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MOTIVATION The rise of advanced artificial intelligence technologiesmotivated their application to drug dis-
covery. One of the fundamental challenges is how to learn molecular representation from chemical struc-
tures. Traditional molecular representation methods rely on a large amount of domain knowledge, such as
sequence-based and graph-based approaches, and their accuracy in extracting informative vectors is
limited. As motivated by computer vision and image-based deep learning technologies, we presented a
self-supervised image representation learning framework that combines molecular image and protein repre-
sentations for the accurate prediction of compound-protein interactions.
SUMMARY
Artificial intelligence (AI) and deep learning technologies hold promise for identifying effective drugs for hu-
man diseases, including pain. Here, we present an interpretable deep-learning-based ligand image- and re-
ceptor’s three-dimensional (3D)-structure-aware framework to predict compound-protein interactions (LISA-
CPI). LISA-CPI integrates an unsupervised deep-learning-basedmolecular image representation (ImageMol)
of ligands and an advanced AlphaFold2-based algorithm (Evoformer). We demonstrated that LISA-CPI
achieved�20% improvement in the averagemean absolute error (MAE) compared to state-of-the-art models
on experimental CPIs connecting 104,969 ligands and 33 G-protein-coupled receptors (GPCRs). Using LISA-
CPI, we prioritized potential repurposable drugs (e.g., methylergometrine) and identified candidate gut-mi-
crobiota-derived metabolites (e.g., citicoline) for potential treatment of pain via specifically targeting human
GPCRs. In summary, we presented that the integration of molecular image and protein 3D structural repre-
sentations using a deep learning framework offers a powerful computational drug discovery tool for treating
pain and other complex diseases if broadly applied.
INTRODUCTION

Pain, especially chronic pain, afflicts 50 million adults in the

United States1 and 20% of the population worldwide.2

Currently, available analgesics are mainly small molecules

(such as opioids), relieving the pain but with deleterious

side effects, in particular drug addiction.3 The opioid

epidemic highlights an urgent need to develop non-opioid

analgesics with less addiction for treating pain. G-protein-
Cell Reports Methods 4, 100865, Octo
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coupled receptors (GPCRs) are prevalent druggable targets

for treating pain4 since they trigger intracellular signaling

events in the sensory neurons and, thereby, participate in

most pathophysiological processes in pain perception.5

Recent advances uncovered biased agonists of opioids or

other GPCRs (such as the m-opioid receptor) to avoid adverse

effects, such as addiction and sedation.6–8 However, the

identification of distinct chemotypes yielding analgesia

without drug addiction side effects by targeting GPCRs is still
ber 21, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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a challenge.9 In addition to drugs, it is worth noting that gut

microbiota and its metabolites have been reported to be

involved in the morbidity of chronic pain.10 For example,

decreased abundance of the short-chain fatty acid (such as

butyrate) derived from Bacteroides is associated with long-

term pain,11 which targeted several potential GPCRs (such

as FFAR3 and GPR109A).12

Traditional bioactive ligands targeting disease-related pro-

teins (including GPCRs) were determined by biological experi-

ments, which are costly and time consuming.13 Recent ad-

vances suggested that artificial intelligence (AI)-based

compound-protein interaction (CPI) predictions hold great prom-

ise in identifying potential drugs and drug repurposing.14 Tradi-

tional machine learning algorithms, such as support vector ma-

chine,15,16 random forest,17 and kernel regression,18 have been

widely used by training handcrafted molecule fingerprint de-

scriptors and protein sequence descriptors. Recent deep-

learning-based end-to-end methods, such as DeepDTA19 and

GraphDTA,20 were reported to improve predictive performance.

However, these handcrafted chemical and protein sequence de-

scriptors require significant domain expert knowledge and often

fail to capture pharmacologically relevant features of CPIs due to

low dimensionality. Recently, our team developed an unsuper-

vised deep learning framework (ImageMol21) by capturing phar-

macologically relevant features of ligands from molecular image

representations. ImageMol showed improved accuracy in CPI

predictions compared with sequence-based models and

graph-basedmodels.21 In addition, the recent AlphaFold2model

can systematically predict the structures of the whole human

proteome based on amino acid sequences,22 suggesting it is

possible to apply three-dimensional (3D) structural information

for CPI prediction. Moreover, a few recently developed deep

learning technologies that consider the 3D structure of the pro-

teins were shown to offer promising improvement in CPI

predictions.23

In this study, we present a deep learning framework to predict

CPIs by integrating ligand image-based and protein 3D-struc-

ture-based representations (termed LISA-CPI). Our approach

outperformed existingmodels on CPI prediction of GPCR and ki-

nase benchmarks (ImageMol) through chemical awareness and

3D protein residue pair representations. In order to identify po-

tential treatment approaches for pain, we utilized LISA-CPI to

predict potential medicines from United States Food and Drug

Administration (FDA)-approved drugs and gut-microbiota-

derived metabolites. As a result, we prioritized potential repur-

posable drugs (such as methylergometrine) and gut metabo-

lite-based (such as citicoline) candidate treatments for pain by

specifically targeting pain-associated GPCRs. In summary, the

LISA-CPI framework offers a useful computational drug discov-

ery framework for pain and other human diseases if broadly

applied.
Figure 1. Schematic illustration of the LISA-CPI framework

(A) A diagram depicting the roles of GPCRs in pain. Our work aims to predict the in

GPCRs (right).

(B) Model architecture. Arrows indicate the flow of the information from the input

part to the final prediction part.
RESULTS

A deep learning framework of ligand image- and 3D-
structure-based representation
To predict interactions between compounds (e.g., drugs or gut

metabolites) and pain-associated GPCRs (Figure 1A), we devel-

oped a deep learning framework that incorporated an unsuper-

vised deep learning algorithm (ImageMol)21 and a neural

network-based algorithm (Evoformer) derived from

AlphaFold222 (cf. STAR Methods). ImageMol was utilized to

extract key molecular structure features from�10 million molec-

ular images with high accuracy, while Evoformer outputs protein

sequence alignment and pair representations. These structure

representations contain key information about the residue loca-

tion and the relation between the residue pairs. The LISA-CPI

framework is illustrated in Figure 1B. Overall, LISA-CPI consists

of four steps: (1) extracting high-dimensional latent features with

chemical awareness from encoded molecular images by

ImageMol,21 (2) encoding structural representations from the

protein amino acid sequence by Evoformer and then projecting

them into low-dimension space, (3) integrating the features

from steps 1 and 2 and constructing a neural network, and (4) uti-

lizing a multi-layer perceptron (MLP) to predict CPIs (activity is

regarded as the label) from the combined features of com-

pounds and proteins.

Performance evaluation of LISA-CPI on benchmark
ligand-GPCR interactions
To validate the performance of the LISA-CPI framework, we

first evaluated the top 20 GPCRs (regression task) that have

the most binding activity data retrieved from the ChEMBL and

GLASS databases24,25 (see STAR Methods). The training data-

set contains 71,757 ligand-GPCR pairs, ranging from 1,761

pairs for OX2R to 6,897 pairs for DRD2 (Table S1). We only

kept potent bioactive compounds (inhibition constant/potency,

Ki < 10 mM) with an average pKi of 7.18 (Figure S1A). We utilized

70% of the dataset of each GPCR as the training set and the

rest of the dataset as the test set. 10-fold cross-validation

was carried out on the training set. The mean absolute error

(MAE) and Pearson correlation coefficient (R) of the predicted

and ground-truth activity values were calculated to evaluate

the predictive performance. Here, we took the state-of-the-

art ImageMol,21 CHEM-BERT,26 and MolCLR27 models as the

comparison. For each GPCR dataset, we observed that the

predicted MAE of binding activity via LISA-CPI is smaller than

that of the other three models (Figure S1C), suggesting the

high accuracy of LISA-CPI. Specifically, combining ligand im-

age- and protein structure-based representations improves

the MAE by �20% (0.248 vs. 0.199; Figure S1C) compared to

ligand image-based representation alone (ImageMol),21 the

second-best performing model.
teractions between approved drugs/gut metabolites (left) and pain-associated

through both the ligand image learning part and the receptor structure learning
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We next used t-distributed stochastic neighbor embedding (t-

SNE) to visualize the distribution of the embedding space of the

compounds and their corresponding MAEs on all GPCR test da-

tasets. We found that the MAEs of 90% of datasets are lower

than 0.414 (Figure S1D). Furthermore, we revealed a strong cor-

relation between the experimental activity values and the pre-

dicted activity values across 17 GPCR datasets via LISA-CPI

(R > 0.5; Figures 2A and S2A). In particular, LISA-CPI exhibited

stronger correlations across all 5 pain-associated GPCR data-

sets (R > 0.7), including HRH3, MC4R, OPRK, OPRM, and

OX2R. In comparison to ImageMol, LISA-CPI also achieved

lower MAEs (higher accuracy) for HRH3 (0.150 [LISA-CPI] vs.

0.234 [ImageMol]), MC4R (0.174 vs. 0.269), OPRK (0.212 vs.

0.287), OPRM (0.208 vs. 0.278), and OX2R (0.163 vs. 0.238).

These results suggested that LISA-CPI outperformed

ImageMol after we integrated protein 3D-structure-based repre-

sentation in predicting experimentally determined ligand-GPCR

interactions.

We next turned to interpret LISA-CPI models and generated

the heatmaps of molecular images using Grad-CAM (gradient-

weighted class activation mapping)28 to visualize the attention

pattern of LISA-CPI on compounds with different activity values.

We selected 3 example compounds with high affinity (pKi > 8) or

low affinity (pKi < 6), individually shown in Figure S2B. We found

that for compounds exhibiting high affinities, higher attention

areas (depicted by warmer color areas) cover the majority of

the compound structures. These high-attention areas are partic-

ularly focused on the important functional substructure of active

ligands, such as hydroxy groups, phenyl groups, carbonyl

groups, and ether groups (Figure S2B). For GPCR ligands with

low affinities, most areas of the compounds are covered by

lower-attention areas (depicted by cooler color areas), and

only very few functional groups are covered by higher-attention

areas (Figure S2C). These findings confirm that LISA-CPI

captured meaningful features that can be used to help interpret

predictive results. In addition, we also visualized GPCR struc-

tural representations along the amino acid sequence. For

example, we observed that most peaks (marked in blue vertical

lines) of structural representations fromCCR2 and NK1R resided

in transmembrane (TM) helical domains (marked in light blue

areas, Figure S2D), which contain the main ligand-binding

sites.29,30 Taking these results together, LISA-CPI offers an ac-

curate tool to predict ligand-GPCR interactions.
Performance evaluation of LISA-CPI on benchmark
compound-kinase interactions
To further validate our proposed LISA-CPI model, we also tested

10 kinase targets with a classification task. The training dataset

contains 1,046 compound-kinase pairs, ranging from 80 pairs for
Figure 2. Predictive performance on selected GPCR target receptors

(A) Predictive performance of the proposed LISA-CPI on 6 selected top-20 GPCR

target are contour plotted with point density. Pearson’s correlation coefficient R

(B) Predictive performance of the proposed LISA-CPI on 8 selected pain-associa

each GPCR target are contour plotted with point density. Pearson’s correlation c

(C) Receiver operating characteristic (ROC) curves showcasing the predictive perf

BERT, and MolCLR) on 2 selected kinase targets and the entire kinase dataset. S

curves obtained from 10-fold cross-validation, respectively.
CDK4 to 110 pairs for FLT3 (Table S1). We trained and assessed

LISA-CPI following the procedure outlined in the STARMethods.

We continue to use the state-of-the-art ImageMol model,21

CHEM-BERT model,26 and MolCLRmodel27 as the comparison.

LISA-CPI achieved high area under receiver operating charac-

teristic (AUROC) scores for 8 kinase targets (AUROC > 0.75,

best AUROC of 0.90 on EGFR). In particular, LISA-CPI improves

the AUROC by 11.6% (0.77 vs. 0.69) across all kinases

compared to ImageMol, the second-best performing model

(Figures 2C and S3A). Altogether, these results show that

LISA-CPI offers an accurate tool to predict ligand-kinase interac-

tions as below.
Performance in identifying ligands for pain-associated
GPCRs
Next, we sought to examine the performance of LISA-CPI on

pain-associatedGPCRs.We trained new LISA-CPImodels using

the collected experimental CPI dataset specifically for the 13

pain-associated GPCRs. In total, 13 reported acute-pain- or

chronic-pain-associated GPCRs were identified based on previ-

ous reports31,32 (see STAR Methods and Table S2), including

opioid receptors (OPRM, OPRD, and OPRK),33 serotonin recep-

tors (5HT1A, 5HT1B, 5HT1D, 5HT2A, and 5HT7R),34 cannabi-

noid receptors (CNR1 and CNR2),35 a metabotropic glutamate

receptor (mGluR5),36 a chemokine receptor (CCR2),37 and a ta-

chykinin receptor NK-1 (NK1R).38 As shown by Figure S3B,

5HT1A and 5HT2A and the opioid receptors are also listed in

the top 20 most well-studied GPCRs. As is shown in

Figures 2B and S3D, LISA-CPI achieved high performance

(higher R) for most of the pain-associated GPCRs (R > 0.65,

best R of 0.81 on 5HT1D) in the binding affinity predictions.

Compared to ImageMol, the MAE values of LISA-CPI models

have been improved by 20.8% on average and 32.2% at best

(5HT1D) over the ImageMol (Figure S3B). We used t-SNE to visu-

alize the distribution of the embedding space of the compounds

and their corresponding MAEs on pain-associated GPCR test

datasets. Similar to Figure S1D, the MAEs of 90% of datasets

are lower than 0.406 (Figure S3C). For the potential treatment

of pain, either an agonist or antagonist for pain-associated

GPCRs was predicted (Table S2). Thus, we next trained a

LISA-CPI classification model on a dataset featuring 12 pain-

associated GPCRs (excluding CCR2 because of the antago-

nist-only dataset for CCR2). The dataset contains 10,816 com-

pound-GPCR pairs. LISA-CPI also showed a better AUROC on

12 pain-associated GPCRs than that of ImageMol (Figure S4).

Specifically, LISA-CPI improves the AUROC by 19.2% on

average compared to ImageMol. Overall, LISA-CPI proves to

be generalizable on GPCRs, in particular for pain-associated

GPCRs.
targets. Predicted pKi and ground-truth pKi of each compound for each GPCR

and p values are labeled.

ted GPCR targets. Predicted pKi and ground-truth pKi of each compound for

oefficient R and p values are labeled.

ormance of the proposed LISA-CPI and three other models (ImageMol, CHEM-

olid lines and shades represent the mean and one standard deviation of ROC
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Wenext turned to check the top 10 example compounds inter-

acting with 5 pain-associated GPCRs, including CNR1, CNR2,

5HT1B, NK1R, and 5HT7R, because the predicted correlation

of these GPCRs ranges from 0.57 to 0.75. For each GPCR, we

randomly selected one compound with high activity (pKi > 8)

and one with low activity (pKi < 6). Consistent with Figures S2B

and S2C, we observed that the 5 high bioactive compounds

(pKi >8; Figures 3 and S5A) capture more structural information

on molecular images compared to the 5 low bioactive com-

pounds (pKi < 6; Figures 3 and S5B). Furthermore, we inspected

the binding modes to structurally visualize the CPI using struc-

ture-based molecular docking simulations. We modeled GPCR

structures by AlphaFold2 and performed molecular docking for

each druggable pocket in each GPCR structural model (see

STAR Methods). We found that high bioactive compound-pro-

tein pairs exhibit superior binding modes and docking scores

(Figures 3 and S5A). For example, CHEMBL1909850 was re-

ported to inhibit the CNR1 receptor with higher affinity (pKi:

8.5239) compared to CHEMBL497392 (pKi: 5.00). We found

that CHEMBL1909850 showed a stronger chemical structure

awareness in the image representation than a low bioactive

molecule of CHEMBL497392 (Figure S5B). CHEMBL1909850

has a stronger molecular docking score (�7.49) with the CNR1

receptor than CHEMBL497392 (docking score: �5.67), further

supporting our predictions. To validate our predicted binding

modes, we first compared the structure similarity between

AlphaFold2 and literature-reported crystal structures.

AlphaFold2 models of pain-associated GPCRs showed high

structural confidence (predicted local distance difference test

[pLDDT] score > 70) and high quality in TM regions (TM root

mean standard deviation [TM-RMSD] < 1 Å; Figures 3 and

S6A). The predicted position of the high-affinity molecule aligned

well with the reported ligand in the crystal structure compared to

the low-affinity molecule (Figure 3). Beyond the binding affinity,

we also checked the predicted agonists of CNR2 (Figure 3A)

and antagonists of NK1R (Figure 3B). Consistently, high-affinity

functional molecules showed a strong chemical awareness in

image representation, a high docking score, and good alignment

with the crystal structures (Figure 3). Taken together, combined

with ligand-GPCR binding mode analysis, we demonstrated that

our LISA-CPI model achieved high performance in identifying

both agonists and antagonists for pain-associated GPCRs.
Discovery of repurposable drugs via targeting pain-
associated GPCRs
We next sought to uncover potential FDA-reported drugs that

may act on pain-associated GPCRs as candidate treatments

for pain. We used all the compounds in the pain dataset and

the 13 pain-associated GPCRs to train LISA-CPI. Subsequently,

we employed this trained model to predict ligand-GPCR interac-
Figure 3. Representative heatmap of molecules and putative binding m

(A) Heatmaps of attention levels on ligand images with high activity value (pKi

structures of these molecules with the CNR2 receptor are shown in the secon

structure for CNR2 at binding positions is shown in the third and fourth columns

(B) Heatmaps of attention levels on ligand images with high activity value (pKi >

structures of these molecules with NK1R receptor are shown in the second to fou

for NK1R at binding positions is shown in the third and fourth columns.
tions between 2,308 FDA-approved drugs and 13 pain-associ-

ated GPCRs, as we presented earlier. The top 20 drugs with

the highest predicted binding affinity for each GPCR were

considered the candidate repurposable drugs. As a result, of a

total of 42 prioritized drugs, brexpiprazole, ergometrine, fonda-

parinux, mebutamate, meprobamate, methylergometrine, rola-

pitant, and sucralfate were predicted to interact with all 13

GPCRs (Figure 4A; Table S2). Here, we prioritized several top-

predicted drug-GPCR pairs that may hold potential for treating

pain (Figures 4B and 4C). In particular, 4 drugs exhibited superior

chemical awareness in molecular image representation

(Figure 4B).

Mebutamate is an anxiolytic and sedative drug with anti-hyper-

tensive effects.40 We predicted that mebutamate is a strong

agonist with CNR1 (predicted activity score: 10.03), including

two hydrogen bonds with residues Asp149 and Tyr328 (Fig-

ure 4C). Buprenorphine has been reported to treat acute pain,

chronic pain, and opioid use disorder.41 It was reported as a

m-opioid receptor partial agonist,42 consistent with our findings

(interacting with OPRM, predicted activity score: 8.80). Apart

from the opioid receptors, we also found the drugs that potentially

interact with non-opioid receptors. For example, methylergome-

trine was reported to benefit both the prevention and acute treat-

ment of migraine.43 We predicted that methylergometrine is an

antagonist of the 5HT2A receptor (predicted activity score:

9.47; Figure 4C). In addition, we also found that ergometrine

(used for postpartumhemorrhage44) has a high antagonistic affin-

ity (predicted activity score: 8.61) with 5HT2A, aligning with the

previous report45 (Figure S5C). Rolapitant is used to prevent de-

layed chemotherapy-induced nausea and vomiting.46 We pre-

dicted that it is an antagonist of NK1R (predicted activity score:

8.90), which is consistent with rolapitant being an antagonist of

NK1R.47 Vilazodone, an anti-depression drug,48 was predicted

to be an agonist of the 5HT1A receptor by forming a hydrogen

bond with Asn386 and strong hydrophobic interactions (pre-

dicted activity score: 9.31; Figure S5D). Collectively, these FDA-

approved drugs prioritized by LISA-CPI may potentially interact

with pain-associated receptors, especially non-opioid receptors.
Discovery of gutmicrobial metabolite via targeting pain-
associated GPCRs
To uncovermicrobial metabolites10,49–51 for the potential preven-

tion and treatment of pain, we used LISA-CPI to predict the CPIs

between 13 pain-associatedGPCRs and 379 human gut-derived

metabolites retrieved from a previous study.52 For each GPCR,

we prioritized the top 20 gut metabolites that may interact with

the GPCR via the LISA-CPI models. The gut bacteria that have

the largest level of the investigated metabolites were inspected.

Figure 5A shows the network between the gut metabolites and

their potential binding GPCRs with the bacteria information
odes for pain

> 8), low activity value (pKi < 6), and agonist (first column). Putative binding

d to fourth columns. Structural comparison between AlphaFold2 and crystal

.

8), low activity value (pKi < 6), and antagonist (first column). Putative binding

rth columns. Structural comparison between AlphaFold2 and crystal structure
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(Table S3).Wegrouped themetabolites by themicrobiota genera

(see STARMethods). In total, 18 generawere achieved. Of those,

Clostridium and Bacteroides have the most metabolites (11 and

7, respectively). Previous studies have reported that Clostridium

andBacteroideswere highly associatedwith chronic pain bypro-

ducing butyrate and propionate.11,53 Citicoline (cytidine 50-di-
phosphocholine) and NAD (nicotinamide adenine dinucleotide)

are the two most abundant metabolites in the bacterium Bacter-

oides (log2 fold changes are 13.4 and 14.5, respectively, bacteria

vs. germ-free control). They also have high attention levels

(warmer color) on the metabolites and even higher attention

levels on important functional groups, especially hydroxyl

groups, amines, carboxyl groups, and carbonyl groups, as sug-

gested by the LISA-CPI framework (Figure 5B). We predicted

that these gut microbial metabolites may interact with all 13

pain-associated GPCRs, and the best predicted candidate

GPCRswere 5HT2A (predicted activity score of 8.35 as an antag-

onist) and NK1R (predicted activity score of 8.19 as an antago-

nist), respectively (Figure 5C). In addition, citicoline and NAD

metabolism have been reported to prevent peripheral neuro-

pathic pain in animal models.54,55 For instance, 10 gut metabo-

lites, such as tryptamine and indoleacrylic acid, were prioritized

from the bacterium Clostridium. Of those, tryptamine has the

highest level in Clostridium (log2 fold change: 12.2). Tryptamine

may be involved in alleviating chronic pain by mediating the ky-

nurenine signaling pathway.56 Another tryptophanmetabolite, in-

doleacrylic acid, was reported to mitigate the inflammation

response.57 We predicted indoleacrylic acid as an agonist of

OPRK (predicted activity score: 7.07) by forming three hydrogen

bonds with residues His108, Asn109, and Tyr287 (Figure S5E).

Clostridium metabolite 5-aminoimidazole-4-carboxamide-1-

beta-ribofuranosyl 50-monophosphate (AICAR) is an AMPK acti-

vator that attenuates inflammatory pain.58 We found that it may

inhibit the NK1R with a predicted activity score of 7.31 (Fig-

ure S5F). Prevotella, a well-studied genus of bacteria, is found

to be significantly associated with increased abdominal pain.59

Furthermore, we found a high level of taurine in Prevotella and

interaction with 5HT1A (Figure 5C). Taurine was discovered to

regulate inflammatory diseases with joint pain.60 Another fecal

bacterium, Clostridiales, was reported to be significantly related

to irritable bowel syndrome, which is characterized by abdominal

pain. We discovered that the N-acetyltryptophan derived from

Clostridiales showed a strong agonistic activity with the 5HT1B

receptor (Figure 5C). Together, these results show that gut me-

tabolites identified by LISA-CPI may offer potential molecular

therapy for pain treatment.
DISCUSSION

In this study, we developed the prototype of a deep-learning-

based drug discovery framework that integrates both molecular
Figure 4. Drug repurposing predictions targeting pain-associated GPC

(A) A network illustrating the interaction between the 13 pain-associated GPCR ta

(Table S3). Orange lines represent agonists to the GPCR targets, and green lines

(B) Four drugs were selected from the 20 FDA-approved drugs with the highest pre

drugs are illustrated. A warmer color indicates a higher attention level, and a coo

(C) Putative binding structures of the molecules in (B) and their corresponding G
image representation for ligands and protein 3D structure repre-

sentation in predicting the binding activity using ligand-GPCR in-

teractions. The proposed LISA-CPI framework leverages the

pretrained molecular encoder of ImageMol21 and the pretrained

Evoformer from AlphaFold2,22 which can take advantage of pre-

trained models to achieve low computational cost and high ac-

curacy. We demonstrated that the new LISA-CPI framework

has superior performance compared to state-of-the-art models

in predicting the binding activities for both benchmark and

pain-associated ligand-GPCR interaction datasets. Via LISA-

CPI models, we computationally prioritized new potential

repurposable drugs or gut microbial metabolites as candidate

non-addictive treatments for pain by specifically targeting

pain-associated GPCRs.

The advantage of the LISA-CPI framework over the

ImageMol framework is that it handled not only molecular im-

ages but also protein structure representations for each com-

pound-protein (ligand-GPCR) pair. The structural representa-

tion encoded by Evoformer captures latent structural and

functional information, while the latent features of molecular im-

ages provide insights into the global and local structural infor-

mation of molecules, along with important chemical properties.

This integration enables LISA-CPI to capture structural infor-

mation from both receptors and ligands, which is the keymech-

anism underlying its good performance. Additionally, the inte-

gration of receptors’ structure representations and molecular

images allows the LISA-CPI framework to be applicable to mul-

tiple protein targets simultaneously, while ImageMol is limited

to one protein target at a time. Besides, with receptor structure

and function information, the LISA-CPI framework can predict

not only accurate CPI activity (binding affinity) but also function-

ality (agonist/antagonist) without knowledge of structural

binding site information. Furthermore, the LISA-CPI framework

displayed a superior performance to the state-of-the-art

ImageMol. The LISA-CPI framework achieved a 20% improve-

ment in the MAE compared to the ImageMol framework on

average, with only one exception: NK1R. For NK-1R, the

LISA-CPI framework achieved a comparable performance to

ImageMol. For functional prediction, we predicted 12 pain-

associated GPCRs, except for CCR2 because of the antago-

nist-only dataset. The LISA-CPI framework also outperformed

state-of-the-art molecular representation models: sequence-

based26 and graph-based models.27
Limitations of the study
We acknowledge several potential limitations in the current

LISA-CPI framework. First, the model only encodes 2D images

of molecules, lacking 3D information on the spatial atomic po-

sitions of molecules. Furthermore, single protein representa-

tions derived from the Evoformer of AlphaFold2 were employed

rather than 3D protein structures of GPCR targets or the
Rs

rgets and the 20 FDA-approved drugs with the highest predicted activity values

indicate antagonists to the GPCR target.

dicted activity values, and the heatmaps of attention levels on these 4 selected

ler color indicates a lower attention level.

PCR targets.
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ligand-receptor binding complexes. One possible approach to

overcome these limitations is to incorporate the 3D structural

information of both ligands and receptors by using graph or

3D mesh data of molecules and proteins. The recent advance-

ment of AlphaFold361 in biomolecular interaction prediction

holds promise for improving GPCR model accuracy. We

believe that by integrating AlphaFold3, we could potentially

elevate the performance of LISA-CPI. A previous study show-

cased a graph neural network model by considering the spatial

interactions between ligands, paving a way for effectively

leveraging 3D information.62 Another way to improve the per-

formance and generalization of the LISA-CPI framework is to

expand our model to a multi-modal deep learning framework.

This framework would not only consider information in ligand

images or receptor structures but also other representations,

such as the physical or chemical properties of both ligands

and receptors, Simplified Molecular Input Line Entry System

(SMILES) strings of the ligands, and amino acid sequences of

the receptors. Using vision transformers,63 which consider

more ‘‘global’’ information of the molecular images, to replace

the currently used convolutional-neural-network-based molec-

ular encoder may also provide benefits to the LISA-CPI frame-

work. Additionally, while some studies suggest AlphaFold2-

generated protein structures may not be universally applicable

for structure-based drug design due to relatively low accuracy

in side chains,64,65 a recent paper highlights AlphaFold2’s po-

tential in structure-based drug discovery, especially for the

GPCR protein family.66 Additional investigation is necessary

to determine the case-by-case effectiveness of AlphaFold2

structures for drug discovery.

Although we only explore the interactions between drug/gut

metabolites and pain-associated GPCR targets in this study,

we believe that the LISA-CPI framework has broader applica-

tions beyond modulation of pain. To exhibit our predictions at

3D scale, we also showed the putative binding modes of the

selected cases, while the accuracy of molecular docking is still

limited.67 These predicted drug/gut metabolite-GPCR interac-

tionsmay shed insight into further functional validations. Gutme-

tabolites have been implicated in various diseases, such as dia-

betes,68 depression,69 and Alzheimer’s disease (AD).70 A

previous study revealed the molecular relationships between

gut metabolite and GPCR targets in AD.71 Thus, it is essential

to predict the targets of gut metabolites to shed light on the roles

of gut metabolites in disease pathology and aid in the identifica-

tion of novel therapeutic strategies. Beyond GPCRs, the LISA-

CPI framework is able to predict other targets by utilizing Evo-

former. For example, many targets for AD that have been derived

from genetic analysis, such as PLCG272 and SORL1,73 have no

reported bioactive ligands. Importantly, our predictions on re-

purposable drugs and gut metabolites targeting pain-associated

GPCRs require further experimental validations in the future.
Figure 5. Gut-microbiota-derived metabolite predictions targeting pai

(A) A network illustrating the interaction between the 13 pain-associated GPCR tar

represent agonists to the GPCR targets, and green lines indicate antagonists to

(B) Heatmaps of attention levels on 4 selected gut-microbiota-derivedmetabolites

lower attention level.

(C) Binding structures of the metabolites in (B) and their corresponding GPCR ta
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METHOD DETAILS

Description of dataset
Total 71,757 ligand-GPCR pairs for 20 top-ranked GPCRs and 33,212 pairs for 13 pain-associated GPCRs were retrieved from the

ChEMBL and BindingDB databases.25,74 To be accurate, only pairs with Ki value were retained. Duplicate ligand-GPCR pairs were

removed based on InChIKey and UniProt ID. The mean of activities was adopted if several values were for one pair. For the top-20

GPCRdataset, 76.6%of compounds (55,001 compounds in total) have an activity value between 6 and 9, and themean activity value

of all compounds is 7.18 (Figure S1A). For the 13 pain-associated GPCR dataset, 74.9% of compounds (25,826 compounds in total)

have an activity value between 6 and 9, and the mean activity value of all compounds is 7.28 (Figure S1B). 10,816 ligand-GPCR pairs

featuring agonist/antagonist for 13 pain-associated GPCRs were obtained. As only antagonist is available for CCR2, we excluded

CCR2 from the training dataset of agonist/antagonist prediction to keep the fairness of the LISA-CPI classification model. 2,308

FDA-approved drugs (only small molecules) were assembled from Drugbank (version 2021.1).75 379 microbial metabolites from hu-

man gut strains in vitro were collected from the previous study.52 We further collected compound-kinase interactions for 10 human

kinases (Table S1) from ChEMBL database.

Description of the LISA-CPI framework
As shown in Figure 1B, the LISA-CPI framework consists of 4 parts, ligand molecular image feature extraction part based on

ImageMol,21 receptor protein structure representation extraction part based on Evoformer of AlphaFold2,22 feature combination

and processing part, andCPI prediction part. The ligandmolecular image feature extraction part is based on the pretrainedmolecular

encoder FF from ImageMol

f = FFðxÞ (Equation 1)

where F stands for the trainable parameters of the molecular encoder F, x˛Rd3d33 stands for the input molecular image with the

shape of d3d and 3 channels, f ˛Rcf stands for the latent feature, and cf stands for the number of latent feature channels. The re-

ceptor protein structure representation extraction part uses the first part of AlphaFold2, which consists of first searching for MSA
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representation and pair representation using the amino acid sequence and then using 48 Evoformer blocks to produce the interme-

diate representations. The intermediate representations include a single representation s˛Rr3cs and a pair representation p˛
Rr3r3cp , where r stands for the number of residues of the protein, and cs and cp stand for the number of single representation channels

and the number of pair representation channels, respectively. The pair representations can become extremely large for proteins with

long amino acid sequences. To keep a low computational cost, we only use the single representation in the rest of the model. Next,

we calculate the mean value over the residue dimension of s to obtain s0 ˛Rr , the 1D structure representation. We then perform min-

max normalization to scale the range of s0 to ½ � 1;1�. We observe that s0 is highly noisy with a lot of spikes. Figure S6B (left) shows a

highly noisy 1D s0 of 5HT1A. We apply Gaussian smoothing to s0 to reduce spike noises

uðtÞ = ðs0 �GsÞðtÞd
Z N

�N

Gsðt � tÞs0ðtÞdt (Equation 2)

GsðtÞ =
1

2ps2
e
� t2

2s2 (Equation 3)

where u stands for the smoothed structure representation,Gs is the Gaussian filter with standard deviation s, t stands for the position

at the single representation, and t stands for the free variable during the integral. Figure S6B (middle) shows the smoothed structure

representation of 5HT1A. Tomake sure all the structure representations have the same dimension for convenient training, we perform

zero padding to both sides of u to a dimension of 1,024. Figure S6B (right) shows the zero-padded u of 5HT1A with a dimension of

1,024.

We then concatenate the latent feature f and the smoothed single representation u to get the combined features

z = f 4u; z ˛ Rcs+cf (Equation 4)

which includes both ligand molecular information and receptor protein structure information. We use the combined features z to

feed into the activity value prediction model GQ by = GQðzÞ (Equation 5)

where Q is the trainable parameters of the activity value prediction model, and by ˛R is the predicted activity value.

For regression tasks, we used Mean Squared Error (MSE) to calculate the loss between the predicted activity value by and the

ground truth activity value y to measure the performance of our model and update trainable parameters in our model through back-

propagation

L =
1

n

X
i

ðyi � byiÞ2 =
1

n

X
i

ðyi � GQðziÞÞ2 =
1

n

X
i

ðyi � GQðfi4uiÞÞ2

=
1

n

X
i

ðyi � GQðFFðxiÞ4uiÞÞ2; i = 1;2;.; n

(Equation 6)

where n is the number of samples in the training dataset. The reason we choose MSE instead of Mean Absolute Error (MAE) is that

MAE is minimized by conditional median which may lead to bias during optimization while MSE is minimized by conditional mean

which avoids such issue.

For classification tasks, we used Binary Cross Entropy (BCE) to calculate the loss between the predicted class by and the ground

truth class y to update trainable parameters in our model through backpropagation

L =
1

n

X
i

ð � wiðyi $ log byn + ð1 � ynÞ $ logð1 � bynÞÞÞ (Equation 7)

where n is the number of samples in the training dataset.

We only optimize the ligand molecular image learning part and the activity value prediction part with all parameters of the protein

structure learning part frozen, because Evoformer has a relatively large size which can take a long time to train.

Molecular docking
3D structure models of GPCRs were retrieved from AlphaFold2 Website (https://alphafold.ebi.ac.uk/). 2D structures of small mole-

cules were processed by Open Babel. All protein structures were prepared by using the Protein Preparation Wizard module (Schrö-

dinger Inc, version 2020.1). Fpocket suite (version 2.0) was utilized to characterize potential druggable binding sites.76 Molecular

docking was processed by AutoDock Vina (version 1.1.2).77
e2 Cell Reports Methods 4, 100865, October 21, 2024
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Model tuning and hyperparameter selection
To train our models, a scheduled learning rate was set. The initial learning rate was set to 1e� 3, and the weight decay was set to 5e� 5.

The first 10 epochs were scheduled to warm up the learning rate, with three learning rate milestones at 10 epochs, 20 epochs, and 30

epochs. The AdamW78 optimizer was used to find the optimal trainable parameters of the models. Each model was trained for 80

epochs in total, with early stopping implemented.

For baseline comparison methods, the models were trained based on the pre-trained models provided by the original studies. The

default hyperparameters of these models, as provided in the original code, were used to train baseline comparison methods.

QUANTIFICATION AND STATISTICAL ANALYSIS

Performance evaluations of the methods for binding affinity prediction tasks (regression tasks) were measured using mean absolute

error (MAE) and Pearson’s correlation coefficient (R).

The MAE is calculated as follows:

MAE =
1

n

Xn

i = 1

jyi � xij (Equation 8)

where n is the number of compounds in the test dataset, which is 30%of the total dataset, yi is the i
th actual binding affinity value, and

xi is the i
th predicted binding affinity value. Specifically, 10-fold cross validation was performed on the training dataset to compute the

mean and standard deviations of the MAEs.

Pearson’s correlation coefficient (R) is calculated as follows:

r =

Pn
i = 1

ðyi � yÞðxi � xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1

ðyi � yÞ2 Pn
i = 1

ðxi � xÞ2
s (Equation 9)

where y is the mean of all actual binding affinity values in the test dataset, and x is the mean of all predicted binding affinity values in

the test dataset. The model with the best performance during 10-fold cross validation was used to predict the binding affinity values

and plot contour plots with Pearson’s correlation coefficient (R) in Figure 2.

For the classification tasks, including agonist-antagonist classification and compound-Kinase interaction classification, the per-

formance evaluations were measured with the area under receiver operating characteristic (AROC) curve. The ROC curves were

plotted by calculating the true positive rate against false positive rate at all possible intervals.
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Supplementary Figures 1-6
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Supplementary Figure 1. Visualization of bioactive datasets, 
performance comparison, and distribution of compounds. a, 
Distribution of active value (pKi) of compounds in the top-20 GPCR 
dataset. 76.6% of all compounds have an activity value between 6 and 
9, and the mean activity value of the dataset is 7.18. b, Distribution of 
pKi of compounds in the pain-related GPCR dataset. 74.9% of all 
compounds have an activity value between 6 and 9, and the mean 
activity value of the dataset is 7.28. Deeper color indicates small number 
of compounds in the corresponding active value ranges, and lighter 
color indicates the opposite. We use a Gaussian distribution curve 
(green dashed line) to fit the distribution of data. c, Mean absolute error 
(MAE) between the original ImageMol model (gray line), CHEM-BERT 
(green line), MolCLR (yellow line), and the proposed LISA-CPI model 
(red line) on the 20 GPCR targets in the top-20 GPCR dataset and the 
mean values of the MAEs. Error bars indicate the uncertainty of both 
models measured by standard deviation. d, Distribution of compounds in 
the test set of the top-20 GPCR dataset visualized using TSNE. 
Predictive performance of each single compound is also visualized with 
colors. Warmer colors (colors close to yellow) indicate lower mean 
absolute error (MAE) or better performance. Cooler colors (colors close 
to purple) indicate higher mean absolute error (MAE) or worse 
performance. Visualization of MAE is capped at 0.414, which 90% of 
compounds in the test set are predicted with MAE lower than this value.
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Supplementary Figure 2. Predictive performance, representative attention heatmaps, 
and structure representations. Please more detailed figure legends in the next page.



Supplementary Figure 2. Predictive performance, representative 
attention heatmaps, and structure representations. a, Predictive 
performance of our proposed LISA-CPI on the rest of 14 of top-20 
GPCR targets. Predicted pKi and actual pKi of each compound for 
each GPCR target are contour plotted with points density. Pearson’s 
correlation coefficient (R) and p values are labeled for each GPCR 
dataset. b, Attention patterns and binding structures of compounds 
with high active value (pKi > 8). c, Attention patterns and binding 
structures of compounds with low active value (pKi < 6). Warmer 
colors (colors close to red) indicate higher attention and cooler colors 
(colors close to purple) indicate lower attention. d, Visualization of 
structure representation of CCR2 (left). Visualization of structure 
representation of NK1R (right). Structure representations are scaled to 
the range of [-1,1] using min-max normalization. Peaks of structure 
representations are marked using blue vertical lines. Light blue areas 
indicate the positions of helical regions which contain key information 
about structures and functions of proteins.



BTK CDK4
Tr

ue
 P

os
iti

ve
 R

at
e 

(T
PR

)

False Positive Rate (FPR)

0

0.5

1

0 0.5 10 0.5 1 0 0.5 1

METFLT3

0

0.5

1
FGFR3 FGFR4 KPCD3FGFR2

0 0.5 1

GPCR

M
ea

n 
A

bs
ol

ut
e 

Er
ro

r (
M

A
E)

NK
1R

GR
M5

5H
T1
A

5H
T1
D

5H
T1
B

CC
R2

OP
RM

CN
R2

5H
T2
A

OP
RK

5H
T7
R

CN
R1

OP
RD

Me
an

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

OPRM

R: 0.69
P < 0.001

OPRD

R: 0.61
P < 0.001

5HT7R

R: 0.61
P < 0.001

CNR1

R: 0.57
P < 0.001

CNR2

R: 0.59
P < 0.001

5.0 8.45 11.9

5.0

8.45

11.9

6.72

10.18

Opioid ReceptorsSerotonin Receptors

5.0 8.45 11.95.0 8.45 11.9

Cannabinoid Receptors

5.0

8.45

11.9

6.72

10.18

5.0 8.45 11.9 5.0 8.45 11.9G
ro

un
d 

tr
ut

h 
pK

i

Predicted pKi

5.0

8.45

11.9

6.72

10.18

0.5 1.0 1.5 2.0 2.5 3.0

Density

TSNE Component 1

TS
N

E 
C

om
po

ne
nt

 2

Mean Absolute Error (MAE)
0 > 0.406

a

b c

d

Supplementary Figure 3. Predictive performance comparison and visualization of 
compounds distribution. Please more detailed figure legends in the next page.



Supplementary Figure 3. Predictive performance comparison and 
visualization of compounds distribution. a, Receiver Operating 
Characterisitc (ROC) curves showcasing the predictive performance of 
LISA-CPI and three baseline models (ImageMol, CHEMBERT, and 
MolCLR) on rest of the 8 Kinase datasets. Solid lines and shades 
represent the mean and one standard deviation of ROC curves obtained 
from 10-fold cross validation. b, Mean absolute error (MAE) between the 
original ImageMol model (gray line) and the proposed LISA-CPI model (red 
line) on the 13 GPCR targets in the pain-related GPCR dataset and the 
mean values of the MAEs. Error bars indicate the uncertainty of both 
models measured by standard deviation. c, Predictive performance of our 
proposed LISA-CPI on the rest of 5 pain-related GPCR targets categorized 
by different receptors. Predicted pKi and actual pKi of each compound for 
each GPCR target are contour plotted with points density. Pearson’s 
correlation coefficient (R) and p values are labeled for each GPCR dataset. 
d, Distribution of compounds in the test set of the 13 pain-related GPCR 
dataset visualized using TSNE. Predictive performance of each single 
compound is also visualized with colors. Warmer colors (colors close to 
yellow) indicate lower mean absolute error (MAE) or better performance. 
Cooler colors (colors close to purple) indicate higher mean absolute error 
(MAE) or worse performance. Visualization of MAE is capped at 0.406, 
which 90% of compounds in the test set are predicted with MAE lower than 
this value.
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ImageMol on the agonist-antagonist datasets. Solid lines and shades 
represent the mean and one standard deviation of ROC curves obtained 
from 10-fold cross validation.
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Supplementary Figure 5. Representative heatmaps and putative binding modes 
targeting pain-related GPCRs. a, Heatmaps of attention levels on ligand images with high 
activity values, where pKi of these compounds are greater than 8 (first row) and putative 
binding modes of these molecules with their corresponding receptors (second row). b, 
Heatmaps of attention levels on ligand images with low activity values, where pKi of these 
compounds are smaller than 6 (first row) and putative binding structures of these molecules 
with their corresponding receptors (second row). c and d, Drug repurposing predictions 
targeting pain-related GPCRs. c, Left: attention pattern of Ergometrine on 5HT2A 
(antagonist), right: the putative binding structure of Ergometrine on 5HT2A. d, Left: attention 
pattern of Vilazodone on 5HT1A (agonist), right: the putative binding structure of Vilazodone 
and 5HT1A. e and f, Gut-microbiota derived metabolite repurposing predictions targeting 
pain-related GPCRs. e, Left: attention pattern of Indoleacrylic Acid on OPRK (agonist), right: 
the putative binding structure of Indoleacrylic Acid on OPRK. f, Left: attention pattern of 
AICAR on NK1R (antagonist), right: the putative binding structure of AICAR on NK1R. 
Warmer color indicates higher attention, and cooler color indicates lower attention.
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Supplementary Figure 6. Structure comparison and visualization of processing of 
structure representations. a, Structural comparison between AlphaFold2 and crystal 
structure for pain related GPCRs. Root Mean Square Deviation of transmembrane region (TM-
RMSD) between AlphaFold2 and crystal structures are calculated by PyMOL. AlphaFold2 
models are depicted in pLDDT score. Crystal structures are depicted in color gray. Regions 
with pLDDT score > 70 indicates confident (blue and cyan). b, Visualization of processing steps 
of structure representations of 5HT1A. Left: Original highly noisy structure representation of 
5HT1A. Middle: Smoothed structure representation of 5HT1A. Right: Zero padded structure 
representation of 5HT1A. Structure representations are first scaled to the range of [-1,1] using 
min-max normalization, followed by Gaussian smoothing and zero padding.
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