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A. Guide Conditional Image Generation

Recent advancements have demonstrated that these models
can be adapted for conditional generation, where the generated
data depends on a given condition or context, such as a class
label or a textual description [1]–[5]. The simplest method to
implement this is to introduce the conditioning variable y as
an additional input to the denoising network, represented as
εθ(xt , t,y). However, a limitation arises when the network does
not adequately consider the conditioning variable, sometimes
leading to it being overlooked entirely [6]. To address this, a
”guidance scale” is introduced, enhancing the influence of the
conditioning variable during sample generation.

1) Classifier-Free Diffusion Guidance: Building on the con-
cept of guided diffusion, Ho and Salimans [3] introduced
Classifier-Free Guidance (CFG) for conditional image synthe-
sis. Utilizing Bayes’ theorem, the gradient of the conditional
log-likelihood, ∇xt log p(xt |y), can be expressed as:

∇xt log p(xt |y) = ∇xt log
p(y|xt)p(xt)

p(y)
= ∇xt log p(xt)+∇xt log p(y|xt) (1)

Given that p(y) is independent of x, it follows that
∇xt log p(y) = 0. To function effectively, this formulation re-
quires an additional trained classifier model, p(y|xt). Following
the approach in Song et al. [7], a score-based conditioning
method is leveraged that connects diffusion models to denoised
score-matching models [8]. Eq. 2 encapsulates this relation.

sθ(xt , t,y) = ∇xt log p(xt |y) =− 1√
1− ᾱt

εθ(xt , t,y) (2)

By introducing a guidance scale ω, the influence of the
classifier in the overall guidance process can be modulated,
as expressed in Eq. 3.

sθ(xt , t,y) = ∇xt log p(xt)+ω∇xt log p(y|xt) (3)

Eq. 3 presents Classifier Guidance models; however, one
major problem is that they need a separately trained classifier
pφ(y|xt) that is capable of predicting the samples with varying
degrees of noise xt . To prevent this, the score function can be
reformulated by replacing ∇xt log p(y|xt) in Eq. 3 with Eq. 1
to yield Eq. 4.

sθ(xt , t,y) = (1−ω)∇xt log p(xt)+ω∇xt log p(xt |y) (4)

This approach is called Classifier-Free Guidance (CFG).
Leveraging the relation in Eq. 2, CFG can be expressed in
terms of the noise diffusion model εθ (Eq. 5).

ε̃θ(xt , t,y) = (1−ω)εθ(xt , t)+ωεθ(xt , t,y) (5)

2) Sampling Process with CFG-DDIM: As mentioned in
Sec. II-A1 of the main article, the CFG-DDIM is used to
generate conditional guide wound images. The equation of this
sampling process is shown in Eq. 6.

xt−1 =
√

ᾱt−1

(
xt −

√
1− ᾱt ε̃θ(xt , t,y)√

ᾱt

)
+
√

1− ᾱt−1ε̃θ(xt , t,y)

(6)
Here, ᾱt is the noise scaling factor at each step t. Algo-

rithm 1 demonstrates the ConDiff Sampling process with CFG-
DDIM.

Algorithm 1 ConDiff Sampling with CFG-DDIM

Require: Guide image: x0, class label: y, guidance scale: ω,
noise strength: t0, and number of diffusion steps: T .

1: xt0T = x0 +σ(t0)z, where z ∼ N (0, I)
2: for t = t0T, . . . ,1 do
3: ε̃θ(xt , t,y) = ωεθ(xt , t,y)+(1−ω)εθ(xt , t)
4: xt−1 =

√
ᾱt−1

(
xt−

√
1−ᾱt ε̃θ√
ᾱt

)
+
√

1− ᾱt−1ε̃θ

5: end for
6: return x̂(y)0

B. Implementation Details of the 2-Step Training Process

Training Stage 1 - Fine-Tuning the Diffusion Model: The
diffusion model εθ(xt , t,y) was fine-tuned using the MSE
objective function. During each iteration, an image x0 and its
condition y were sampled from the wound training set Dr, with
a diffusion step t sampled uniformly from [1, . . . ,T ] to create a
noisy image xt . The denoising U-Net εθ was trained for 10,000
iterations using the AdamW optimizer with a learning rate of
1 × 10−5. After training, the ConDiff generator synthesized
conditional DFU images with hyperparameters: guidance scale
ω = 0.75, noise strength t0 = 0.8, and number of sampling
steps T = 30. These synthetic images formed the dataset Ds,
used in the second training stage.

Training Stage 2 - Training the Embedding Network fφ:
The embedding model fφ, based on the EfficientNet-B0
architecture, was trained using both real dataset Dr and
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synthetic dataset Ds. For each iteration, a batch of triplets
(x(a),x(p),x(n)) was sampled from Dr, with (x(p),x(n)) being
sampled from Ds with probability pgen = 0.2. The model
parameters φ were optimized to minimize the Triplet loss,
effectively learning to distinguish between similar and
dissimilar images (see Algorithm 2). The training involved
50 epochs with the AdamW optimizer, a learning rate of
1× 10−3, and the optimal parameters φ were selected based
on the best validation performance.

Algorithm 2 Training a distance-based classifier model with
Triplet loss

Require: embedding model: fφ, real dataset: Dr, synthetic
dataset: Ds, probability of sampling from Ds: pgen, number
of epochs: E, and batch size: B.

Ensure: learned fφ

1: for epoch = 1, . . . ,E do
2: for batch = 1, . . . ,⌈size(Dr)/B⌉ do
3: (x(a),x(p),x(n))∼ Dr (sample B triplets)
4: (x(p),x(n))∼ Ds with probability pgen
5: Compute Ltriplet .
6: Take gradient step on ∇φLtriplet
7: end for
8: end for

C. Evaluation Metrics
Model evaluations on the DFU infection dataset were ana-

lyzed as follows.
Classification metrics: The following metrics were used to
assess the effectiveness of our proposed framework in the DFU
infection classification task:

• Accuracy ACC = T P+T N
P+N , where T P is the number of true

positive predictions, T N is the number of true negative
predictions, P is the positive label (infected), and N is the
negative label (not infected).

• Sensitivity (SEN) or recall reflects the proportion of ac-
tual positives that are correctly identified: SEN = T P

T P+FN ,
where FN denotes the number of false negative predic-
tions.

• Specificity (SPC) reflects the proportion of actual nega-
tives that are correctly identified: SPC = T N

T N+FP , where
FP denotes the number of false positive predictions.

• Positive Predictive Value (PPV) or precision is the
proportion of positive predictions that are true positives.
PPV = T P

T P+FP .
• F1-score is the Harmonic Mean of Precision and Recall:

F1 = 2 · PPV ·SEN
PPV+SEN .

Image generation metrics: To evaluate the quality of synthetic
images generated by each method, the Fréchet Inception Dis-
tance (FID) and the Inception Score (IS) were employed.

• Fréchet Inception Distance (FID) [9]: This metric as-
sesses the quality of generated images by comparing
them to real images. A lower FID score indicates greater
similarity to real images, signifying higher quality and
realism. The FID is calculated as:

FID = ∥µ−µw∥2 + tr(Σ+Σw −2(ΣΣ
1/2
w ))

where N (µ,Σ) is the multivariate normal distribution
estimated from Inception-V3 features of real images, and
N (µw,Σw) is from generated images.

• Inception Score (IS) [10]: IS uses a pre-trained Inception
v3 model to predict the class distribution of each generated
image. Higher IS values indicate that the generated images
are distinct and diverse. However, IS does not account for
the distribution of real images, a known limitation. The
IS is given by:

IS = exp(Ex[KL(p(y|x)∥p(y))])

where KL(p(y|x)∥p(y)) is the Kullback-Leibler diver-
gence between the conditional distribution p(y|x) and the
marginal distribution p(y).

D. Score-Weighted Class Activation Mapping (Score-CAM)
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Fig. 1. Score-CAM pipeline for visualizing similarities between
images

Score-CAM [11] is a method to interpret the decision-
making process of CNN models in visual tasks. It creates a
visual heatmap that reveals which regions of a conditional syn-
thesized image x̂(y)0 the embedding model fφ found similar to a
guide (input) image x0. Score-CAM has the following steps: (1)
extracting feature maps Ak from the last convolutional layer L;
Ak = fφ,L(x̂

(y)
0 ), (2) generating activation maps that emphasize

predictive regions of the image; Mk = Upsample(Ak), (3)
calculating cosine similarity scores between the guide image
embedding and the corresponding synthesized images based on
the activation maps; Sk = Similarity( fφ(x0), fφ(Mk ◦ x̂(y)0 )), and
(4) aggregating these activation maps into a comprehensive
heatmap, with the weighting determined by the similarity
scores αk = exp(Sk)

Σ jexp(Sk
j)

; HScore-CAM = ReLU(ΣkαkMk). The vi-

sualization of the Score-CAM pipeline is shown in Fig. 1.

E. Ablation study and Image Generation Analysis
1) Effects of different sampling methods on infection classi-

fication: We compared the performance of the DFU infection
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(a) cGAN generation: FID = 11.201, IS = 2.966

(b) ConDiff, DDIM sampling method: FID = 2.917, IS = 3.662

(c) ConDiff, CFG-DDIM sampling method with ω = 3: FID = 3.779, IS = 3.669

(d) ConDiff, CFG-DDIM sampling method with ω = 7.5: FID = 5.068, IS = 3.885

Fig. 2. Guided Image Generation. Condition on the label: (Left) uninfected wound and (Right) infected wound.

classification when two different sampling approaches were
applied to ConDiff; (1) DDIM sampling and (2) CFG-DDIM
sampling. Note that the difference between these 2 approaches
is that the ε̃θ(xt , t,y) (in Line.3 of Algorithm 1) for the DIIM
process is just εθ(xt , t,y) as it does not involve a guidance scale
ω while the CFG-DDIM process does include ω.

Table. I shows that the use of CFG-DDIM sampling signifi-
cantly outperforms DDIM sampling in infection classification.
This is because the guided generated images between 2 labels
by DDIM are not different enough to make Dφ (Eq. 5 of
the main article) determine which of the synthesized images
is most similar to the input image. The visualization and
quality of synthesized images are shown in the Supplementary
Material.

TABLE I. Comparison of DFU infection classification by ConDiff
Classifier with various sampling methods.

Method Acc F1 SEN SPEC PPV
DDIM 0.603 0.635 0.581 0.641 0.699

CFG-DDIM 0.833 0.858 0.858 0.796 0.858

2) Evaluation of Conditional Image Synthesis: In Sec -E1, it
was established that CFG-DDIM sampling is more effective for
distance-based classification. However, realistic DFU images
can still be generated using the DDIM sampling method.

Table II reveals that image synthesis using ConDiff + DDIM
results in the lowest FID score, indicating that the distribution
of the images synthesized closely resembles that of the real
data. However, the Inception Score (IS) for the ConDiff +
DDIM approach is lower than the ConDiff + CFG-DDIM
approach. This finding aligns with Ho et al.’s experiment [3],

TABLE II. Quality measurement of conditional synthesized images
by generative models.

Model FID Score ↓ IS ↑
ConDiff + DDIM 2.917 3.662
ConDiff + CFG-DDIM, ω = 3 3.779 3.669
ConDiff + CFG-DDIM, ω = 7.5 5.068 3.885
Conditional GAN [12] 11.201 2.965

highlighting a trade-off between FID and IS. In our context,
the IS reflects the ease of differentiating between conditional
synthesized images. Consequently, the ConDiff Classifier using
the DDIM sampling approach underperforms relative to the
CFG-DDIM sampling approach, as seen in Table I. This is
attributed to the challenge in label clarification due to the
lower IS. Note that IS is not significantly different across our
diffusion models because the IS metric considers the clarity
and diversity of synthesized images, as shown in Fig. 2.
Additionally, the experiment employed the popular conditional
GAN approach [12] for generating DFU images conditioned on
infection status, providing a comparison to diffusion methods.
The results indicate that the quality of synthetic images using
conditional GAN is inferior to those produced by diffusion
methods.
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