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Description of contents in the Supplementary Materials

• Section A.1 provides a brief review of existing approaches to the analysis of semi-competing
risks data, with a focus on how dependence between T1 and T2 is structured and how the
nature of the assumed structure contributes to gaining knowledge.

• Section A.2 provides technical details complementary to the main text. It specifically
shows how a bivariate binary distribution is derived from the marginal probabilities and
the odds ratio (Section A.2.1), that any choice for τ gives rise to well-defined π1i,k, π2i,k

and π12i,k (Section A.2.2), an expanded version of Figure 1 (Section A.2.3), how likelihood
contributions for let-truncated data are calculated (Section A.2.4), and, finally, how the
difference operation ∆m is represented in the matrix form Dm (Section A.2.5).

• Section A.3 gives the details of the asymptotic distribution and variance of our proposed
estimator without (Section A.3.1) and with (Section A.3.2) penalty applied to the likelihood
approach.

• Section A.4 presents details about and results from our extensive simulations. It describes
the data-generating mechanism, details about the different analyses we considered and
then it presents the results along with conclusions. Section A.4.4 presents additional
simulation study, tailored to study the impact of censoring level on the different approaches
to determine kli and kri .

• Section A.5 presents two tables showing the outcomes represented using our partition
approach, under 2.5 years and 5 years interval length partitions. It also includes a summary
table of key participant characteristics measured at study entry.

• Section A.6 presents further details and results from the ACT data analysis.
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A.1 Existing methods

Beyond the usual challenges of time-to-event analyses (i.e. structuring covariate effects, handling
functions of time, and accommodating various forms of censoring and truncation), key challenges
that arise in the analysis of semi-competing risks data are: (i) respecting the terminal event as
a competing risk; and, (ii) structuring dependence between T1 and T2. Here we present an
overview of methods that explicitly structure the dependence between T1 and T2, and how the
nature of the assumed structure contributes to gaining knowledge.

A.1.1 The causal inference paradigm

When primary scientific interest lies in comparing the relative impact of two (or more) treatment
options on the risk of the non-terminal event, researchers may embed the analysis within the
causal counterfactual paradigm (Zhang and Rubin, 2003; Egleston et al., 2006; Tchetgen Tchet-
gen, 2014). Throughout this work, the overarching strategy has been to first define some causal
contrast, then specify the assumptions under which the contrast is identified with the observed
data, and finally propose consistent estimators. One such contrast is the so-called survivor av-
erage causal effect which considers the impact of treatment choice among ‘always survivors’,
that is the sub-population of patients who would survive under either treatment and, as such,
for whom the non-terminal event is always well-defined. Note that, in adopting a strategy of
restricting to ‘always survivors’ to handle death as a competing risk, analysts do not need to
consider the nature of the dependence between the two events. While this has appeal, it also
precludes learning about dependence.

A.1.2 Copula-based methods

In standard bivariate survival analyses (i.e. where neither event is terminal for the other), one
can model the joint survivor as Pr(T1 > t, T2 > s) = Cθ(S1(t), S2(s)), where S1(·) and S2(·) are
the marginal survivor functions for T1 and T2, respectively, and Cθ(·, ·) is a copula indexed by the
(unknown) parameter θ. One well-known example of the latter is the Clayton copula (Clayton,
1978), one representation of which is:

Cθ(S1(t), S2(s)) = {S1(t)(1−θ) + S2(t)(1−θ) − 1}1/(1−θ),

with θ interpretable as the variance of a common frailty for which the population distribution is
a Gamma(θ−1, θ−1). In the semi-competing risks setting, however, since the terminal event is
a competing risk for the non-terminal event, mass can only be attributed to joint events in the
upper wedge of the (T1, T2) plane. To accommodate this, Fine et al. (2001) proposed to use the
Clayton copula to define a model solely on the upper wedge and, thus, leave the joint density
on the lower wedge as ‘unspecified’. While numerous extensions have been proposed (Peng and
Fine, 2007; Hsieh et al., 2008; Li and Peng, 2015), one limitation of copula-based methods is
that S1(t) in Cθ(S1(t), S2(s)) is not the same as the (unidentifiable) marginal distribution of T1,
even though it is sometimes interpreted as such. Furthermore, directly relevant to this paper
is that, as mathematical devices, copulas can only encompasses a narrow range of dependence
structures. The Clayton copula, for example, only permits positive dependence between T1 and
T2. Consequently, copula-based strategies may be limited if interests lies (in part, at least) on
how T1 and T2 covary.

A.1.3 Illness-death models

A second general framework views semi-competing risks data as arising from an illness-death
model (Xu et al., 2010). Briefly, such models posit that at any given point in time the study
unit is in one of three ‘states’: (I) an initial state, prior to experiencing either event; (II) a
state of having experienced the non-terminal event, prior to experiencing the terminal event;
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and (III) an absorbing state of having experienced the terminal event. Modeling then proceeds
by structuring the three intensity or hazard functions that dictate the rates at which study units
transition between the states:

λ1(t1) for the (I) ⇒ (II) transition;

λ2(t2) for the (I) ⇒ (III) transition; and,

λ3(t2|t1) for the (II) ⇒ (III) transition.

To investigate covariate effects, one can fit Cox models (Xu et al., 2010; Lee et al., 2015) or
accelerated failure time models (Lee et al., 2017) for the three hazard functions. For a given
specification, one can then consider the interplay between λ2(t2) and λ3(t2|t1), sometimes via
the explanatory hazard ratio:

EHR(t2; t1)=λ2(t2)/λ3(t2|t1),

as a means to characterize dependence between T1 and T2. Additionally, a patient-specific
frailty or random effect, usually taken to arise from some common distribution with mean 0.0
(or 1.0, as appropriate) and a constant variance, say θ, may be included to accommodate residual
dependence not structured through the hazard functions. While a broad class of dependence
structures can be captured by these two components of dependence (i.e. the EHR(t2; t1) and
the frailty variance, θ), the main flexibility of this approach arises from (implicitly) viewing the
terminal event as being of primary interest, while a direct representation of how the two events
covary is solely through the common frailty.

A.1.4 The cross-quantile residual ratio

Towards directly quantifying dependence between T1 and T2, Yang and Peng (2016) proposed
the cross-quantile residual ratio. Briefly, let Qq(Y | A) = inf{t : Pr(Y ≤ t| A) ≥ q} denote the
qth quantile of Y given condition A holds. The quantile residual time for the terminal event at
a given time point t0 is defined as Qq(T2− t0| T2 > t0). The cross-quantile residual ratio is then
defined as:

CQRR(q; t0) =
Qq(T2 − t0| T2 > t0, T1 > t0)

Qq(T2 − t0| T2 > t0, T1 ≤ t0)
.

To interpret this quantity, consider q=0.5 and, in the context of the ACT study, set t0=75.
A value of CQRR(q; t0)=1.5 can be interpreted as indicating that the median residual lifetime
beyond age 75 for patients who have not received diagnosis of AD by age 75 is 50% longer
than the corresponding median residual lifetime beyond age 75 for those patients who have
had a diagnosis prior to age 75. Intuitively, having not experienced the non-terminal event is
associated with slower progression to the terminal event. One key appealing feature of this
metric is that it focuses attention directly on the time scale rather than on a comparison of
hazards. Like the EHR(t2; t1), however, implicit to the use of CQRR(q; t0) is that the terminal
event is of primary interest.
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A.2 Additional technical details

A.2.1 The bivariate binary distribution

In this section, we show the distribution of any bivariate bivariate random variable (Y1, Y2) is
fully specified by the marginal probabilities of Y1 and Y2 and the odds ratio. Our approach
utilizes this fact to model time-trends and relationship to covariates for the event times. In our
case, the representation is for the bivariate Y1i,k, Y2i,k conditioned upon no event of any type by
the beginning of the k-th interval, namely (Y1i,k−1 = 0, Y2i,k−1 = 0).

Let qrs = Pr(Y1 = r, Y2 = s) for r, s = 0, 1. Let also p1 = Pr(Y1 = 1), p2 = Pr(Y2 = 1) and
θ = OR(Y1, Y2) = q01q10

q00q11
. The values of q01, q10q00, q11 are obtained by solving

q10 + q11 = p1

q01 + q11 = p2

q01q10

q00q11
= θ (A.1)

q00 + q10 + q01 + q11 = 1

By substituting q00 = 1−q10−q01−q11, q10 = p1−q11 and q01 = p2−q11 into (A.1), a quadratic
function in q11 is obtained. It can be verified that the unique solution for q11 and the rest of the
cell probabilities are thus given by

q11 =

{
p1p2 θ = 1

1
2(θ−1) ×

[
1 + (p1 + p2)(θ − 1)−

√
(1 + (p1 + p2)(θ − 1))2 − 4θ(θ − 1)p1p2

]
θ 6= 1

q10 = p1 − q11

q01 = p2 − q11

q00 = 1− q01 − q10 + q11

A.2.2 A semi-competing risks data-generating mechanism induces a
bivariate binary longitudinal data-generating mechanism

We show here that given a distribution for (T1i, T2i) givenXi on the identifiable region T1i < T2i,
for any choice of the interval partition τ , the quantities π1i,k, π2i,k and θi,k, for k = 1, ...,K, are
well-defined and induced by the distribution of (T1i, T2i) given Xi. This implies that there is no
such thing as the “right partition”. For a given partition τ = {τ0, . . . , τK}, we may write

π1i,k = P(Y1i,k = 1| Y1i,k−1 = 0, Y2i,k−1 = 0,XH
i,k)

= P(τk−1 < T1i ≤ τk| T1i > τk−1, T2i > τk−1,X
H
i,k)

π2i,k(0) = P(Y2i,k = 1| Y1i,k−1 = 0, Y2i,k−1 = 0,XH
i,k)

= P(τk−1 < T2i ≤ τk| T1i > τk−1, T2i > τk−1,X
H
i,k)

π2i,k(1) = P(Y2i,k = 1| Y1i,k−1 = 1, Y2i,k−1 = 0,XH
i,k)

= P(τk−1 < T2i ≤ τk| T1i ≤ τk−1, T2i > τk−1,X
H
i,k)

For θi,k we should show that

P(Y1i,k = y1, Y2i,k = y2| Y1i,k−1 = 0, Y2i,k−1 = 0,XH
i,k)
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can be written in terms of the joint distribution of (T1i, T2i) given XH
i,k for (y1, y2) = {0, 1} ×

{0, 1}. This is indeed the case:

P(Y1i,k = 0, Y2i,k = 0| Y1i,k−1 = 0, Y2i,k−1 = 0,XH
i,k)

= P(T1i > τk, T2i > τk| T1i > τk−1, T2i > τk−1,X
H
i,k)

P(Y1i,k = 1, Y2i,k = 0| Y1i,k−1 = 0, Y2i,k−1 = 0,XH
i,k)

= P(τk−1 < T1i ≤ τk, T2i > τk| T1i > τk−1, T2i > τk−1,X
H
i,k)

P(Y1i,k = 0, Y2i,k = 1| Y1i,k−1 = 0, Y2i,k−1 = 0,XH
i,k)

= P(T1i > τk, τk−1 < T2i ≤ τk| T1i > τk−1, T2i > τk−1,X
H
i,k)

P(Y1i,k = 1, Y2i,k = 1| Y1i,k−1 = 0, Y2i,k−1 = 0,XH
i,k)

= P(τk−1 < T1i ≤ τk, τk−1 < T2i ≤ τk| T1i > τk−1, T2i > τk−1,X
H
i,k)

and each of the joint probabilities can be calculated.

A.2.3 Expanded version of Figure 1

Figure A.1 is an extended version of Figure 1 of the main text, now with five hypothetical
participants. It demonstrates both how standard semi-competing risk data is translated to the
longitudinal bivariate process. At the same time, it also illustrates the obtained outcome data
under the three different approaches towards handling right-censoring and left-truncation.

A.2.4 Likelihood contribution for left-truncated data

Given that kli was chosen, the derivation of the likelihood for left truncated data is as follows.
In fact, we use the usual form of conditional probability, conditional on no events observed by
the interval (kli − 1, kli). By the way kli was constructed (up to the approximations detailed in
Section 3.2 of the main text), we have that for all k = 1, ...kli, we have Y1i,k = 0, Y1i,k = 0, under
the assumption that, like in the ACT study, there are no prevalent cases. Let

Qi,k = {Y1i,1 = 0, ...., Y1i,k = 0, Y2i,1 = 0, ..., Y2i,k = 0}

be the event that none of the events were observed by τk. The likelihood contribution for
an observation with left truncation so no events by the interval (kli, k

l
i + 1) is the conditional

probability of the observed data, conditional on no events by kli. That is,

P(Yi = yi|Qi,kli , X
H
i )

=

kri∏
k=kli

P(Y1i,k = y1i,k, Y2i,k = y2i,k| Qi,kli , Y1i,kli+1 = y1i,kli+1, ..., Y1i,k = y1i,k−1,

Y2i,kli+1 = y2i,kli+1, ..., Y2i,k = y2i,k,X
H
i,k)

=

kri∏
k=1

P(Y1i,k = y1i,k, Y2i,k = y2i,k−1| Y1i,k−1 = y1i,k−1, Y2i,k−1 = y2i,k−1,X
H
i,k).

In the second line, we decompose the joint distribution to conditional distributions and exclude
from the event Y i = yi expressions that are constant conditional on Qi,k. In the third line we
use the Markov assumption.

A.2.5 The difference operator Dm

We show here that the penalty term of the B-spline coefficient differences,
∑J̃1
j=m+1(∆mη1,j)

2 can

be written as ηT1D
T
mDmη1 (and similarly for η2 and ηθ), whereDm is the following (J̃1−m)×J̃1
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i = 1
τ0 τ1 τ2 τ3 τ4 τ5 τ6Li T1i T2i

Y i: Nearest Neighbor (0, 0) (0, 0) (1, 0) (1, 1)

Y i: Conservative (0, 0) (1, 0) (1, 1)

Y i: Anti-conservative (0, 0) (0, 0) (1, 0) (1, 1)

i = 2
τ0 τ1 τ2 τ3 τ4 τ5 τ6Li T1i Ci

Y i: Nearest Neighbor (0, 0) (1, 0) (1, 0)

Y i: Conservative (0, 0) (1, 0)

Y i: Anti-conservative (0, 0) (0, 0) (1, 0) (1, 0)

i = 3
τ0 τ1 τ2 τ3 τ4 τ5 τ6Li T2i

Y i: Nearest Neighbor (0, 0) (0, 1)

Y i: Conservative (0, 0) (0, 1)

Y i: Anti-conservative (0, 0) (0, 0) (0, 1)

i = 4
τ0 τ1 τ2 τ3 τ4 τ5 τ6Li T1i T2i

Y i: Nearest Neighbor (0, 0) (0, 0) (1, 1)

Y i: Conservative (0, 0) (1, 1)

Y i: Anti-conservative (0, 0) (0, 0) (1, 1)

i = 5
τ0 τ1 τ2 τ3 τ4 τ5 τ6Li Ci

Y i: Nearest Neighbor (0, 0) (0, 0) (0, 0)

Y i: Conservative (0, 0) (0, 0)

Y i: Anti-conservative (0, 0) (0, 0) (0, 0) (0, 0)

Figure A.1: An extended version of Figure 1. Graphical representation of the interplay between
standard notation for semi-competing risks outcome data and the proposed bivariate longitudinal
framework.



matrix representation of ∆m. For m = 2, it is

D2 =



1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0

. . .
. . .

. . .

. . .
. . .

. . .

0 0 · · · 0 1 −2 1


and it can verified that ηT1D

T
mDmη1 =

∑J̃1
j=m+1(∆mη1,j)

2. For example, for J̃1 = 4 we have

D2 =

(
1 −2 1 0
0 1 −2 1

)
, DT

2D2 =


1 −2 1 0
−2 5 −4 0
0 −4 5 −2
0 1 −2 1

 ,

and therefore

ηT1D
T
2D2η1 = (η1,1)2 + 5(η1,2)2 + 5(η1,3)2 + (η1,4)2 + η1,1η1,3 + η1,2η1,3 − 4η1,1η1,2 − 4η1,2η1,3 − 4η1,3η1,4

= (η1,3 − 2η1,2 + η1,1)2 + (η1,4 − 2η1,3 + η1,2)2

= ∆2η1,3 + ∆2η1,4 =

J̃1∑
j=m+1

(∆mη1,j)
2.
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A.3 Asymptotic Theory

A.3.1 Theory for the non-penalized estimator

In this subsection we consider the asymptotic theory for the non-penalized estimator φ̂
η

= φ̂
η
λ=0

obtained by maximizing

L(φη) =

N∏
i=1

kri∏
k=kli

{
[π12i,k]Y1i,kY2i,k [π1i,k − π12i,k]Y1i,k(1−Y2i,k)[π2i,k(0)− π12i,k]Y1i,kY2i,k

× [1− π1i,k − π2i,k(0) + π12i,k](1−Y1i,k)(1−Y2i,k)
}(1−Y1i,k−1)(1−Y2i,k−1)

×
{

[π2i,k(1)]Y2i,k [1− π2i,k(1)]1−Y2i,k

}Y1i,k−1(1−Y2i,k−1)

.

As a result, φ̂η solves the equation U(φη ; 0) = 0, where U(φη ; 0) is the score function

U(φη ; 0) =

N∑
i=1

kri∑
k=kli

[
(1− Y1i,k−1)(1− Y2i,k−1)

]{Y1i,kY2i,k

π12i,k

∂π12i,k

∂φη

+
Y1i,k(1− Y2i,k)

π1i,k − π12i,k

(∂π1i,k

∂φη
− ∂π12i,k

∂φη

)
+

(1− Y1i,k)Y2i,k

π2i,k(0)− π12i,k

(∂π2i,k(0)

∂φη
− ∂π12i,k

∂φη

)

+
(1− Y1i,k)(1− Y2i,k)

1− π1i,k − π2i,k(0) + π12i,k

(
− ∂π1i,k

∂φη
− ∂π2i,k(0)

∂φη
+
∂π12i,k

∂φη

)}

+
[
Y1i,k−1(1− Y2i,k−1)

]{ Y2i,k

π2i,k(1)

∂π2i,k(1)

∂φη
− 1− Y2i,k

1− π2i,k(1)

∂π2i,k(1)

∂φη

}
.

If we assume that the true functions α1,α2 and αθ follow the B-spline representation, and let
φ
η
0 denote the true value of the parameter, then by standard maximum likelihood theory (e.g.

Van der Vaart, 2000), E[U(φ
η
0 ; 0)] = 0, φ̂ is consistent for φ

η
0 and

√
N(φ̂

η
− φη0 ) converges

in distribution to a N(0, V ) multivariate normal random variable, and V is estimated by V̂ =

−[∇φηU(φ̂
η

; 0)]−1.
If we do not assume that the true functions α1,α2 and αθ follow the B-spline representation,

then some bias is expected. In this case, by theory of misspecified models, φ̂
η

converges in

probability to φη∗ , the solution of E[U(φη∗ ; 0)] = 0, and
√
N(φ̂

η
−φη∗ ) converges in distribution

to a N(0, Ṽ ) multivariate normal random variable, and Ṽ is estimated by the sandwich estimator

̂̃
V = UT (φ̂

η
; 0)[∇φηU(φ̂

η
; 0)]−1U(φ̂

η
; 0).

A.3.2 Theory for the penalized estimator

Turning to the penalized estimator, φ̂
η

= φ̂
η
λ for a fixed value λ.

U(φη ;λ) = U(φη ; 0) + Ũ(α1,α2,αθ;λ) (A.2)

where Ũ(η1,η2,η3;λ) is zero for the entries associated with β and 2λ1D
T
mDmη1, 2λ2D

T
mDmη2

and 2λ3D
T
mDmηθ for the entries associated with η1, η2 and ηθ, respectively. The estimator φ̂

η

solves U(φη ;λ) = 0. Let φ̃
η
λ be the solution of E[U(φη ;λ)] = 0. Under standard assumptions

for estimating equations (Van der Vaart, 2000), the proof continues with the Taylor expansion

(here for N−1/2U(φ̃
η

;λ))
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0 = N−1/2U(φ̃
η

;λ) +H(φ̃
η

;λ)N−1/2(φ̂
η
− φ̃

η
) + op(1)

which gives

N−1/2(φ̂
η
− φ̃

η
) = H(φ̃

η
;λ)−1N−1/2U(φ̃

η
;λ)

Now, because U(φ̃
η

;λ) =
∑N
i=1U i(φ̃

η
;λ), by the central limit theorem we have that

N−1/2[U(φ̃
η

;λ)]
D−→ N

[
0, lim
N→∞

1

N

N∑
i=1

U i(φ̃
η

;λ)U i(φ̃
η

;λ)T

]
.

Putting everything together, we get the estimator for V ar(φ̂
η

) given by Equation (9) of the
main text.
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A.4 Details of the simulation studies

This Section presents details on the simulations we carried out. Our first simulation study took
the longitudinal bivariate process as the data generating mechanism. For this study, describe
the data generating mechanism (Section A.4.1), before moving to review the different analyses
we considered (Section A.4.2). We present and discuss the results (Section A.4.3).

Our second simulation study focused on the impact of censoring on the original time-to-events
T1i and Ti2 on the potential degree of disagreement between the three approaches proposed in
Section 3.2 of the main text. The data generating mechanism, analyses we carried and the results
are all summarized in Section A.4.4.

A.4.1 Data generation

With the ACT dataset in mind, we considered the following data-generating mechanism. The
time-scale was (65, 100] with interval length of 2.5. Therefore, t1 = 67.5, t2 = 70, ...tK = 100 and
K = 14. Data were simulated from Model given by Equations (5)-(7) in the main text taking
the intercepts α1,k, α2,k, αθ,k from the following underline functions

α1(tk) = logit[0.005 + 0.002(tk − 65) + 0.0008(tk − 70)2 − 0.0000128(tk − 62.5)3]

α2(tk) = logit[0.03 + 0.003(tk − 65) + 0.00016(tk − 65)2]

αθ(tk) = [0.9 + 0.07(tk − 65)− 0.0032(tk − 65)2]I{tk ≤ 95}.

The black circles in Figure A.2 depict these three time-varying functions. The functions approx-
imate a scenario with an increasing non-terminal event probability until around t = 92.5, which
is then approximately constant; a terminal event probability that increases with time; and an
odds ratio that starts around 3, slowly increases and then decreases with time, such that the
odds ratio for t ≥ 95 is 1. We also included two covariates denoted by X1 and X2(t). The
first was a baseline continuous covariate with N(0, 1) distribution, and the second was a binary
time-dependent covariate, simulated as follows. At baseline, Pr[X2(65) = 1] = 0.6, and then
P [X2(t+ 2.5) = 1|X2(t) = 1] = 0.9, while zero values were retained for the rest of the follow-up.
We took f1, f2 and fθ to be linear with the following specification

f1(XH
i2,k, Y1i,k−1;β1) = XT

i,kβ1

f2(XH
i2,k, Y1i,k−1;β2) = XT

i,kβ2,X + Y1i,k−1β2,y

fθ(X
H
i2,k, Y1i,k−1;θ) = XT

i,kβθ.

We considered three simulation scenarios for the relationship between X1 and X2(t) and terminal
and nonterminal events. The scenarios also differ with respect to the value of the long-term
dependence parameter β2,y.

(I) The null scenario: β1 = β2,X = βθ = (0, 0); β2,y = 0.

(II) The simple dependence scenario: β1 = (log(0.7), log(3));β2,X = (log(0.5), 0);βθ =
(0, 0); β2,y = log(1.4).

(III) The complex dependence scenario: β1 = (log(0.7), log(3));β2,X = (log(0.5), 0);βθ =
(log(1.5), log(0.5)); β2,y = log(1.4).

We considered sample sizes N = 500, 1000, 5000, and we also compared between right-censoring
rates of approximately 0%, 20% and 30%.

Under the simple dependence scenario with 30% censoring rate, on average, 7.5% of the
observations were censored after Alzheimer’s diagnosis, 37% were censored before diagnosed
with Alzheimer’s or death, 16.5% died after being diagnosed with Alzheimer’s, and 39% died
during follow-up without Alzheimer’s diagnosis. These rates were comparable with those of the
ACT dataset.
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A.4.2 Analyses

For each combination of parameter scenario, sample size and censoring rate we simulated 1000
datasets. We compared three variations of the proposed methodology, all fit model (2.5)-(2.7)
but differ in the way the α functions are estimated: (1) An unstructured model that concerns

each α1,k, α2,k and αθ,k, k = 1, ...K as individual parameters. (2) Penalized B-splines with J̃ = 5

knots for each time-varying function (J̃1 = J̃2 = J̃θ) and (3) Penalized B-splines with J̃ = 10.
For the penalized estimators, we compared different λ values for the penalty tuning parameter.
We took the same λ = λ1 = λ2 = λθ for all three penalty tuning parameters and considered the
values λ = 0, 0.1, 1, 5, 10, 25. We also considered the estimator that chooses λ to optimize the
AIC. The choice λ = 0 corresponds to maximizing the non-penalized likelihood L(φη). Standard
errors of the coefficients (β1,β2,βθ) were estimated using the estimator given in Equation (9)
of the main text.

The aforementioned methods are all implemented in our R package LongitSemiComp, cur-
rently available from the Github account of the first author. For maximizing the likelihood,
both for the unstructured and the B-spline models, a Limited-memory BFGS algorithm was
used through the optim function in R. The algorithm uses the gradient function, which we
calculated and coded. Whenever the optimization algorithm failed, a standard BFGS was used
instead. Initial values were either all zeros or all -0.1, the latter was used when the algorithm
with the former choice of all zeros failed to converge. Table A.1 presents the proportion of
times the optimization failed and no estimates were produced. Out of 351 unique data/analysis
scenarios in our simulations, 331 had 100% convergence rates; that is, there were no failures.
As can be seen from the table, more failures were observed for the combination of low sample
size, high censoring rate and for the models richer in parameters. Specifically, when 10 knots
were used for low sample size and heavy censoring with no penalty. This demonstrates that
adding even a small penalty may mitigate potential convergence issues, and, that when sample
size is limited, more parsimonious models should be preferred. To guarantee fast implantation
of the optimization algorithm, the likelihood and gradient functions were all written in cpp (and
integrated using the Rcpp package). Running times for the ACT dataset for K = 14 intervals
and ∼ 10 variables were 3-7 seconds (including SE estimation). For K = 7 intervals running
times were 1-2.5 seconds.

A.4.3 Results

A.4.3.1 Time-varying components

Figures A.2 and A.3 compare different strategies for estimating the time-varying functions
expit(α1), expit(α2), and exp(αθ), for 30% censoring rate and different sample sizes. Fig-
ures A.2 compares the non B-spline estimator, and B-spline estimators with different number of
knots and with penalty level (λ = 5). Figure A.3 summarizes our study of the impact of number
of knots selection and compares different penalty levels for the B-spline estimator.

The time-varying terminal reference probability function expit(α1) was well-estimated in all
methods, regardless of the choice of number of knots and the penalty level. The non-terminal
probability function was generally well-estimated until age 85. For later ages, when the number
of knots was small (J̃ = 5) and the amount of regularization was substantial (λ ≥ 1) combined,
the B-spline estimator was oversmoothed and resulted in some bias in later time points, where
less information is available. When the number of knots was J̃ = 10, some bias was observed for
ages 90 or older, when sample size was small and the amount of regularization was substantial
(λ ≥ 5) combined. This bias disappeared for larger sample sizes.

For the time-varying reference odds ratio exp(αθ), values larger than 5 are not presented.
Such values were obtained for the non-penalized estimators for the time-varying odds ratio (left
bottom square in each panel of Figure A.2), for the later age periods. These findings reflect the
instability of non-penalized estimators when sample size was small and censoring was substantial.
The time-varying odds ratio function was well estimated by the 10 knots B-spline estimator, as
well as by the B-spline non-smoothed 5 knots B-spline estimator. Similar to the non-terminal
probability, the 5 knots oversmoothed estimator suffered from bias. Additionally, the model
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Table A.1: Proportion of optimization failures. Scenarios with no failures (the vast majority) were

omitted.

Scenario Censoring N Method λ % failed
(I) 0% 500 10 knots 0 2.4

500 10 knots 5 0.1
1000 10 knots 0 0.1

20% 500 10 knots 0 5.7
1000 10 knots 0 0.3

30% 500 Unconstrained 0.5
500 10 knots 0 18.8
1000 10 knots 0 2.3

(II) 0% 500 10 knots 0 0.8
20% 500 10 knots 0 5.5

1000 10 knots 0 0.5
30% 500 10 knots 0 16.6

1000 10 knots 0 3.4
(III) 0% 500 10 knots 0 1.6

5000 5 knots 0 0.2
20% 500 10 knots 0 7.3

1000 10 knots 0 0.3
30% 500 Unconstrained 0.2

500 10 knots 0 19.5
1000 10 knots 0 3.5

with completely unrestricted baseline worked well until the last time point, where some bias was
observed probably due to smaller sample size. The instability of the undersmoothed estimators
for time-varying odds ratio, and biased, yet stable, estimators when using excessive smoothing
was strongly demonstrated for lower sample sizes. To summarize, for smaller sample sizes or
when using 5 knots only, capturing the non-monotone odds-ratio function was more challenging.
Oversmoothing resulted in an undesired monotone function, while no penalization resulted in
unstable estimators for the later age periods. Nevertheless, under nearly all scenarios, some
penalization (λ = 0.1 or λ = 0.1) yielded satisfactory results.

Table A.2 further examines the issue of optimal penalty level. For different sample sizes and
censoring rates, and for each choice of number of knots, it shows the (discrete) distribution of
the optimal λ values, obtained as the value that minimizes the AIC, as described in Section 4.2
of the main text. Each row describes the proportion of times each λ value was chosen out of
1000 simulation iterations. The results generally agreed with Figure A.3 in that the optimal
level of smoothing was usually λ = 0.1 or λ = 1. In all simulation scenarios, larger penalty was
desirable for J̃ = 10 knots, when compared with J̃ = 5 knots.

12
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Figure A.2: True and mean estimated expit(α1), expit(α2) and exp(αθ) under Scenario (I)–(III) with 30% censoring rate, and for different

sample sizes. In the bottom row of each panel, values larger than 5.0 were not plotted
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Figure A.3: Impact of number of knots (J̃) and penalty level (λ) on performance of the time-varying functions expit(α1), expit(α2) and
exp(αθ) for different sample sizes. Results presented for Scenario (II) under censoring rate 20%. The +’s represent mean estimated functions
over 1000 simulation iterations per scenario.



Table A.2: Frequency of optimal λ in terms of AIC for different sample sizes, censoring rates, and choices of

number of knots. Each row describes the proportion of times each λ value was chosen out of 1000 simulation

iterations. The mode in each row is in bold.

N Censoring J̃ λ = 0 λ = 0.1 λ = 1 λ = 5 λ = 10 λ = 25
500 0% 5 0.26 0.55 0.12 0.02 0.00 0.06

10 0.00 0.08 0.24 0.28 0.16 0.24
30% 5 0.25 0.32 0.13 0.03 0.01 0.26

10 0.01 0.11 0.27 0.18 0.09 0.34
1000 0% 5 0.43 0.54 0.02 0.00 0.00 0.00

10 0.01 0.09 0.35 0.30 0.15 0.10
30% 5 0.42 0.43 0.06 0.02 0.00 0.07

10 0.01 0.12 0.40 0.26 0.09 0.13
5000 0% 5 0.88 0.11 0.00 0.00 0.00 0.00

10 0.01 0.11 0.69 0.17 0.02 0.00
30% 5 0.90 0.10 0.00 0.00 0.00 0.00

10 0.01 0.11 0.71 0.17 0.01 0.00
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A.4.3.2 Dependence parameters

Tables A.3, A.4 and A.5 present present estimation bias, mean estimated standard error, empirical
standard error (over simulations) and empirical coverage rate of the 95% confidence intervals for the
three dependence parameters β2,y, βθ1 and βθ2 under dependence simulation scenarios (I), (II) and (III),
respectively, and for different sample sizes and censoring rates. The results are presented for an estimator
that used B-splines with 10 knots and penalty level λ = 1. The long-term dependence parameter β2,y

was well-estimated, with negligible bias and with approximately the desired nominal coverage of the
confidence interval, for all sample sizes and censoring rates. A small finite-sample bias was observed for
βθ1 (Scenario (II) only) and βθ2 (Scenario (III) only), and it decreased with the increase in the sample
size. We note that in most cases our variance estimators performed very well, and the empirical coverage
(over simulations) of the confidence intervals was close to the desired nominal level.

We further studied of the impact of different strategies for estimating the time-varying functions
on the the performance of the dependence parameter estimators (Table A.6, under scenario (II)). The
performance of the long term dependence parameter was hardly affected by the time-varying function
estimators. The bias remained negligible, although it was more substantial when only 5 knots were used
(compared with 10 knots), for all penalty levels considered. The results for β̂θ1 and β̂θ2 were similar
to those described in Table A.4, with the following conclusion emerging. Whenever estimation of the
time-varying function was unstable, some bias was showed for relevant coefficients. For example, under
low sample size (N = 500) using the non B-spline estimator or the unpenalized B-spline estimator have
lead to more considerable bias in estimating βθ1 and βθ2. The bias generally decreased with the sample
size. Impressively, the coverage rate of the confidence intervals remained relatively close to the desired
95% level.
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Table A.3: Performance of dependence parameter estimators under the null scenario (I) for different sample

sizes and censoring rates. Baseline functions were estimated using the penalized B-splines estimator with J̃ = 10

knots and penalty level λ = 1. EST.SE: mean estimated standard error; EMP.SE: empirical standard error

across simulation; CP95: empirical coverage proportion the true value was included in the 95% Wald confidence

interval.

N = 500 N = 1, 000 N = 5, 000
Censoring 0% 20% 30% 0% 20% 30% 0% 20% 30%

β̂2,y
BIAS -0.002 -0.001 -0.004 -0.004 0.000 0.000 0.001 0.001 0.001

EST.SE 0.150 0.185 0.223 0.106 0.130 0.156 0.047 0.058 0.069
EMP.SE 0.149 0.193 0.237 0.109 0.135 0.158 0.048 0.058 0.070

CP95 0.951 0.946 0.938 0.940 0.939 0.945 0.945 0.944 0.942

β̂θ1
BIAS 0.000 -0.003 -0.011 0.007 0.003 0.004 0.000 0.000 0.005

EST.SE 0.201 0.239 0.273 0.140 0.165 0.188 0.063 0.073 0.082
EMP.SE 0.205 0.247 0.293 0.147 0.162 0.185 0.060 0.070 0.079

CP95 0.959 0.947 0.945 0.938 0.955 0.960 0.959 0.962 0.961

β̂θ2
BIAS 0.009 -0.026 -0.027 -0.001 -0.004 -0.014 -0.001 0.000 -0.007

EST.SE 0.449 0.526 0.595 0.312 0.363 0.410 0.138 0.159 0.178
EMP.SE 0.466 0.552 0.706 0.314 0.383 0.427 0.142 0.163 0.180

CP95 0.947 0.958 0.939 0.952 0.939 0.947 0.945 0.950 0.951
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Table A.4: Performance of dependence parameter estimators under scenario (II) for different sample sizes and

censoring rates. Baseline functions were estimated using the penalized B-splines estimator with J̃ = 10 knots and

penalty level λ = 1. EST.SE: mean estimated standard error; EMP.SE: empirical standard error across simulation;

CP95: empirical coverage proportion the true value was included in the 95% Wald confidence interval.

N = 500 N = 1, 000 N = 5, 000

Censoring 0% 20% 30% 0% 20% 30% 0% 20% 30%

β̂2,y
BIAS -0.003 0.006 -0.004 0.000 0.001 0.000 0.002 0.001 0.001

EST.SE 0.138 0.165 0.192 0.097 0.116 0.135 0.043 0.052 0.060
EMP.SE 0.141 0.167 0.191 0.099 0.113 0.138 0.043 0.053 0.060

CP95 0.932 0.944 0.948 0.956 0.959 0.941 0.956 0.953 0.949

β̂θ1
BIAS -0.014 -0.019 -0.031 -0.005 -0.013 -0.015 -0.003 -0.005 -0.006

EST.SE 0.232 0.263 0.291 0.161 0.182 0.200 0.071 0.080 0.088
EMP.SE 0.244 0.275 0.308 0.161 0.186 0.212 0.070 0.076 0.086

CP95 0.944 0.953 0.944 0.950 0.945 0.931 0.951 0.961 0.948

β̂θ2
BIAS 0.004 -0.003 -0.007 0.016 0.015 0.022 0.001 -0.006 -0.007

EST.SE 0.426 0.488 0.539 0.296 0.337 0.371 0.131 0.148 0.163
EMP.SE 0.438 0.496 0.566 0.288 0.334 0.374 0.135 0.150 0.163

CP95 0.943 0.951 0.957 0.957 0.952 0.947 0.950 0.949 0.956
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Table A.5: Performance of dependence parameter estimators under scenario (III) for different sample sizes

and censoring rates. Baseline functions were estimated using the penalized B-splines estimator with J̃ = 10

knots and penalty level λ = 1. EST.SE: mean estimated standard error; EMP.SE: empirical standard error

across simulation; CP95: empirical coverage proportion the true value was included in the 95% Wald confidence

interval.

N = 500 N = 1, 000 N = 5, 000

Censoring 0% 20% 30% 0% 20% 30% 0% 20% 30%

β̂2,y
BIAS 0.002 -0.002 -0.004 -0.003 0.000 -0.001 0.002 0.003 0.001

EST.SE 0.136 0.162 0.188 0.096 0.114 0.132 0.043 0.051 0.059
EMP.SE 0.137 0.163 0.193 0.097 0.112 0.133 0.042 0.051 0.060

CP95 0.950 0.949 0.945 0.951 0.953 0.947 0.956 0.947 0.946

β̂θ1
BIAS -0.005 0.006 -0.005 0.000 0.003 -0.001 -0.002 -0.004 -0.002

EST.SE 0.236 0.270 0.303 0.197 0.188 0.209 0.073 0.083 0.092
EMP.SE 0.245 0.277 0.325 0.162 0.193 0.212 0.074 0.085 0.090

CP95 0.947 0.950 0.937 0.950 0.948 0.941 0.952 0.945 0.955

β̂θ2
BIAS -0.006 -0.024 -0.044 -0.017 0.004 0.001 -0.005 -0.012 -0.015

EST.SE 0.459 0.525 0.583 0.353 0.364 0.402 0.143 0.161 0.177
EMP.SE 0.478 0.539 0.604 0.324 0.387 0.407 0.140 0.156 0.177

CP95 0.941 0.938 0.946 0.951 0.938 0.953 0.941 0.958 0.946
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Table A.6: Comparison of performance for the model parameters βθ and β2,y when different estimation strategies are used for the
time-varying function. Results presented under the simple dependence scenario (II) and censoring level 20%. NBS: Non-B-spline
estimator. EST.SE: mean estimated standard error; EMP.SE: empirical standard error across simulation; CP95: empirical coverage
proportion the true value was included in the 95% Wald confidence interval.

N = 500 N = 1, 000

NBS J̃ = 5 J̃ = 10 NBS J̃ = 5 J̃ = 10
λ = 0 λ = 1 λ = 5 λ = 0 λ = 1 λ = 5 λ = 0 λ = 1 λ = 5 λ = 0 λ = 1 λ = 5

β̂2,y

BIAS -0.002 -0.005 -0.007 -0.010 0.001 -0.004 -0.004 0.001 -0.001 -0.002 -0.005 0.000 0.000 0.001
EST.SE 0.193 0.192 0.192 0.192 0.192 0.192 0.191 0.135 0.135 0.135 0.135 0.135 0.135 0.135
EMP.SE 0.193 0.191 0.192 0.192 0.189 0.191 0.191 0.138 0.138 0.138 0.138 0.138 0.138 0.138

CP95 0.948 0.950 0.948 0.946 0.953 0.948 0.947 0.939 0.939 0.937 0.936 0.938 0.941 0.940

β̂θ1
BIAS -0.114 -0.047 -0.024 -0.024 -0.092 -0.031 -0.027 -0.050 -0.021 -0.012 -0.012 -0.033 -0.015 -0.013

EST.SE 0.343 0.302 0.287 0.288 0.324 0.291 0.289 0.214 0.203 0.197 0.197 0.209 0.200 0.198
EMP.SE 0.382 0.321 0.301 0.301 0.352 0.308 0.303 0.234 0.215 0.208 0.208 0.224 0.212 0.209

CP95 0.939 0.943 0.947 0.948 0.950 0.944 0.946 0.928 0.931 0.931 0.932 0.931 0.931 0.931

β̂θ2
BIAS 0.040 0.004 -0.015 -0.015 0.022 -0.007 -0.011 0.048 0.024 0.016 0.015 0.044 0.022 0.019

EST.SE 0.622 0.554 0.538 0.538 0.588 0.539 0.541 0.395 0.375 0.370 0.371 0.387 0.371 0.370
EMP.SE 0.700 0.587 0.558 0.558 0.654 0.566 0.560 0.412 0.379 0.368 0.368 0.390 0.374 0.371

CP95 0.932 0.949 0.954 0.954 0.940 0.957 0.957 0.939 0.949 0.951 0.953 0.945 0.947 0.950
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A.4.3.3 β1 and β2,X

Tables A.7, A.8, and A.9 present estimation bias, mean estimated standard error, empirical standard
error (over simulations) and empirical coverage rate of the 95% confidence intervals for the coefficients
relating covariates to the non-terminal and terminal probabilities, i.e. β1 and β2,X . Each table presents
results for a single dependence scenario ((I), (II), or (III)) for different sample sizes and censoring rates,

using the penalized B-spline estimator for the time-varying function (J̃ = 10 knots, λ = 1). In all three
scenarios, the bias was practically zero, the standard error estimator performed well, and the empirical
coverage rate was approximately the desired 95%. Table A.10 further presents the impact of different
strategies for estimating the time-varying functions on the the performance of β̂1 and β̂2,X (under
scenario (II) with 20% censoring). Generally, even for low sample size, the bias remained negligible for
nearly all four parameters (β11, β12, β21,X , β22,X), although it was slightly biased when using the non-B-
spline estimator or when taking 5 knots only for the B-spline estimator (compared with 10 knots). For

β̂12, the increased bias was more substantial compared to Table A.8, under low sample size (N = 500)
using the non B-spline estimator or the unpenalized B-spline estimator. Nevertheless, this bias generally
decreased with the increase in the sample size. The coverage rate of the confidence intervals remained
relatively close to the desired 95% level.
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Table A.7: Performance of β1 and β2,X estimators under the null scenario (I) for different sample sizes and

censoring rates. Baseline functions were estimated using the penalized B-splines estimator with J̃ = 10 knots and
penalty level λ = 1. EST.SE: mean estimated standard error; EMP.SE: empirical standard error across simulation;
CP95: empirical coverage proportion the true value was included in the 95% Wald confidence interval.

N = 500 N = 1, 000 N = 5, 000

Censoring 0% 20% 30% 0% 20% 30% 0% 20% 30%

β̂11
BIAS -0.002 -0.001 -0.001 0.000 0.000 -0.002 0.003 0.002 0.002

EST.SE 0.085 0.098 0.110 0.060 0.069 0.078 0.027 0.031 0.035
EMP.SE 0.086 0.102 0.109 0.059 0.069 0.078 0.027 0.031 0.035

CP95 0.951 0.943 0.953 0.956 0.945 0.946 0.944 0.947 0.940

β̂12
BIAS 0.003 0.003 -0.011 0.005 -0.004 -0.008 0.001 -0.003 -0.001

EST.SE 0.187 0.214 0.237 0.132 0.151 0.167 0.059 0.067 0.074
EMP.SE 0.195 0.219 0.242 0.140 0.151 0.163 0.062 0.067 0.077

CP95 0.943 0.945 0.942 0.935 0.941 0.953 0.932 0.953 0.944

β̂21,X
BIAS -0.001 0.003 0.002 0.000 0.001 0.001 0.000 -0.001 -0.001

EST.SE 0.051 0.059 0.066 0.036 0.042 0.046 0.016 0.018 0.021
EMP.SE 0.052 0.062 0.068 0.036 0.041 0.046 0.017 0.018 0.020

CP95 0.947 0.939 0.931 0.947 0.947 0.942 0.934 0.965 0.965

β̂22,X
BIAS 0.003 0.009 0.011 -0.002 0.000 -0.001 0.001 0.001 0.003

EST.SE 0.113 0.127 0.140 0.079 0.090 0.098 0.035 0.040 0.044
EMP.SE 0.114 0.128 0.138 0.081 0.090 0.098 0.036 0.042 0.045

CP95 0.939 0.952 0.958 0.946 0.949 0.954 0.956 0.937 0.942
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Table A.8: Performance of β1 and β2,X estimators under the simple dependence scenario (II) for different sample

sizes and censoring rates. Baseline functions were estimated using the penalized B-splines estimator with J̃ = 10
knots and penalty level λ = 1. EST.SE: mean estimated standard error; EMP.SE: empirical standard error
across simulation; CP95: empirical coverage proportion the true value was included in the 95% Wald confidence
interval.

N = 500 N = 1, 000 N = 5, 000

Censoring 0% 20% 30% 0% 20% 30% 0% 20% 30%

β̂11
BIAS -0.001 -0.001 -0.005 -0.001 -0.003 -0.002 -0.001 0.000 0.000

EST.SE 0.084 0.094 0.102 0.059 0.066 0.072 0.026 0.029 0.032
EMP.SE 0.088 0.094 0.102 0.060 0.067 0.074 0.026 0.029 0.031

CP95 0.940 0.948 0.957 0.940 0.946 0.948 0.950 0.962 0.951

β̂12
BIAS 0.017 0.020 0.020 0.004 0.006 0.008 0.003 0.002 0.005

EST.SE 0.167 0.189 0.208 0.117 0.133 0.146 0.052 0.059 0.065
EMP.SE 0.168 0.194 0.212 0.121 0.133 0.145 0.054 0.059 0.065

CP95 0.952 0.947 0.951 0.951 0.952 0.953 0.944 0.953 0.956

β̂21,X
BIAS -0.005 -0.006 -0.006 -0.004 -0.003 -0.002 0.000 0.000 0.000

EST.SE 0.061 0.069 0.075 0.043 0.048 0.052 0.019 0.021 0.023
EMP.SE 0.063 0.067 0.075 0.043 0.049 0.052 0.019 0.021 0.023

CP95 0.940 0.960 0.952 0.954 0.946 0.944 0.946 0.955 0.956

β̂22,X
Bias 0.007 0.005 0.008 0.000 -0.002 -0.003 0.000 -0.001 0.000

EST.SE 0.117 0.131 0.142 0.082 0.092 0.100 0.037 0.041 0.045
EMP.SE 0.114 0.133 0.144 0.083 0.092 0.099 0.037 0.041 0.045

CP95 0.954 0.944 0.945 0.942 0.946 0.951 0.951 0.955 0.949
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Table A.9: Performance of β1 and β2,X estimators under the complex dependence scenario (III) for different
sample sizes and censoring rates. Baseline functions were estimated using the penalized B-splines estimator with
J̃ = 10 knots and penalty level λ = 1. EST.SE: mean estimated standard error; EMP.SE: empirical standard error
across simulation; CP95: empirical coverage proportion the true value was included in the 95% Wald confidence
interval.

N = 500 N = 1, 000 N = 5, 000

Censoring 0% 20% 30% 0% 20% 30% 0% 20% 30%

β̂11
BIAS -0.002 0.001 0.000 0.001 -0.001 -0.001 -0.001 -0.001 0.000

EST.SE 0.086 0.096 0.104 0.060 0.067 0.073 0.027 0.030 0.033
EMP.SE 0.088 0.098 0.108 0.060 0.069 0.074 0.027 0.030 0.032

CP95 0.938 0.950 0.944 0.951 0.941 0.948 0.943 0.952 0.954

β̂12
BIAS 0.000 0.001 0.004 0.000 0.006 0.009 0.002 -0.001 0.001

EST.SE 0.169 0.191 0.209 0.120 0.135 0.147 0.053 0.060 0.066
EMP.SE 0.171 0.192 0.209 0.118 0.135 0.148 0.054 0.059 0.064

CP95 0.942 0.956 0.954 0.956 0.951 0.943 0.940 0.952 0.954

β̂21,X
BIAS -0.005 -0.005 -0.005 0.000 -0.002 -0.004 -0.001 -0.001 -0.001

EST.SE 0.061 0.069 0.075 0.043 0.048 0.053 0.019 0.022 0.023
EMP.SE 0.061 0.069 0.075 0.043 0.047 0.052 0.019 0.021 0.023

CP95 0.951 0.944 0.942 0.955 0.954 0.954 0.957 0.959 0.944

β̂22,X
BIAS 0.006 0.002 0.001 0.003 0.005 0.004 -0.002 0.000 -0.001

EST.SE 0.117 0.131 0.143 0.083 0.092 0.100 0.037 0.041 0.045
EMP.SE 0.123 0.132 0.145 0.081 0.090 0.099 0.037 0.041 0.045

CP95 0.930 0.948 0.947 0.952 0.952 0.955 0.948 0.954 0.949
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Table A.10: Comparison of performance for the model parameters β1 and β2,X when different time-varying function
estimators are used, including number of knots and penalty level for the B-spline estimator. Results presented under
the simple dependence scenario (II) and censoring level 20%. NBS: Non-B-spline estimator. EST.SE: mean estimated
standard error; EMP.SE: empirical standard error across simulation; CP95: empirical coverage proportion the true value
was included in the 95% Wald confidence interval.

N = 500 N = 1, 000

NBS J̃ = 5 J̃ = 10 NBS J̃ = 5 J̃ = 10
λ = 0 λ = 1 λ = 5 λ = 0 λ = 1 λ = 5 λ = 0 λ = 1 λ = 5 λ = 0 λ = 1 λ = 5

β̂11

BIAS -0.006 -0.005 -0.006 -0.007 -0.005 -0.005 -0.004 -0.003 -0.003 -0.003 -0.004 -0.004 -0.002 -0.002
EST.SE 0.103 0.103 0.102 0.102 0.103 0.102 0.102 0.072 0.072 0.072 0.072 0.072 0.072 0.072
EMP.SE 0.104 0.102 0.101 0.101 0.105 0.102 0.101 0.074 0.074 0.074 0.074 0.074 0.074 0.074

CP95 0.954 0.958 0.958 0.957 0.946 0.957 0.957 0.944 0.947 0.948 0.948 0.948 0.948 0.949

β̂12

BIAS 0.029 0.024 0.015 0.016 0.027 0.020 0.017 0.012 0.010 0.002 0.003 0.010 0.008 0.005
EST.SE 0.210 0.209 0.209 0.210 0.209 0.208 0.207 0.146 0.146 0.146 0.147 0.146 0.146 0.145
EMP.SE 0.215 0.213 0.212 0.213 0.217 0.212 0.211 0.146 0.145 0.146 0.147 0.147 0.145 0.145

CP95 0.952 0.947 0.950 0.950 0.951 0.951 0.951 0.955 0.954 0.954 0.955 0.951 0.953 0.951

β̂21,X

BIAS -0.008 -0.006 -0.007 -0.007 -0.009 -0.006 -0.006 -0.003 -0.002 -0.003 -0.004 -0.003 -0.002 -0.002
EST.SE 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.053 0.053 0.052 0.052 0.053 0.052 0.052
EMP.SE 0.076 0.075 0.075 0.075 0.077 0.075 0.075 0.052 0.052 0.052 0.052 0.053 0.052 0.052

CP95 0.950 0.951 0.953 0.954 0.948 0.952 0.953 0.943 0.946 0.944 0.944 0.942 0.944 0.943

β̂22,X

BIAS 0.007 0.008 0.006 0.005 0.009 0.008 0.008 -0.003 -0.003 -0.004 -0.006 -0.003 -0.003 -0.003
EST.SE 0.143 0.142 0.142 0.142 0.143 0.142 0.142 0.100 0.100 0.100 0.100 0.100 0.100 0.100
EMP.SE 0.146 0.145 0.144 0.144 0.146 0.144 0.144 0.100 0.099 0.099 0.099 0.100 0.099 0.099

CP95 0.946 0.943 0.946 0.946 0.945 0.945 0.946 0.950 0.951 0.951 0.950 0.948 0.951 0.951
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A.4.4 Impact of censoring on sensitivity approaches

To study the impact of censoring on the three different approaches to determine kli and kri , we have
conducted additional simulation study. In this study, data were simulated from an illness-death model
(see Section A.1.3) using the SemiCompRisks R package (Alvares et al., 2019). Data were first created
from a Cox model with two covariates and Weibull baseline distributions for the three transition rates and
a frailty Gamma random variable (variance 0.5) that induce further dependence, beyond additional two
covariates included. All simulations are fully reproducible from repository in the first author’s Github
account. To calculate the true values induced by this data generating mechanism, we carried a single
simulation with 10M observations and no censoring, under the two partitions τ 2.5 and τ 5 and focused
on the time axis (0, 30). As can be seen in Figure A.4 the baseline odds ratio were nearly zero for most
time points, because, under this data generating mechanism, those diagnosed with the disease in later
time points tend to live longer, and do not die at the same interval.

We considered four censoring scenarios. In the administrative censoring scenario, there was only
censoring at time 30, mimicking end-of-study administrative censoring. Under this scenario, censoring
rate as 6% and about 47% of the sample had the non-terminal event prior to this time (and prior
to death). We then considered additional Exponential censoring, and determine the rates to achieve
different censoring rates. The three additional scenarios are called Low (15% censoring), Medium (30%)
censoring, and High (50% censoring). We compared between the three approaches to determine kli and
kri , the nearest neighbor, the conservative and the anti-conservative approaches that were described
in Section 3.2 of the main text. To reduce the dependence of the results on modeling assumptions
and penalty specification, estimates were obtained by the unstructured model and for sample size of
N = 5, 000.

As seen in Figure A.4, for both partitions the median estimated time-varying functions expit(α1),
expit(α2) and exp(αθ) the results were nearly identical in the Administrative and Low and censoring
scenarios. Furthermore, the estimators are unbiased. For the Medium and High censoring rates some
disagreement is shown, especially in either the early or later time points. Generally, the nearest neighbor
approach performed the best, and produced unbiased estimators for nearly all scenarios and time points,
with small number of exceptions.

The results for the regression coefficients (Table A.11) revealed similar trends. The nearest neighbor
approach has shown little bias, even for the High censoring scenario. Disagreement level was more
prominent for the coefficient of the odds-ratio sub model, namely βθ.
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Figure A.4: True and median estimated expit(α1), expit(α2) and exp(αθ) when data were simulated
from an illness-death model under two partitions and different censoring rates. Results are based on
1,000 simulation iterations.
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Table A.11: Comparison of performance for the model parameters β under different approaches to deal with
censoring when determining kli and kri . Results presented for under the four censoring scenarios. Cens: censoring
scenario. Admin: Administrative. anticons: anti-conservative. cons: conservative. NN: nearest neighbour.

τ β11 β12 β21,X β22,X βθ1 βθ2 β2,y

τ2.5 True values 1.30 -0.27 0.21 -0.40 0.20 0.84 -0.69

Cens Approach Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

Admin anticons 1.30 (0.03) -0.28 (0.05) 0.21 (0.02) -0.40 (0.04) 0.23 (0.19) 0.87 (0.23) -0.69 (0.05)
cons 1.30 (0.03) -0.28 (0.05) 0.21 (0.02) -0.40 (0.04) 0.23 (0.19) 0.87 (0.23) -0.69 (0.05)
NN 1.30 (0.03) -0.28 (0.05) 0.21 (0.02) -0.40 (0.04) 0.23 (0.19) 0.87 (0.23) -0.69 (0.05)

Low anticons 1.31 (0.04) -0.28 (0.05) 0.22 (0.02) -0.41 (0.04) 0.24 (0.19) 0.87 (0.24) -0.67 (0.05)
cons 1.31 (0.04) -0.28 (0.05) 0.22 (0.02) -0.41 (0.04) 0.23 (0.19) 0.87 (0.24) -0.68 (0.05)
NN 1.31 (0.04) -0.28 (0.05) 0.22 (0.02) -0.41 (0.04) 0.23 (0.19) 0.87 (0.24) -0.67 (0.05)

Medium anticons 1.32 (0.04) -0.29 (0.06) 0.22 (0.02) -0.44 (0.04) 0.25 (0.19) 0.86 (0.25) -0.64 (0.06)
cons 1.33 (0.04) -0.29 (0.06) 0.22 (0.02) -0.44 (0.04) 0.23 (0.19) 0.86 (0.26) -0.65 (0.06)
NN 1.33 (0.04) -0.29 (0.06) 0.22 (0.02) -0.44 (0.04) 0.23 (0.19) 0.86 (0.26) -0.65 (0.06)

High anticons 1.33 (0.04) -0.30 (0.06) 0.24 (0.03) -0.48 (0.05) 0.26 (0.20) 0.85 (0.28) -0.58 (0.07)
cons 1.35 (0.04) -0.30 (0.06) 0.24 (0.03) -0.49 (0.05) 0.22 (0.21) 0.87 (0.28) -0.59 (0.07)
NN 1.35 (0.04) -0.30 (0.06) 0.24 (0.03) -0.48 (0.05) 0.22 (0.21) 0.87 (0.28) -0.59 (0.07)

τ2.5 True values 1.32 -0.19 0.20 -0.42 0.16 0.88 -0.71

Cens Approx Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

Admin anticons 1.31 (0.04) -0.19 (0.06) 0.20 (0.02) -0.42 (0.04) 0.17 (0.13) 0.90 (0.17) -0.71 (0.06)
cons 1.31 (0.04) -0.19 (0.06) 0.20 (0.02) -0.42 (0.04) 0.17 (0.13) 0.90 (0.17) -0.71 (0.06)
NN 1.31 (0.04) -0.19 (0.06) 0.20 (0.02) -0.42 (0.04) 0.17 (0.13) 0.90 (0.17) -0.71 (0.06)

Low anticons 1.31 (0.04) -0.20 (0.06) 0.20 (0.02) -0.43 (0.04) 0.22 (0.13) 0.87 (0.17) -0.69 (0.06)
cons 1.33 (0.04) -0.19 (0.06) 0.21 (0.02) -0.44 (0.04) 0.16 (0.14) 0.91 (0.18) -0.70 (0.06)
NN 1.33 (0.04) -0.20 (0.06) 0.21 (0.02) -0.44 (0.04) 0.16 (0.13) 0.91 (0.17) -0.70 (0.06)

Medium anticons 1.31 (0.04) -0.20 (0.06) 0.21 (0.02) -0.45 (0.04) 0.30 (0.14) 0.82 (0.18) -0.67 (0.06)
cons 1.34 (0.04) -0.19 (0.06) 0.22 (0.02) -0.47 (0.04) 0.15 (0.14) 0.92 (0.19) -0.70 (0.07)
NN 1.34 (0.04) -0.21 (0.06) 0.22 (0.02) -0.47 (0.04) 0.17 (0.14) 0.90 (0.18) -0.69 (0.07)

High anticons 1.29 (0.04) -0.21 (0.06) 0.23 (0.03) -0.49 (0.05) 0.40 (0.15) 0.76 (0.20) -0.63 (0.08)
cons 1.36 (0.05) -0.19 (0.07) 0.25 (0.03) -0.53 (0.05) 0.12 (0.16) 0.94 (0.21) -0.68 (0.08)
NN 1.37 (0.05) -0.22 (0.07) 0.24 (0.03) -0.52 (0.05) 0.17 (0.15) 0.90 (0.21) -0.66 (0.08)



A.5 The ACT dataset

Figure A.5 provides a summary of the observed person-time for the patients. Within each panel, the
patients have been ordered by: (i) their age at entry and (ii) the age at which their eventual outcome
status is observed. Table A.12 provides a summary of the available baseline covariates in the ACT
dataset, overall and stratified according to the four outcome types in the data:

• those censored prior to AD diagnosis and death,

• those diagnosed with AD and then censored prior before death,

• those who died without receiving AD diagnosis before death, and

• those who died after receiving AD diagnosis.

The following tables describe the outcome data in the ACT dataset in the proposed representation:

• Table A.13 presents the data after applying a 2.5 year interval partition according to our approach.
For each interval, it presents a 2 × 2 outcome table (Alzheimer’s disease, death, both or neither),
along with the respective odds ratio, for those who were still at risk for both events at the beginning
of the interval.

• Table A.13 also presents the distribution of Y2,k for each interval k, among those who are at risk of
death only, that is, those who were diagnosed with Alzheimer’ as some point prior to the interval
and are still alive.

• Table A.14 presents the analogue outcome data table under a 5 year interval partition of the time
scale.
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Figure A.5: Summary of person-time while on-study among N=4,367 participants in the ACT study,
stratified by whether they had a diagnosis of AD and/or died during follow-up. Within each sub-figure,
participants are ordered first by their age of enrollment and second by their observed event/censoring
time.
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Table A.12: Descriptive information about baseline covariates in the ACT dataset

Total Censored prior
to AD or death

AD and then
censored

Death without
AD

AD diagnosis
and death

n (%†) n (%?) n (%?) n (%?) n (%?)
Total 4367 (100) 1,731 (39) 205 (5) 1,613 (37) 818 (19)
APOE ε-4 alleles

None 3,313 (76) 1,323 (40) 141 (4) 1,285 (39) 564 (17)
At least one 1,054 (24) 408 (39) 64 (6) 328 (31) 254 (24)

Gender
Female 2,513 (58) 1,025 (41) 134 (5) 849 (34) 505 (20)
Male 1,854 (42) 706 (38) 71 (4) 764 (41) 313 (17)

Race
White 3,958 (91) 1,551 (39) 182 (5) 1,471 (37) 754 (19)
Non-white 409 (9) 180 (44) 23 (6) 142 (35) 64 (16)

Depression
No 4,035 (92) 1,651 (41) 185 (5) 1,468 (36) 731 (18)
Yes 332 (8) 80 (24) 20 (6) 145 (44) 87 (26)

Education‡ (years)
< 12 402 (9) 78 (19) 13 (3) 206 (51) 105 (26)
12− 15 1,779 (41) 517 (29) 95 (5) 744 (42) 423 (24)
≥ 15 2,186 (50) 1,136 (52) 97 (4) 663 (30) 290 (13)

Marital status
Married 2,463 (56) 1,064 (43) 114 (5) 844 (34) 441 (18)
Never Married 166 (4) 89 (54) 6 (4) 49 (30) 22 (13)
Divorced 605 (14) 284 (47) 36 (6) 203 (34) 82 (14)
Widowed 1,010 (23) 258 (26) 41 (4) 457 (45) 254 (25)
Other 123 (3) 36 (29) 8 (7) 60 (49) 19 (15)

† column%
? row%
‡ In the analysis, education was treated as a continuous variable.
Mean: 14.75, SD: 3.22, (Q1,Q2,Q3): (12, 15, 17) Range: (3-21)



Table A.13: Outcome data at each interval according to a 2.5 interval partition. For each k = 1, ..., 14, we present the 2 × 2 table
outcome table among those who are free of both events at the beginning of the interval, and the number of those died and survived
among those already diagnosed with AD. Note, due to the possibility of an AD event followed by censoring at the same interval,
not all those with AD will appear in the following interval as AD patients.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
(65, 67.5] (67.5, 70] (70, 72.5] (72.5, 75] (75, 77.5] (77.5, 80] (80, 82.5]

Y1 Y1 Y1 Y1 Y1 Y1 Y1
0 1 0 1 0 1 0 1 0 1 0 1 0 1

Y1,k = 0
Y2

0 0 1522 1472 12 1834 11 2259 35 2272 36 2327 88 2168 90
1 0 4 19 0 32 0 86 4 93 3 181 13 123 6

OR NA 0.00 0.00 3.00 2.04 1.90 1.18

Y1,k = 1 Y2
0 0 0 9 15 34 46 96
1 0 0 0 3 13 21 34

k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 k = 14
(82.5, 85] (85, 87.5] (87.5, 90] (90, 92.5] (92.5, 95] (95, 97.5] (97.5, 100]

Y1 Y1 Y1 Y1 Y1 Y1 Y1
0 1 0 1 0 1 0 1 0 1 0 1 0 1

Y1,k = 0 Y2
0 1864 183 1480 125 1012 140 624 68 328 53 180 18 73 8
1 217 36 198 17 269 37 159 10 145 16 38 7 49 7

OR 1.69 1.02 0.99 0.58 0.68 1.84 1.30

Y1,k = 1 Y2
0 109 189 158 144 78 50 25
1 71 87 133 112 105 51 32
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Table A.14: Outcome data at each interval according to a 5 interval partition. For each k = 1, ..., 7, we present the 2 × 2 table
outcome table among those who are free of both events at the beginning of the interval, and the number of those died and survived
among those already diagnosed with AD. Note, due to the possibility ofa n AD event followed by censoring at the same interval,
not all those with AD will appear in the following interval as AD patients.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
(65, 70] (70, 75] (75, 80] (80, 85] (85, 90] (90, 95] (95, 100]
Y1 Y1 Y1 Y1 Y1 Y1 Y1

0 1 0 1 0 1 0 1 0 1 0 1 0 1

Y1,k = 0
Y2

0 2707 12 2407 45 2443 112 1988 242 1131 219 430 91 116 17
1 23 0 118 5 274 28 340 73 467 100 304 56 87 23

OR 0.00 2.27 2.23 1.76 1.11 0.87 1.80

Y1,k = 1 Y2
0 0 7 25 56 102 69 27
1 0 2 22 74 174 187 74
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A.6 Detailed results from the analyses of data from the
Adult Changes in Thought study

A.6.1 Analyses based on existing methods

We consider in this section a series of analyses based on existing methods described in the
Introduction of the main text and in Section A.1.

A.6.1.1 An illness-death model with a patient-specific frailty

At the outset we considered the illness-death framework, with the hazard functions for the three
transitions (i.e. Healthy ⇒ AD, Healthy ⇒ Death and AD ⇒ Death) specified via the following
Cox-type models:

λ1(t1;Xi) = γiλ01(t1) exp{XT
i ξ1}, (A.3)

λ2(t2;Xi) = γiλ02(t2) exp{XT
i ξ2}, (A.4)

λ3(t2|t1;Xi) = γiλ03(t2 − t1) exp{XT
i ξ3}, (A.5)

where γi ∼ Gamma(ϕ−1, ϕ−1) is a patient-specific frailty (Lee et al., 2015; Xu et al., 2010). Note,
the model for λ3(t2|t1; ·) is semi-Markov ; the time scale is time since diagnosis of AD. For all three
transitions, the baseline hazard is modeled as a Weibull(νg, κg), such that λ0g(t) = νgκgt

νg−1.
These choices were made because, as far as we are aware, there are no implementations of the
illness-death model, as specified by expressions (A.3)-(A.5), that permit left truncation (a key
feature of the ACT data) and anything other than Weibull baseline hazards.

Tables A.15 and A.16, and Figure A.6 report results for four illness-death models, that differ
in whether a patient-specific frailty was incorporated and whether age at AD diagnosis was
included in λ3(t2|t1; ·). A key observation from these analyses is that there is little evidence
that the frailties, as they are included in models (A.3)-(A.5), serve to account for any of the
dependence between the two events above and beyond how dependence is structured through the
interplay of the remaining components of the illness-death model: the point estimates for log(ϕ)
are −14.34 and −13.10, and the log-likelihood at the maximum likelihood estimates are the same
whether one includes the frailties or not (Table A.16). Moreover, that the point estimates for θ
are (essentially) on the boundary of the parameter space results in the hessian evaluated at the
maximum likelihood estimates not being invertible.
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Table A.15: Results from four semi-Markov illness-death models, each with Weibull baseline
hazards, for the ACT data. Note, for both models that included a frailty, the estimate of the

variance was very small: ̂log(ϕ) = −14.34 for Model 1 and ̂log(ϕ) = −13.10 for Model 2. Note,
that the point estimates for ϕ are (essentially) on the boundary of the parameter space results
in the hessian evaluated at the maximum likelihood estimates not being invertible. Hence the
(NA, NA) reported for the confidence intervals.

Model 1a Model 2a

No frailty W/ frailty No frailty W/ frailty
HR 95% CI HR 95% CI HR 95% CI HR 95% CI

Healthy ⇒ AD
Gender: Female 0.94 (0.80, 1.10) 0.94 (NA, NA) 0.94 (0.80, 1.10) 0.94 (NA, NA)
Race: White 1.06 (0.85, 1.32) 1.06 (NA, NA) 1.06 (0.85, 1.32) 1.06 (NA, NA)
College graduate 0.84 (0.73, 0.96) 0.84 (NA, NA) 0.84 (0.73, 0.96) 0.84 (NA, NA)
Marital status:

Never 0.99 (0.68, 1.45) 0.99 (NA, NA) 0.99 (0.68, 1.45) 0.99 (NA, NA)
Divorced 1.02 (0.83, 1.25) 1.02 (NA, NA) 1.02 (0.83, 1.25) 1.02 (NA, NA)
Widowed 0.97 (0.83, 1.13) 0.97 (NA, NA) 0.97 (0.83, 1.13) 0.97 (NA, NA)
Other 0.82 (0.56, 1.21) 0.82 (NA, NA) 0.82 (0.56, 1.21) 0.82 (NA, NA)

Depression 1.57 (1.28, 1.92) 1.57 (NA, NA) 1.57 (1.28, 1.92) 1.57 (NA, NA)
≥ 1 APOE ε4 allele

Main effect 1.76 (1.41, 2.19) 1.76 (NA, NA) 1.76 (1.41, 2.19) 1.76 (NA, NA)
× Gender: Female 1.03 (0.78, 1.36) 1.03 (NA, NA) 1.03 (0.78, 1.36) 1.03 (NA, NA)

Healthy ⇒ Death
Gender: Female 0.60 (0.53, 0.67) 0.60 (NA, NA) 0.60 (0.53, 0.67) 0.60 (NA, NA)
Race: White 1.01 (0.85, 1.20) 1.01 (NA, NA) 1.01 (0.85, 1.20) 1.01 (NA, NA)
College graduate 0.92 (0.82, 1.02) 0.92 (NA, NA) 0.92 (0.82, 1.02) 0.92 (NA, NA)
Marital status:

Never 1.15 (0.86, 1.54) 1.15 (NA, NA) 1.15 (0.86, 1.54) 1.15 (NA, NA)
Divorced 1.26 (1.08, 1.48) 1.26 (NA, NA) 1.26 (1.08, 1.48) 1.26 (NA, NA)
Widowed 1.18 (1.04, 1.33) 1.18 (NA, NA) 1.18 (1.04, 1.33) 1.18 (NA, NA)
Other 1.36 (1.04, 1.77) 1.36 (NA, NA) 1.36 (1.04, 1.77) 1.36 (NA, NA)

Depression 1.33 (1.12, 1.58) 1.33 (NA, NA) 1.33 (1.12, 1.58) 1.33 (NA, NA)
≥ 1 APOE ε4 allele

Main effect 1.01 (0.84, 1.21) 1.01 (NA, NA) 1.01 (0.84, 1.21) 1.01 (NA, NA)
× Gender: Female 1.05 (0.82, 1.34) 1.05 (NA, NA) 1.05 (0.82, 1.34) 1.05 (NA, NA)

AD ⇒ Death
Gender: Female 0.91 (0.76, 1.10) 0.91 (NA, NA) 0.88 (0.73, 1.06) 0.88 (NA, NA)
Race: White 1.49 (1.15, 1.93) 1.49 (NA, NA) 1.45 (1.12, 1.87) 1.45 (NA, NA)
College graduate 0.97 (0.83, 1.14) 0.97 (NA, NA) 1.02 (0.87, 1.20) 1.02 (NA, NA)
Marital status:

Never 1.09 (0.71, 1.69) 1.09 (NA, NA) 1.20 (0.78, 1.87) 1.20 (NA, NA)
Divorced 0.97 (0.76, 1.23) 0.97 (NA, NA) 1.14 (0.89, 1.45) 1.14 (NA, NA)
Widowed 1.12 (0.95, 1.33) 1.12 (NA, NA) 0.99 (0.84, 1.18) 0.99 (NA, NA)
Other 0.85 (0.53, 1.35) 0.85 (NA, NA) 0.82 (0.51, 1.31) 0.82 (NA, NA)

Depression 1.18 (0.94, 1.48) 1.18 (NA, NA) 1.22 (0.97, 1.53) 1.22 (NA, NA)
≥ 1 APOE ε4 allele

Main effect 0.98 (0.77, 1.26) 0.98 (NA, NA) 1.12 (0.88, 1.43) 1.12 (NA, NA)
× Gender: Female 0.83 (0.61, 1.13) 0.83 (NA, NA) 0.85 (0.62, 1.16) 0.85 (NA, NA)

Age at AD diagnosisb 1.37 (1.27, 1.47) 1.37 (NA, NA)
a Model 1 does not include adjustment for age at AD diagnosis in the AD ⇒ Death, while Model 2 does.
b Age at diagnosis was standardized so that the hazard ratio corresponds to a 5-year contrast



Table A.16: Log-likelihood at the maximized value for four semi-Markov illness-death models,
each with Weibull baseline hazards, for the ACT data.

Include Adjust for AD diagnosis log-Likelihood
frailty in AD ⇒ Death at maximum

No No -12914.81
Yes No -12914.81
No Yes -12876.65
Yes Yes -12876.65
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Figure A.6: Baseline hazards and corresponding baseline survivor functions from the semi-
Markov Weibull illness-death model that adjusts for age at AD diagnosis but does not include a
patient-specific frailty. For the AD ⇒ Death transition, baseline curves are provided for a series
of ages at which the AD diagnosis was given.
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A.6.1.2 An illness-death model with no patient-specific frailty

Motivated by the above results, we performed additional analyses based on Cox-type specifica-
tions for the three transition-specific hazards but without the γi frailties. Note, in removing the
frailties one can estimate model components using partial likelihood methods for Cox models
where the data are subject to left truncation. We fit two semi-Markov models, as in expressions
(A.3)-(A.5), again differing in whether age at AD diagnosis was included. We also fit a Markov
model in which the AD ⇒ Death transition is modeled as:

λ3(t2|t1;Xi) = λ03(t2) exp{XT
i ξ3},

so that the time scale is the same as for the other two transitions (i.e. time since age 65).
Tables A.17 and A.18 report estimated hazard ratios and 95% confidence intervals. Overall,

the conclusions regarding the associations between the covariates and both Alzheimer’s disease
and mortality are consistent with the Weibull illness-death model fits. Also consistent is the
evidence regarding the dependence between AD and mortality as quantified by the inclusion
of age at AD diagnosis in the model for λ3(t2|t1;Xi); the estimated hazard ratio for a 5-year
contrast is 1.33 (95% CI: 1.24, 1.42).

From the Markov model, since Healthy ⇒ Death and the AD ⇒ Death transitions are
modeled on the same time scale, one can report the explanatory hazard ratio for any given
patient profile. The top-left sub-figure of Figure A.7 provides smoothed estimates of EHR(t2;
t1) for four profiles (Figure A.8 provides additional detail). From Figure A.7 it is clear that,
at any given age, the hazard for death is substantially higher for individuals who have been
diagnosed with AD relative to those who have not, with the biggest differences among the
relatively young. Intuitively, this suggests that, among individuals at least 65 years of age, a
diagnosis of AD is more devastating (from a mortality perspective) for a young individual than
for an older individual.

Table A.17: Results from univariate Cox regression analyses of the two transitions from out of
the ‘Healthy’ state in an illness-death model for the ACT data.

Healthy ⇒ ADa Healthy ⇒ Deatha

HR 95% CI HR 95% CI
Gender: Female 0.94 (0.80, 1.11) 0.59 (0.52, 0.66)
Race: White 1.06 (0.85, 1.33) 1.01 (0.85, 1.20)
College graduate 0.84 (0.74, 0.96) 0.90 (0.81, 1.00)
Marital status:

Never 0.99 (0.67, 1.44) 1.13 (0.84, 1.51)
Divorced 1.01 (0.83, 1.24) 1.27 (1.09, 1.49)
Widowed 0.97 (0.84, 1.14) 1.18 (1.04, 1.34)
Other 0.83 (0.56, 1.22) 1.37 (1.05, 1.78)

Depression 1.56 (1.28, 1.92) 1.37 (1.15, 1.62)
≥ 1 APOE ε4 allele:

Main effect 1.76 (1.41, 2.19) 1.01 (0.84, 1.21)
× Gender: Female 1.03 (0.78, 1.35) 1.06 (0.83, 1.35)

a Death is treated is treated as a censoring mechanism
b AD is treated is treated as a censoring mechanism
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Figure A.7: Estimated EHRs for four patient profiles and CQRRs for the 25th quantile, the
median and 75th quantile of residual time for death, overall and stratified by whether there was
at least 1 APOE ε4 allele, based on analyses of the ACT data. See Section A.6.1.



Table A.18: Results from three univariate Cox regression analysis of the AD⇒ Death transition
in an illness-death model for the ACT data.

Markov Semi-Markov V1a Semi-Markov V2a

HR 95% CI HR 95% CI HR 95% CI
Gender: Female 0.87 (0.73, 1.05) 0.90 (0.75, 1.08) 0.87 (0.73, 1.05)
Race: White 1.32 (1.02, 1.71) 1.51 (1.17, 1.96) 1.47 (1.14, 1.91)
College graduate 1.00 (0.86, 1.17) 0.97 (0.83, 1.13) 1.01 (0.86, 1.18)
Marital status:

Never 1.17 (0.76, 1.81) 1.11 (0.72, 1.72) 1.21 (0.78, 1.87)
Divorced 1.07 (0.84, 1.37) 0.99 (0.78, 1.25) 1.12 (0.88, 1.43)
Widowed 0.96 (0.81, 1.14) 1.14 (0.96, 1.35) 1.01 (0.85, 1.20)
Other 0.80 (0.50, 1.28) 0.83 (0.52, 1.33) 0.80 (0.50, 1.28)

Depression 1.19 (0.95, 1.49) 1.15 (0.92, 1.45) 1.19 (0.95, 1.49)
≥ 1 APOE ε4 allele:

Main effect 1.15 (0.89, 1.47) 0.98 (0.76, 1.25) 1.11 (0.87, 1.42)
× Gender: Female 0.90 (0.66, 1.23) 0.85 (0.62, 1.16) 0.85 (0.63, 1.16)

Age at AD diagnosisb 1.33 (1.24, 1.42)
a Semi-Markov V1 does not include adjustment for age at AD diagnosis in the AD in the model, while

Semi-Markov V2 does.
b Age at diagnosis was standardized so that the hazard ratio corresponds to a 5-year contrast

A.6.1.3 The cross-quantile residual ratio

Finally, we report results based on the CQRR methodology1. Specifically, we calculated the
CQRR(q; t0) at q ∈ {0.25, 0.5.0.75} (i.e. for the 25th quantile, the median and 75th quantile of
residual time for death) for ages t0 ∈ {70, . . . , 95} years, stratifying by the number of APOE ε4
alleles (0 vs ≥ 1).

Figure A.7 provides estimates; see Figure A.9 for 95% confidence intervals. From Figure A.7,
the estimated CQRR(q; t0) are greater than 1.0 at all ages, indicating that residual lifetime, at
any given age, for individuals without a diagnosis of AD is estimated to be longer than that for
individuals with an AD diagnosis. Comparing the bottom sub-figures of Figure A.7, we see that
the spread in the lines is somewhat greater for patients with no APOE ε4 alleles. To interpret
this, consider the population of patients with no APOE ε4 alleles and the population with at
least one. In comparing patients without an AD diagnosis to those with such a diagnosis, the
distribution of residual lifetime exhibits less variation, at any given age, in the second of these
populations. Thus, a diagnosis of AD in patients with at least one APOE ε4 allele results in a
relatively homogeneous decline whereas the decline associated with a diagnosis of AD in patients
with no APOE ε4 alleles is more heterogeneous.

1Using code available at http://web1.sph.emory.edu/users/lpeng/Rpackage.html
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Figure A.8: Estimated age-specific explanatory hazard ratios for four patient profiles based on a
Markov illness-death model with no frailty. Within each sub-figure, the line corresponds to the
fit of a LOWESS smoother. Common to each profile is that the patients are non-white, married,
have a college education, and no depression.
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A.6.2 The proposed framework

We present here the results for six different models: three models under each of the partitions τ 2.5

and τ 5. All six models include the variables from Table 2 of the main text (Gender, APOE and
their three-way interaction with AD). Additionally, they include all variables described in Table
A.12. Because θi,k speaks to the joint-occurrence of AD and death, more information is needed
for precise estimation of baseline trends and and coefficients. Therefore, for each partition, we
considered three choices for the variables included in the local odds ratio θi,k model. The full
model include the same variables as in the models for π1i,k and π2i,k. The reduced model includes
APOE only. The intermediate model, which is the model we reports results for in the main text
(Table 2), includes Gender, having at least one APOEε4 allele and their interaction. Table
A.19 reports AICs for the three models under each partitions, for λ = (0, 0.1, 0.5, 1.0, 2.5, 5.0).
Tables A.20 , A.21 and A.22 report the coefficient estimates and confidence intervals for the
intermediate, reduced and full models, respectively. All the results in the aforementioned tables
are reported for the NN approach to deal with right censoring and left truncation.

As for the time-varying functions, Figures A.10 and Figures A.11 are extended versions of
Figure 3 in the main text. They present the estimated time-varying function for the reference
level, taken from the intermediate model for the τ 2.5 partition (Figure A.10) and the τ 5.0

partition (Figure A.11).
Finally, Tables A.23 and A.23 present comparisons of the obtained point estimates and

associated confidence intervals according the strategy to determine kli and kri and according to
the model for the time-varying functions (unstructured vs. B-spline). Results are presented for
the τ 2.5 (Table A.23) and for τ 5.0 (Table A.24) partitions.
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Penalty, λ
0 0.1 0.5 1.0 2.5 5.0

Full model for θi,k:
Conservative
τ2.5 -18279 -18266 -18264 -18261 -18260 -18260
τ5.0 -12400 -12408 -12417 -12424 -12436 -12448

Anti-conservative
τ2.5 -20340 -20334 -20333 -20331 -20331 -20331
τ5.0 -16418 -16424 -16431 -16435 -16448 -16466

Nearest Neighbor
τ2.5 -19597 -19590 -19588 -19586 -19586 -19586
τ5.0 -14961 -14965 -14969 -14973 -14984 -14997

Intermediate model for θi,k:
Conservative
τ2.5 -18270 -18257 -18254 -18252 -18251 -18251
τ5.0 -12397 -12405 -12414 -12421 -12433 -12445

Anti-conservative
τ2.5 -20331 -20325 -20323 -20322 -20322 -20322
τ5.0 -16414 -16419 -16426 -16431 -16444 -16461

Nearest Neighbor
τ2.5 -19589 -19581 -19578 -19577 -19576 -19577
τ5.0 -14958 -14961 -14965 -14969 -14980 -14993

Reduced model for θi,k:
Conservative
τ2.5 -18267 -18254 -18251 -18249 -18248 -18248
τ5.0 -12394 -12402 -12411 -12417 -12430 -12441

Anti-conservative
τ2.5 -20328 -20322 -20321 -20320 -20319 -20319
τ5.0 -16410 -16416 -16422 -16427 -16440 -16458

Nearest Neighbor
τ2.5 -19585 -19578 -19576 -19574 -19573 -19574
τ5.0 -14954 -14957 -14961 -14965 -14976 -14989

Table A.19: AIC values from the fit of the proposed framework to the ACT data, for different
penalty levels under the two partitions considered and for all three approaches to overcome mid-
interval censoring and truncation. See Section 6 of the main manuscript for details. The value
indicated in boldface is the largest, with ties favoring models with lower penalty
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Table A.23: For ACT dataset and 2.5 years interval partition, comparison of main coefficient
results under the three approaches to deal with right censoring and left truncation.

Conservative Anti-conservative Nearest Point
exp(β) CI exp(β) CI exp(β) CI

Unstructured model

AD Female 0.98 (0.83, 1.17) 0.97 (0.82, 1.14) 0.95 (0.81, 1.13)
APOE 1.86 (1.45, 2.37) 1.85 (1.46, 2.33) 1.87 (1.48, 2.37)
Female×APOE 0.98 (0.72, 1.33) 1.03 (0.77, 1.37) 1.00 (0.75, 1.35)

Death Female 0.58 (0.51, 0.65) 0.57 (0.50, 0.64) 0.57 (0.50, 0.64)
APOE 0.97 (0.80, 1.18) 0.97 (0.81, 1.18) 0.96 (0.79, 1.16)
Female×APOE 1.13 (0.87, 1.47) 1.10 (0.85, 1.41) 1.13 (0.87, 1.45)
AD 2.63 (2.07, 3.34) 2.68 (2.13, 3.37) 2.71 (2.14, 3.42)
AD×Female 1.51 (1.12, 2.04) 1.56 (1.17, 2.08) 1.50 (1.12, 2.01)
AD×APOE 1.54 (1.00, 2.38) 1.68 (1.10, 2.56) 1.56 (1.02, 2.38)
AD×Female×APOE 0.66 (0.38, 1.13) 0.61 (0.36, 1.04) 0.66 (0.39, 1.13)

OR Female 0.78 (0.50, 1.20) 0.80 (0.52, 1.23) 0.80 (0.52, 1.23)
APOE 0.60 (0.30, 1.21) 0.61 (0.31, 1.22) 0.59 (0.30, 1.18)
Female×APOE 1.19 (0.48, 2.96) 1.18 (0.48, 2.90) 1.21 (0.49, 2.98)

B-spline model

AD Female 0.98 (0.82, 1.16) 0.97 (0.82, 1.14) 0.95 (0.81, 1.12)
APOE 1.85 (1.44, 2.36) 1.84 (1.45, 2.32) 1.87 (1.48, 2.37)
Female×APOE 0.98 (0.72, 1.34) 1.03 (0.77, 1.38) 1.00 (0.74, 1.35)

Death Female 0.58 (0.51, 0.65) 0.57 (0.51, 0.64) 0.57 (0.50, 0.64)
APOE 0.97 (0.80, 1.18) 0.97 (0.81, 1.17) 0.96 (0.80, 1.16)
Female×APOE 1.13 (0.87, 1.46) 1.10 (0.85, 1.41) 1.12 (0.87, 1.44)
AD 2.54 (1.99, 3.24) 2.61 (2.06, 3.31) 2.63 (2.07, 3.34)
AD×Female 1.52 (1.12, 2.06) 1.56 (1.16, 2.09) 1.51 (1.12, 2.04)
AD×APOE 1.55 (0.99, 2.44) 1.69 (1.09, 2.62) 1.56 (1.00, 2.43)
AD×Female×APOE 0.66 (0.38, 1.14) 0.62 (0.36, 1.06) 0.66 (0.38, 1.15)

OR Female 0.76 (0.50, 1.17) 0.78 (0.51, 1.19) 0.79 (0.52, 1.21)
APOE 0.57 (0.28, 1.13) 0.58 (0.29, 1.14) 0.56 (0.28, 1.10)
Female×APOE 1.24 (0.50, 3.04) 1.20 (0.49, 2.91) 1.24 (0.51, 3.04)
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Table A.24: For ACT dataset and 5 years interval partition, comparison of main coefficient
results under the three approaches to deal with right censoring and left truncation.

Conservative Anti-conservative Nearest Point
exp(β) CI exp(β) CI exp(β) CI

Unstructured model

AD Female 1.13 (0.93, 1.37) 0.99 (0.83, 1.17) 1.03 (0.86, 1.23)
APOE 1.96 (1.49, 2.58) 1.83 (1.44, 2.34) 1.90 (1.49, 2.44)
Female×APOE 0.91 (0.65, 1.28) 1.03 (0.76, 1.40) 0.95 (0.70, 1.30)

Death Female 0.55 (0.48, 0.64) 0.56 (0.49, 0.64) 0.56 (0.49, 0.64)
APOE 0.98 (0.78, 1.22) 0.98 (0.81, 1.19) 0.98 (0.80, 1.20)
Female×APOE 1.19 (0.89, 1.59) 1.12 (0.87, 1.45) 1.12 (0.86, 1.46)
AD 2.70 (1.89, 3.84) 2.77 (2.03, 3.77) 2.80 (2.02, 3.89)
AD×Female 1.95 (1.24, 3.07) 1.82 (1.23, 2.70) 1.94 (1.27, 2.96)
AD×APOE 2.00 (1.04, 3.86) 2.33 (1.28, 4.22) 2.33 (1.24, 4.38)
AD×Female×APOE 0.55 (0.24, 1.25) 0.49 (0.23, 1.01) 0.43 (0.20, 0.93)

OR Female 0.82 (0.55, 1.23) 0.96 (0.67, 1.39) 0.90 (0.62, 1.31)
APOE 0.73 (0.40, 1.33) 0.78 (0.45, 1.37) 0.70 (0.40, 1.24)
Female×APOE 1.16 (0.54, 2.49) 1.01 (0.49, 2.07) 1.18 (0.57, 2.45)

B-spline model

AD Female 1.13 (0.94, 1.36) 0.99 (0.83, 1.17) 1.03 (0.87, 1.22)
APOE 1.96 (1.48, 2.58) 1.83 (1.44, 2.34) 1.91 (1.48, 2.45)
Female×APOE 0.91 (0.64, 1.29) 1.03 (0.76, 1.41) 0.95 (0.69, 1.30)

Death Female 0.55 (0.48, 0.64) 0.55 (0.48, 0.62) 0.56 (0.49, 0.64)
APOE 0.97 (0.78, 1.22) 0.98 (0.81, 1.20) 0.98 (0.80, 1.19)
Female×APOE 1.19 (0.89, 1.59) 1.13 (0.87, 1.46) 1.12 (0.86, 1.47)
AD 2.69 (1.88, 3.87) 2.77 (2.01, 3.82) 2.80 (2.00, 3.92)
AD×Female 1.95 (1.22, 3.11) 1.82 (1.21, 2.73) 1.94 (1.26, 2.99)
AD×APOE 2.01 (0.99, 4.06) 2.33 (1.24, 4.41) 2.34 (1.19, 4.58)
AD×Female×APOE 0.55 (0.23, 1.29) 0.49 (0.23, 1.05) 0.42 (0.19, 0.96)

OR Female 0.82 (0.55, 1.22) 0.96 (0.67, 1.38) 0.91 (0.62, 1.31)
APOE 0.72 (0.39, 1.34) 0.78 (0.44, 1.38) 0.70 (0.39, 1.26)
Female×APOE 1.16 (0.53, 2.53) 1.01 (0.49, 2.09) 1.18 (0.56, 2.47)
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