutational Burden 

(TMB), Microsatellite Instability (MSI), Cytolytic Activity (CYT), and T Cell-Inflamed 

Signature (GEP) were collected as previously described[19]. Stromal Score, Immune 

Score, ESTIMATE Score, and Tumor Purity generated by Estimation of STromal and 



Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) have 

been collected[20]. Gene set enrichment analysis (GSEA) was performed on TRPM-

Score and CCNE1 to explore their immune functions[21]. Gene Ontology (GO)[22] 

and Kyoto Encyclopedia of Genes and Genomes (KEGG)[23] enrichment analysis 

were performed. Data for immune checkpoint blockade (ICB) therapy of SKCM were 

sourced from ICBatlas[24] and ICBnetIS[25]. The SKCM ICB samples were collected 

from 10 published patient cohorts: Abril-Rodriguez[26], Amato[27], Auslander[28], 

Freeman[29], Gide[30], Hugo[31], Liu[32], Riaz[33], Van-Allen[34], and 

Zappasodi[35]. Other five SKCM datasets with survival information namely 

GSE19234[36], GSE22155[37], GSE53118[38], GSE65904[39], and GSE98364[40] 

were obtained from GEO (Gene Expression Omnibus). Other immunotherapy cohorts, 

including NSCLC data from Cho[41] and Jung[42], STAD data from Kim[43], LIHC 

data from Hong[44], GBM data from Zhao[45], and KIRC data from Miao[46] were 

also collected. Student’s t-test and one-way analysis of variance (ANOVA) were used 

to compare normally distributed variables between the two groups and multiple groups, 

respectively. The Wilcoxon and Kruskal-Wallis tests were utilized to compare the non-

normally distributed data between the two groups and multiple groups, respectively. 

In vitro validation 

The hepG2 (LIHC), MCF-7 (BRCA), SK-MEL-28 (SKCM), and THP-1 cell lines were 

purchased from iCell (https://www.icellbioscience.com). Three siRNA sequences 

(Sense CCGAGCAAAGAAAGCCAUGUUTT Antisense 

AACAUGGCUUUCUUUGCUCGGTT; Sense 

GCAAUUCUUCUGGAUUGGUUATT Antisense 

UAACCAAUCCAGAAGAAUUGCTT; Sense 

CCUUGUAUCAUUUCUCGUCAUTT Antisense 

AUGACGAGAAAUGAUACAAGGTT) were used to suppress the expression of 

CCNE1. CCNE1 (11554-1-AP, Rabbit, Proteintech), PD-L1 (66248-1-Ig, Mouse, 

Proteintech), and β-actin (66009-1-Ig, Mouse, Proteintech) were used as the primary 

antibodies in Western Blot assay. HRP goat anti-mouse IgG (SA00001-1, Proteintech) 

and HRP goat anti-rabbit IgG (SA00001-2, Proteintech) were used as the secondary 



antibodies in Western Blot assay.  

The hepG2 and MCF-7 cells were cultured in DMEM medium containing 10% FBS 

and 1% antibiotic-antimycotic, and the SK-MEL-28 cells were cultured in 1640 

medium containing 10% FBS and 1% antibiotic-antimycotic. All the cell lines were 

cultured in a 37°C, 5% CO2, and humidified incubator. 

The hepG2, MCF-7, and SK-MEL-28 cells were seeded in 6-well plates at a density of 

1x10^5 cells per well. The cells were then transfected with si-NC and si-CCNE1 and 

cultured for 48 hours. 

The THP-1 cells were centrifuged and resuspended in 1640 medium containing 320 nM 

of Phorbol 12-myristate 13-acetate (PMA). The cells were then seeded in a 6-well plate 

and incubated at 37°C for 6 hours, during which time the THP-1 cells transformed from 

suspension to adherent M0 cells. Simultaneously, the hepG2, MCF-7, SK-MEL-28, and 

M0 cells were detached using trypsin, centrifuged, and resuspended in their respective 

complete growth media. The hepG2, MCF-7, and SK-MEL-28 cells were then seeded 

in the lower chamber of a co-culture Transwell system with 8 μm pore size, and the M0 

cells were added to the upper chamber of the Transwell. The co-culture was maintained 

for 48 hours. After the co-culture, the supernatant was removed, and the cells were 

washed with PBS, fixed with paraformaldehyde, and stained with crystal violet for 

imaging. 

The human pan-cancer tissue array (MTU1021) was purchased from Wuhan Tanda 

Scientific Co., LTD company. CCNE1 (11554-1-AP, Proteintech), CD8 (66868-1-Ig, 

Proteintech), CD68 (GB113150, Serviebio), and CD163 (16646-1-AP, Proteintech) 

were used as the primary antibodies in multiplex immunofluorescence staining assay. 

HRP goat anti-mouse IgG (GB23301, Servicebio) and HRP goat anti-rabbit IgG 

(GB23303, Servicebio) were used as the secondary antibodies in multiplex 

immunofluorescence staining assay. After labeling with the human antigens, nuclei 

were stained with 4′,6-Diamidino2-phenylindole dihydrochloride (DAPI), and an 

antifade mounting medium was applied. Stained slides were scanned using the 

TissueFAXS platform (TissueGnostics, Vienna, Austria) at 10X magnification. The 

scans were combined to build a single stack image. Spectral libraries were established. 



Single-stained slides were applied to extract the spectrum of autofluorescence of tissues 

and each fluorescein, respectively. The library was then used to unmix the multispectral 

images with the StrataQuest software (TissueGnostics, Vienna, Austria). Regarding 

fluorescence spectra, DAPI glows blue, CY3 (CD68) glows red, CY5 (CD8) glows 

pink, FITC (CD163) glows green, and 594 (CCNE1) glows orange. 
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Supplementary Figures 

 
Figure S1. The mutation landscape and regulation network of TRPM family 

members. 

A. Landscape of genomic alterations in the TRPM family members in pan-cancer. B. 

Distribution of mutation frequencies over cancer types. C. Distribution of amplification 

of SCNA frequencies over cancer types. D. Distribution of depletion of SCNA 

frequencies over cancer types. E. Differential expression analysis of TRPM family 

members in pan-cancer TCGA-based tumor tissues and GTEx-based normal tissues. F. 

Univariate Cox regression analysis on TRPM family members in pan-cancer. 



 

Figure S2. Flow diagram for the development of the TRPM-Score. 



 
Figure S3. Predictive value and immunological features of the TRPM-Score.  

A. Construction of LassoCox-based model to calculate the TRPM-Score. B. Univariate 

Cox regression analysis on TRPM-Score in pan-cancer. C. GSEA on TRPM-Score in 

pan-cancer. D. Violin plot showing the expression difference of PD-1, PD-L1, PD-L2, 

and CTLA-4 in TRPM-Score-based groups in pan-cancer. K. Violin plot showing TMB, 

CYT, MSI, and GEP levels in TRPM-Score-based groups in pan-cancer. 



 
Figure S4. Investigation of TRPM-Score and CCNE1 across 16 additional cancer 

types.  

A. Univariate Cox regression analysis of the TRPM-Score in the 16 additional cancer 

types. B. Violin plot showing the expression difference of CCNE1 in tumor and normal 

tissues in the 16 additional cancer types. C. Univariate Cox regression analysis of the 

TRPM-Score in the 16 additional cancer types. 



 
Figure S5. Predictive value of TRPM-Score for immunotherapy in cancer.  

A. Box plot showing Immune Scores and Tumor Purity in the TRPM-Score-based 

groups in the TCGA-SKCM cohort. B. Survival curves of the TRPM-Score-based 

groups in the TCGA-SKCM cohort and additional cohorts: GSE19234, GSE22153, 

GSE53118, GSE65904, and GSE98394. C. Box plot showing TRPM-Scores in groups 

with different responses to ICB therapy in the SKCM ICB cohorts. D. Survival curves 

of the TRPM-Score-based groups in the SKCM ICB cohort. E. Box plot showing 

Immune Scores in the TRPM-Score-based groups in the TCGA-NSCLC cohort. F. Box 



plot showing TRPM-Scores in groups with different responses to ICB therapy in the 

NSCLC ICB cohort. G. Box plot showing Immune Scores in the TRPM-Score-based 

groups in the TCGA-STAD cohort. H. Box plot showing TRPM-Scores in groups with 

different responses to ICB therapy in the STAD ICB cohorts. I. Box plot showing 

Immune Scores in the TRPM-Score-based groups in the TCGA-GBM cohort. J. Box 

plot showing TRPM-Scores in groups with different responses to ICB therapy in the 

GBM ICB cohorts. K. Box plot showing Immune Scores in the TRPM-Score-based 

groups in the TCGA-KIRC cohort. L. Box plot showing TRPM-Scores in groups with 

different responses to ICB therapy in the KIRC ICB cohort. M. Box plot showing 

Immune Scores in the TRPM-Score-based groups in the TCGA-LIHC cohort. N. Box 

plot showing TRPM-Scores in groups with different responses to ICB therapy in the 

LIHC ICB cohort. 



 
Figure S6. Functional annotation of CCNE1.  

A. GSEA of GO pathways on CCNE1. B. GO and KEGG enrichment analysis on 

CCNE1. Pathway genes positively regulated by CCNE1 were labeled in red, and 

pathway genes negatively regulated by CCNE1 were labeled in blue. 



 

Figure S7. Predictive value of CCNE1 for immunotherapy in cancer.  

A. Box plot showing Immune Scores and Tumor Purity in the CCNE1-based groups in 

the TCGA-SKCM cohort. B. Survival curves of the CCNE1-based groups in the 

TCGA-SKCM cohort and additional cohorts: GSE19234, GSE22153, GSE53118, 

GSE65904, and GSE98394. C. Box plot showing CCNE1 in groups with different 

responses to ICB therapy in the SKCM ICB cohorts. D. Survival curves of the CCNE1-

based groups in the SKCM ICB cohort. E. Box plot showing Immune Scores in the 

CCNE1-based groups in the TCGA-NSCLC cohort. F. Box plot showing CCNE1 in 



groups with different responses to ICB therapy in the NSCLC ICB cohort. G. Box plot 

showing Immune Scores in the CCNE1-based groups in the TCGA-STAD cohort. H. 

Box plot showing CCNE1 in groups with different responses to ICB therapy in the 

STAD ICB cohorts. I. Box plot showing Immune Scores in the CCNE1-based groups 

in the TCGA-GBM cohort. J. Box plot showing CCNE1 in groups with different 

responses to ICB therapy in the GBM ICB cohorts. K. Box plot showing Immune 

Scores in the CCNE1-based groups in the TCGA-KIRC cohort. L. Box plot showing 

CCNE1 in groups with different responses to ICB therapy in the KIRC ICB cohort. M. 

Box plot showing Immune Scores in the CCNE1-based groups in the TCGA-LIHC 

cohort. N. Box plot showing CCNE1 in groups with different responses to ICB therapy 

in the LIHC ICB cohort.  


