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THE BIGGER PICTURE Millions of samples of gene expression profiles have been deposited into the Gene
Expression Omnibus (GEO) examining the effects in diseases, drugs, gene knockouts, and other perturba-
tions. Although the GEO database can be queried by text prompting the indexed metadata, more methods
to search GEO at the data level are needed. RummaGEO automatically partitions human and mouse GEO
studies into groups of samples suitable for differential expression analysis, producing up- and down-regu-
lated gene sets across most perturbation experiments in GEO. The RummaGEO search engine provides a
user-friendly and fast search for these gene sets. RummaGEO promotes reuse, reanalysis, and integration
of previously performed experiments, it can be accessed via API, and the gene sets are provided for
download.
SUMMARY
The Gene Expression Omnibus (GEO) has millions of samples from thousands of studies. While users of GEO
can search the metadata describing studies, there is a need for methods to search GEO at the data level.
RummaGEO is a gene expression signature search engine for human and mouse RNA sequencing perturba-
tion studies extracted fromGEO. To develop RummaGEO,we automatically identified groups of samples and
computed differential expressions to extract gene sets from each study. The contents of RummaGEO are
served for gene set, PubMed, and metadata search. Next, we analyzed the contents of RummaGEO to iden-
tify patterns and perform global analyses. Overall, RummaGEO provides a resource that is enabling users to
identify relevant GEO studies based on their own gene expression results. Users of RummaGEO can incor-
porate RummaGEO into their analysis workflows for integrative analyses and hypothesis generation.
INTRODUCTION

The Gene Expression Omnibus (GEO) contains tens of thou-

sands of transcriptomics studies and over 2 million genome-

wide gene expression samples collected by RNA sequencing

(RNA-seq).1 Such a massive transcriptomics profiling corpus

covers many organisms, disease conditions, drug treatments,

and genetic perturbations such as knockouts, knockdowns,

and overexpression of genes across tissues, cell types, and

cell lines. Although users of GEO can now download most

RNA-seq datasets as gene expression count matrices,

currently, it is difficult to search the GEO database at the data

level. In addition, metadata about the conditions of each study

and samples within each study have inconsistent formatting and

follow different naming conventions.2 Multiple attempts have

been made to make GEO studies better searchable by stan-

dardizing and restructuring the GEO metadata. For instance,
Patterns 5, 101072, Octo
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GEOmetadb provides an R package together with an SQLite

database to query GEO datasets locally, improving the speed

of querying and the accessibility of the GEO metadata.3

Similarly, Restructured GEO (ReGEO) utilized natural language

processing (NLP) to extract time points and disease terms

from GEO metadata, enabling users to search by these attri-

butes and many other biomedical terms embedded in the

original GEO metadata.4 Another notable effort is MetaSRA.5

MetaSRA maps GEO metadata to ontologies and dictionaries.

These mappings facilitate a metadata search engine that is bet-

ter at identifying samples and studies. A more recent effort uti-

lized multiple GPT4 ‘‘agents’’ to annotate and partition GEO

studies, enabling improved on-the-fly labeling of control and

perturbation conditions. The approach was used to create a

drug-repurposing database from differential expression signa-

tures identified with the method. However, the large language

model (LLM)-powered pipeline was applied to only a subset of
ber 11, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
NC license (http://creativecommons.org/licenses/by-nc/4.0/).

mailto:avi.maayan@mssm.edu
https://doi.org/10.1016/j.patter.2024.101072
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2024.101072&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/


ll
OPEN ACCESS Article
relevant GEO studies, and the annotations are not available for

download and reuse.6

Although these efforts make GEO metadata more accessible

and searchable, these resources do not enable users to search

the GEO database at the data level, nor do they provide direct

access to uniformly aligned samples and signatures from the

processed GEO studies. Several efforts have aimed to uniformly

align GEO RNA-seq transcriptomics samples and make these

accessible to users for reuse. For example, Recount, in its third

iteration called Recount3, uniformly aligned more than 750,000

human and mouse RNA-seq samples from GEO,1 GTEx,7 and

The Cancer Genome Atlas,8 enabling users to more easily inves-

tigate and compare gene expression profiles across these re-

sources.9 Recount3-processed datasets are served via an R

Shiny web-based data explorer and an R package. The GEO

RNA-Seq Experiments Interactive Navigator (GREIN) also uni-

formly aligned over 600,000 GEO RNA-seq samples from hu-

mans, mice, and rats. GREIN-processed data are served via

an interactive R Shiny application that enables users to investi-

gate these studies and request new GEO studies to be aligned

and added to the database.10 We have developed the All RNA-

seq and ChIP-seq (chromatin immunoprecipitation sequencing)

sample and signature search (ARCHS4) resource.11 ARCHS4

provides access to over 2 million human and mouse uniformly

aligned RNA-seq samples from GEO. Another, similar, effort

called Digital Expression Explorer 2 provides uniformly aligned

RNA-seq data for humans and mice and other species.12 These

projects provide valuable uniformly processed data from GEO

and other resources, making such data more accessible and

reusable. However, none of these resources provide the uni-

formly aligned data for search at the signature level.

Differential gene expression signatures associated with these

studies, however, still must be manually computed. This means

users need to manually parse the metadata associated with

each sample to determine proper groupings of samples, which

can be a time-consuming process when attempted for thou-

sands of studies. Various efforts have attempted to compute

signatures automatically or manually from GEO studies.

The Crowd Extracted Expression of Differential Signatures

resource, for instance, provides manually curated and automat-

ically generated gene, drug, and disease perturbation signa-

tures extracted from GEO studies.13 These signatures were

created via a crowdsourcing project that provided participants

with access to the tool GEO2Enrichr.14 GEO2Enrichr enables

users to extract differentially expressed genes from GEO

studies using a browser extension. After identifying the control

and perturbation samples, users can submit the computed sig-

natures to Enrichr for reanalysis. A related project, GEN3VA,15

saves signatures extracted with GEO2Enrichr, and then makes

these signatures available to the public as collections based on

hashtags. The main limitation of GEO2Enrichr and GEN3VA is

that they only work for processing data from microarray

studies. There are many other projects that enable users to

manually annotate GEO studies and their metadata in a user-

friendly interface. For example, GEOMetaCuration provides

users with an intuitive graphical user interface to label and sub-

mit relevant metadata and keywords associated with GEO

studies.16 BioJupies17 enables users to select samples from

GEO studies that were uniformly aligned by ARCHS4 to label
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control and perturbation conditions, compute differential

expression, and perform a variety of analyses and visualizations

using automatically executed Jupyter Notebook in the Cloud. In

a similar vein, TidyGEO18 and iLINCS19 allow users to select

GEO series and examine and label their metadata, as well as

perform multiple data cleaning and filtering tasks, followed by

standard downstream analyses such as differential expression

and pathway analysis. These bioinformatics web applications,

while useful, still require users to manually search and select

their studies and conditions. To enable more efficient, auto-

matic, and large-scale analyses, automated label extraction

has attempted to label GEO metadata based on gene expres-

sion signatures using logistic regression, predicting the tissue,

age, and gender of samples that do not have such annota-

tions.20 While numerous projects aim to facilitate standardiza-

tion, manipulation, and exploration of GEO studies and sam-

ples, there is a need for resources that enable searching GEO

at the data level.

In the past, several efforts have been established to serveGEO

data in a more digestible format. For example, ExpressionBlast

used regular expressions to identify groups of samples and pro-

vided a search engine for normalized expression across studies

for microarray data.21 Search-Based Exploration of Expression

Compendium (SEEK) was developed to provide searching for

gene or gene sets across a subset of human microarray and

RNA-seq studies uniformly processed from GEO.22 Unfortu-

nately, both ExpressionBlast and SEEK are no longer available

or have not been updated since 2015, respectively. A more

recent effort called GENe Expression Variance Analysis

(GENEVA) leveraged the data from ARCHS4 to semi-automati-

cally identify and serve groups of samples from human studies.23

TheGENEVAwebsite that hosted the data and the search engine

to serve these processed datasets is also no longer publicly

available. It should be noted that GENEVA and GEN3VA are

two separate unrelated projects. To facilitate this type of search,

here, we performed automatic identification and grouping of

conditions of GEO samples from thousands of GEO studies,

and then performed differential expression analysis producing

hundreds of thousands of human and mouse signatures that

are made available for search via a user-friendly web interface.

RESULTS

Descriptive statistics of the contents within the
RummaGEO database
The current release of RummaGEO (https://rummageo.com/)

contains 171,441 human and 195,265 mouse gene sets ex-

tracted from 29,294 GEO studies (Table S3). In general, most

genes appear in only a small number of gene sets in both the col-

lections of human sets (Figure 1A) and mouse sets (Figure 1D).

There are many gene sets with less than 100 genes, while the re-

maining sets are relatively equally distributed for both human

(Figure 1B) and mouse (Figure 1E). The maximum gene set size

that we defined is 2,000. Additionally, while most of the studies

contributed just a few gene sets, there are periodic peaks for

studies that contributed more sets. This periodicity is a result

of the possible combinations of conditions and groups with a

bias toward having an even number of groups in the study design

(Figures 1C–1F). By identifying functional terms in sample

https://rummageo.com/
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Figure 1. Distributions of genes and gene sets within the RummaGEO database

(A) Distribution of genes across the human gene sets.

(B) Distribution of gene set lengths across the human gene sets.

(C) Human gene sets per GSE.

(D) Distribution of genes across mouse gene sets.

(E) Distribution of gene set lengths across mouse gene sets.

(F) Mouse gene sets per GSE.

(legend continued on next page)
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metadata, we found that a large majority of studies, GEO series

(GSEs), contain the tissue or the cell type term that is often found

in the source_ch1 metadata field. Diseases were also identified

for over half of the human GSEs (8,428), but many fewer disease

terms were identified for mouse GSEs (2,856). Additionally,

smaller subsets of GSEs mentioned genes, drugs, and cell lines

in the sample or the study metadata (Figures 1G and 1H). From

the identified gene symbols, we also extracted the subsets of ki-

nases and transcription factors (TFs; Figures 1I and 1J). When

plotting the contribution of studies over time, we observe a linear

increase in GSEs added to RummaGEO. The drop in GSEs that

starts in 2022 is due to processing data from the 2023 release of

ARCHS4 (Figure 1K). There is some delay in the process of GEO

study availability, and thus we observe a decline in the number of

studies from 2023, and to a lesser extent from 2022. Silhouette

scores were computed on the dimensionality-reduced samples

to examine whether the samples cluster in expression space

as expected based on the groupings determined by the meta-

data. The silhouette scores for both human and mouse exhibit

a bimodal distribution with one peak where the metadata and

data levels are highly aligned (�0.5) and another peak where

there is less alignment between the data and metadata

(��0.1) (Figure 1L).

Global visualization of gene sets with UMAP
To visualize all of the gene sets within the RummaGEOdatabase,

gene sets were vectorized using inverse document frequency

(IDF) followed by truncated singular value decomposition (SVD)

and visualized as a uniform manifold approximation and projec-

tion (UMAP). SVD was utilized to compute the UMAP more effi-

ciently on the large collection of vectors. Despite the harmoniza-

tion of human and mouse gene symbols, we observe significant

separation of the human and mouse gene sets in the global

UMAP. Utilizing the species as the cluster label, a silhouette

score was computed for the human and mouse gene sets

(0.135) and for shuffled labels (�0.0065 ± 0.0038), indicating

that there is species coherence (p = 1.456e�17) but not com-

plete separation. However, the up and down signatures within

each species are highly mixed (Figure 2A). Next, we used the

metadata extracted from the GSEs and GEO samples (GSMs)

to color the gene sets in the UMAP with the aim of elucidating

additional patterns. When coloring by the most common tissues,

we observe coherent groups of samples (Figure 2B), indicating

that the gene sets in RummaGEO are significantly influenced

by their tissue of origin. We performed Leiden clustering on

the UMAP for gene sets with tissue labels and evaluated the

association between each cluster (n = 258) and tissue type using

a Monte Carlo chi-squared test (chi-squared statistic 1.35e6,

p < 0.0001). Although less pronounced, the gene sets also

appear to group by disease when visualizing the top 10 identified

diseases (Figure 2C). This is particularly apparent for diseases

such as leukemia and lymphoma, possibly due to their blood

and bone marrow origins.
(G) GSEs per year.

(H) Silhouette scores across all human and mouse studies.

(I) Unique and non-unique diseases, drugs, cell lines, tissues, and cell types, and

(J) Unique and non-unique diseases, drugs, cell lines, tissues and cell types, and

(K and L) Unique and non-unique kinase and TFs identified from gene mentions
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Comparison of the RummaGEO and Enrichr gene set
spaces
To better understand the breadth of coverage of the

RummaGEO gene sets, we compared it to the Enrichr24 gene

set space. Enrichr has thousands of curated gene sets spanning

several domains and categories, including transcription, path-

ways, ontologies, diseases and drugs, cell types and tissues,

miscellaneous, and crowd generated. Enrichr gene sets mainly

cluster by category (Figure 3A). Overlaying the RummaGEO

gene sets on top of the Enrichr gene sets, we observe that

most gene sets in RummaGEO fall in the ‘‘crowd generated’’

category. This is expected because the crowd generated cate-

gory is also mainly composed of user-extracted gene sets

from GEO studies (Figure 3B). There is also some overlap be-

tween Enrichr and RummaGEO gene sets in the center of the

UMAP. However, these sets belong to several Enrichr cate-

gories, so it is difficult to discern a clear pattern from that region

of the UMAP plot. To elucidate the similarity of the RummaGEO

gene sets to the different Enrichr categories, we computed the

Euclidean distance between each category centroid, wherein

crowd generated was the closest by a large margin (0.165), fol-

lowed by transcription (1.518), cell types (2.003), and diseases

and drugs (2.417).

Global visualization of genes with UMAP
In addition to examining the RummaGEO gene set space, we can

transpose the matrix to examine the gene similarity space. By

plotting the gene vectors into two dimensions and then automat-

ically identifying clusters of genes, we can identify functional clus-

ters and see whether groups of genes are differentially expressed

by their chromosomal locations. We automatically identified clus-

ters using the Leiden algorithm.25 The algorithm identified 77 hu-

man clusters and 67mouse clusters (Figures 4A and 4B). Formore

than two-thirds of the mouse clusters and for over half of human

clusters, we identified consistent and clear statistically significant

functional terms from the Enrichr24 libraries Gene Ontology (GO)

Biological Processes,26 Kyoto Encyclopedia of Genes and Ge-

nomes (KEGG),27 Reactome,28 and WikiPathways29 (Table S1).

Clusters of genes that co-occur in RummaGEO gene sets

are organized into modules such as innate immune response,

cytokine signaling, cell cycle, and regulation of autophagy

(Figures 4A and 4B), while for other identified modules, there is

less clear functional assignment. Additionally, to assess the influ-

ence of chromosome location on the formation of such modules,

we computed the percentage of genes originating from the same

chromosome in each cluster (Figure 4C). We observe that for both

human and mouse clusters, there are some clusters that exhibit

enrichment for specific chromosomes.

Benchmarking TF and kinase libraries created from the
RummaGEO database
To assess the ability of RummaGEO signatures to recover known

TF targets and kinase substrates, we created TF and kinase gene
genes mentioned in GSE and GSM metadata for human studies.

genes mentioned in GSE and GSM metadata for mouse studies.

in GSE and GSM metadata for human (K) and mouse (L) studies.
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Figure 2. UMAP projection of all human and mouse gene sets in the
RummaGEO database

(A) Human up, human down, mouse up, and mouse down gene sets colored

separately.
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set libraries from the RummaGEO gene-gene co-occurrence

matrix for coding genes. Transcription factors are direct regula-

tors of differential gene expression, whereas kinases are key

cell-signaling molecules that control the activity of TFs and, in

turn, the regulation of gene expression. Kinase activity is used

to regulate cell proliferation, cell growth, immune response,

and many other key biological processes. In addition, kinases

serve as drug targets. Hence, understanding their function, inter-

actions, and activity is critical to understanding the molecular

networks that control cellular phenotypes. To benchmark these

libraries, we utilized ChIP-X Enrichment Analysis 3 (ChEA3)30

and Kinase Enrichment Analysis 3 (KEA3)31 and the bench-

marking libraries these resources previously collected. Enrich-

ment analysis was performed using the RummaGEO TFs and ki-

nases libraries, and the rank of a given TF or a kinase from the

benchmarking datasets was determined by the significance of

the overlap based on the p value from Fisher’s exact test. For

TFs, the Cusanovich short hairpin RNA (shRNA) TFs32 library

showed the most accurate recovery of TFs (area under the

receiver operating characteristic [ROC] curve [AUC]: 0.81)

(Figures 5A–5C). All other TFs benchmarking libraries showed

greater than 0.70 AUC. For the kinase libraries, the Post-

Translational Modification Signatures Database (PTMsigDB33)

drug signatures showed the highest AUC of 0.604 (Figures 5D–

5F). The lower performance for kinases is expected because

the RummaGEO gene-gene co-expression matrix is based on

mRNA expression, while kinase phosphorylation events happen

at the proteome and phosphoproteome levels. Signatures from

TF and kinase perturbations extracted from GEO did not show

the highest recovery. This is less expected because the

RummaGEO kinase and TF libraries originate from the same

source. Comparing the performance of the RummaGEO TF

and kinase libraries to those created from Rummagene,34 the

RummaGEO library performs similarly, with TF recovery being

slightly better (mean AUC: 0.757 vs. 0.708) and kinase recovery

slightly worse (mean AUC: 0.592 vs. 0.640). This is expected

because the gene sets of RummaGEO are exclusively from tran-

scriptomics and the gene sets from Rummagene are from multi-

ple sources, including transcriptomics, proteomics, and the liter-

ature. Additionally, we created a partial intersection gene set

library from signatures mentioning a TF or a kinase in their study

metadata; however, this approach performed worse than the

gene set libraries created based on co-occurrence (TF mean

AUC: 0.625, kinase mean AUC: 0.593) (Figure S2).

Benchmarking sample partitions
To assess the accuracy of the automated sample partitions into

groups by the RummaGEO resource, we utilized several re-

sources that manually identified groups of samples. The Dia-

betes andDataHypothesis Hub (D2H2)35 resource contains hun-

dreds of RNA-seq and microarray gene expression signatures

manually extracted from GEO studies related to diabetes and

other metabolic disorders. A total of 178 of these studies overlap

with the RummaGEO database. These studies often contain
(B) The same UMAP is colored by the top 10 most mentioned tissues in the

GSEs and GSMs metadata.

(C) The UMAP is colored by the top 10 most mentioned diseases in GSEs and

GSMs metadata.
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Figure 3. UMAP projection of the Enrichr and RummaGEO gene set

spaces

(A) Enrichr gene set space, colored by Enrichr categories.

(B) RummaGEO human and mouse gene sets mapped to human protein

coding genes overlaid onto the Enrichr gene set space.
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multiple conditions and groups, making them more complex to

partition. All studies contained within the D2H2 resource are

manually partitioned according to the GEO metadata and series

description. Comparing the groupings from D2H2 using the

Adjusted Rand Index (ARI), RummaGEO partitioning performs

similarly to the resource for �124 studies (�70%, ARI >0.8),

demonstrating the ability of the automated method to effectively

partition complex perturbation experiments (Figure 6A). Further

inspection of cases where the ARI is low (<0.5) reveals that

some of these cases relate to time-series conditions. In these

cases, the partitions are not separated by time points but instead

by groups. Manual inspection of other studies revealed manual

curation errors, as well as cases where some experimental con-

ditions were grouped by a different criterion—for example,

young vs. old instead of healthy vs. disease. Overall, although

a high ARI gives confidence that a study is partitioned correctly,

a lower ARI does not always indicate incorrect partitioning for

valuable signature computation. For more basic studies contain-
6 Patterns 5, 101072, October 11, 2024
ing one perturbation, or one disease group, and one control

group, the RummaGEO method partitions are perfectly aligned

with DiSignAtlas,36 except one case (n = 1,010). DiSignAtlas con-

tains manually partitioned experiments from GEO. Additionally,

comparing the RummaGEO partitions to a previous automated

approach we applied to create the GEO Reverse Search Ap-

pyter,37 which grouped studies more stringently, the 10,000

studies that were compared grouped exactly the same.

Benchmarking functional term extraction
To benchmark functional term extraction from RummaGEO

studies, we randomly selected 1,000 disease/phenotype gene

sets from the GWAS (genome-wide association study) Catalog38

and performed enrichment analysis with the extracted terms in

category A (disease, phenotype). A p value threshold was

applied such that an average of 25 enriched terms were identi-

fied for each gene set, ignoring nonspecific terms enriched in

>50% of the gene sets. RummaGEO predicted significantly

more terms closely related to the disease/phenotype than

expected by chance (Mann-Whitney p < 0.0001) (Figure 6B).

Relevant terms were identified by literature-based similarity39

(>0.95 to the GWAS term). Similarly, we submitted 467 up

and down L1000 dexamethasone perturbation signatures40 to

RummaGEO and performed enrichment analysis with the

extracted terms in category B (biomolecules). Compared to re-

sults for submitting random L1000 perturbation signatures,

RummaGEO recovered more terms specific to dexamethasone

targets (NR3C1, NR0B1, NR1I2) and related biomolecules

(e.g., glucocorticoids) from the dexamethasone signatures

(Mann-Whitney p < 0.0001) (Figure 6B). We also compared

LLM extracted keywords to those manually determined by the

authors or journal (PubMed key terms) and MeSH (Medical Sub-

ject Headings) terms manually assigned by librarians at the Na-

tional Library of Medicine (NLM) (Figure 6C). Comparing the sim-

ilarity of the terms in each set shows there are clearly many terms

matching those that were manually extracted. The similarity of

the LLM terms to MeSH and PubMed terms compared to the

similarity of the MeSH and PubMed terms to each other show

that the LLM terms have slightly higher mean similarity, suggest-

ing a greater breadth of coverage compared with the manually

curated keyword resources. Additionally, wemanually evaluated

the LLM keywords to assess the level of ‘‘noise’’ added through

this methodology. Terms in each abstract were sorted into four

categories: valid, valid but too general, invalid, and ‘‘missing’’

keywords (Figure 6D; Table S4). In general, most terms (�65%)

extracted from each abstract were determined to be accurate

and specific, while a smaller portion (�10%) were either invalid

or general. Compared to a manual curation of the terms,

�15%–25% were missing by the LLM extracted keywords but

were manually identifiable. When manually evaluating the

category designations of terms (disease/phenotype, molecule/

gene/protein/drug, tissue/cell/organ/organism, pathway/biolog-

ical process, and assay/method) we observe an average accu-

racy of�75% (Figure 6E; Table S5). In general, categories A (dis-

ease/phenotype; �71.3%) and E (assay; �60.8%) were the

least accurate, and categories B (biomolecules; �88.8%), C (tis-

sue/cell type; �90.5%), and D (pathway/biological process;

�88.5%) were the most accurate. Overall, although not perfect,

the LLM can extract the functional term from abstracts. This
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Figure 4. UMAP projection of all human and

mouse genes in the RummaGEO database

(A) UMAP projection of human genes clustered with

the Leiden algorithm; clusters with consistent signifi-

cant enrichment across multiple libraries and clusters

with R33% membership to a single chromosome are

labeled: 1 (organelle assembly); 3 (olfactory trans-

duction); 5 (neuronal system); 6 (autophagy regulation);

7 (carbon dioxide transport); 9 (olfactory transduction);

12 (glutathione metabolism); 13 (extracellular matrix

organization); 16 (antigen receptor signaling); 19 (in-

flammatory response); 23 (immune cytokine signaling);

24 (taste transduction); 26 (triglyceride biosynthesis); 27

(taste transduction); 32 (ciliopathies); 33 (sex differen-

tiation); 34 (chr 19 72.8%); 35 (p53 signaling); 38 (Fan-

coni anemia pathway); 39 (cytoplasmic translation);

40 (melanin biosynthesis); 41 (tRNA aminoacylation);

42 (cholesterol biosynthesis); 43 (chr HG2023_PATCH

39.3%); 46 (histone demethylation); 47 (chr 1 100.0%);

49 (chr 7 76.9%); 51 (glycolysis); 52 (chr 17 90.9%); 53

(chr 21 40.0%); 57 (chr 15 37.5%); 61 (chr 21 71.4%);

63 (protein deubiquitination); 68 (chr Y 50.0%); 69 (chr

12 83.3%); and 75 (chr 1 60.0%); 76 (chr 9 100.0%).

(B) UMAP projection of mouse genes clustered with

the Leiden algorithm; clusters with consistent signifi-

cant enrichment across multiple libraries and clusters

with R33% membership to a single chromosome are

labeled: 2 (spliceosome); 6 (humoral immune response);

7 (sex determination); 8 (extracellular matrix organiza-

tion); 9 (synaptic transmission); 11 (melanin biosyn-

thesis); 13 (innate immune system); 14 (cilium assem-

bly); 15 (metabolism); 17 (interferon signaling pathway);

19 (Th17 cell differentiation); 20 (female gonad devel-

opment); 21 (meosis); 22 (phototransduction); 24

(cytokine signaling pathway); 25 (striated muscle

contraction); 27 (lipolysis regulation); 29 (chr Y 48.6%);

30 (androgen biosynthesis); 31 (cilliopathies); 32 (cell

cycle); 33 (ion channel transport); 34 (chr NA 37.8%); 37

(phototransduction); 40 (cytoplasmic translation); 41

(cellular respiration); 42 (chr 2 95.4%); 43 (chr 13

82.8%); 44 (chr 12 94.4%); 45 (chr 7 100.0%); 47 (chr 7

100.0%); 49 (chr X 55.0%); 50 (tRNA aminoacylation);

52 (chr Y 72.2%); 53 (chr Y 73.3%); 54 (chr Y 88.9%); 55

(chr Y 55.6%); 57 (chr 14 37.5%); 60 (chr X 71.4%); 61

(chr 4 50.0%); 63 (chr 10 33.3%); 64 (chr 4 33.3%); 65

(histone demethylation); and 66 (chr Y 100.0%).

(C) Fraction of genes from the same chromosome in

human and mouse clusters and at random.
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Figure 5. RummaGEO kinase and TF libraries benchmarking

(A) Scaled rank (0 highest rank, 1 lowest rank) for TF benchmarking libraries as computed by Fisher’s exact test.

(B) Deviation of the cumulative distribution for scaled ranks of each TF from uniform distribution (Kolmogorov-Smirnov test for goodness of fit compared to

uniform distribution: ChEA [ChEA_2022] p = 2.20E�88; TFpertGEO1000 p = 4.40E�115; TFpertGEO200 p = 6.84E�119; Cusanovich_shRNA_TFs p = 2.05E�12;

Single-TF_Perturbations p = 2.98E�117; ENCODE_TF_ChIP-seq_2015 p = 1.14E�110; TFpertGEOdn p = 1.35E�89; TFpertGEOup p = 3.32E�92.

(C) A total of 5,000 bootstrapped curves with downsampled negative class were generated to compute mean ROC curves and mean AUC for TFs. Only the

leading edge is visualized.

(D) Scaled rank (0 highest rank, 1 lowest rank) for kinase benchmarking libraries as computed by Fisher’s exact test.

(E) Deviation of the cumulative distribution for scaled ranks of each kinase from uniform distribution (Kolmogorov-Smirnov test for goodness of fit compared to

uniform distribution: PTMsigDB_drugtarget_signatures p = 1.66E�6; L1000FWD_kin_targets_updn p = 1.09E�8; KEA_2015 p = 9.39E�10; single_

kinase_perts_from_GEO_updn (single) p = 5.94E�8.

(F) A total of 5,000 bootstrapped curves with downsampled negative class generated to compute mean ROC curves and mean AUC for kinases. Only the leading

edge is visualized.
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Figure 6. Benchmarking sample partitioning and keyword extraction

(A) Comparing sample partitions by ARI from RummaGEO to the D2H2 manual partitions (n = 178), DiSignAtlas (n = 1,010), and AutoSigGen, which is another

automatic resource used for the Gene Centric GEO Reverse Search Appyter (n = 10,319).

(B) Recovery of related disease/phenotype terms (category A) from GWAS Catalog gene sets (n = 1,000) and dexamethasone-related biomolecules (category B)

from up- and down- L1000 dexamethasone signatures (n = 934), compared to random GWAS gene sets and random L1000 signatures.

(C) Mean normalized string similarity (indel) of LLM, PubMed, and MeSH terms compared to random.

(D) Manually evaluated and categorized LLM extracted keywords (n = 200 abstracts).

(E) Manually evaluated category designations of keywords. A, disease/phenotype; B1, genes/proteins; B2, other biomolecules; C, tissue/cell/organ/organism/

model; D, pathway/biological process; E, assay; and other.
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feature of RummaGEO provides useful information concerning

the relevance of biomedical terms of enriched gene sets, helping

users to summarize results when large collections of gene sets

match their input signature.

Generating hypotheses with GPT-4
After submitting a gene set for analysis with RummaGEO and

examining the top matching results, the user can provide a tex-

tual description of the gene set they submitted, and then

generate hypotheses with GPT-4, an LLM model developed by

OpenAI. Once we obtain the descriptions of the query gene

set, the matching gene set from the RummaGEO database,

and significantly enriched terms from their overlapping genes

from Enrichr,24 we can prompt an LLM to produce plausible

reasoning for the observed highly significant set overlap using

these data as the input. Although caution should be exercised

in interpreting the hypotheses generated by the LLM, these hy-

potheses can provide valuable insight and assist with the initial

reasoning for explaining the observed overlap between the two

sets. We outline several use cases below to demonstrate this

feature of RummaGEO.

Use case 1: Investigating dysregulated mechanisms in

Alzheimer disease (rummagene PMC5534941-

tp2017110x1.docx-6-Alzheimer_s_disease; n = 42)

Searching ‘‘Alzheimer’s’’ in Rummagene34 provides numerous

gene sets extracted from supporting materials of articles depos-

ited in PubMed Central (PMC) related to this disease. One such

gene set examines the genetic risk factors shared between cor-

onary artery disease and Alzheimer disease (AD). In Table S3, the

authors list a set of genes known to have an association with AD

based on published genetics studies (https://rummagene.com/

term-search?page=1&q=PMC5534941-tp2017110x1.docx-6-

Alzheimer_s_disease; Figure S3). Submitting this gene set to

RummaGEO results in the most significantly overlapping gene

set to come from a study that inhibits STAT5 in acute myeloid

leukemia (AML) (https://rummageo.com/enrich?dataset=eb38

8fc4-6ead-46d5-93c1-28c56548ee5d; Figure S4).

To further investigate why these two gene sets might be

related, we generated a hypothesis using the abstract of the

PMC article fromwhich the gene set was sourced as the descrip-

tion. From the descriptions of both gene sets and the significant

Enrichr terms from their overlapping genes, GPT-4 produces a

plausible explanation for the highly significant overlap: ‘‘The

high overlap between the user-submitted gene set and the

GEO gene set could be due to the shared involvement of these

genes in lipid metabolism and cholesterol transport, as well as

their association with disease states such as acute myeloid leu-

kemia (AML) and Alzheimer’s disease (AD).’’ The hypothesis de-

scribes both gene sets utilizing the provided descriptions: ‘‘The

GEO gene set is derived from a study investigating the role of

STAT5 in AML, particularly its activation by FLT3-ITD, a constitu-

tively active tyrosine kinase. The study also explores the poten-

tial of a novel inhibitor, AC-4-130, in disrupting STAT5 activation

and thereby impairing the proliferation and growth of AML cells.

On the other hand, the user-submitted gene set is based on a

study examining the genetic overlap between coronary artery

disease (CAD) and AD, aswell as the shared risk factors between

these two diseases. The study found that genetic susceptibility

to CAD modifies the association between cardiovascular dis-
10 Patterns 5, 101072, October 11, 2024
ease (CVD) and dementia, likely through associations with

shared risk factors.’’

Then, the hypothesis describes how the enrichment of their

overlapping genes supports the shared mechanism related to

lipid metabolism and cholesterol transport: ‘‘The enriched terms

from the overlapping genes of the two sets further support

this hypothesis. The terms Statin Inhibition of Cholesterol Pro-

duction WP430, Fatty Acids And Lipoproteins Transport In He-

patocytes WP5323, and Cholesterol Metabolism WP5304 from

WikiPathway_2023_Human suggest a shared involvement in

lipid metabolism and cholesterol transport. This is further sup-

ported by the GO_Biological_Process_2023 terms Phospholipid

Efflux (GO:0033700), Cholesterol Efflux (GO:0033344), and

Cholesterol Transport (GO:0030301).’’

Several studies in the literature, including the selected study,

already support the hypothesis that there is accumulation of

cholesterol41 and dysregulation of lipid metabolism42 in AD,

and cholesterol metabolism reprogramming43 and lipid meta-

bolism reprogramming44 are also happening in AML. The high

overlap between the AD genes and genes from AML also further

support the link between AD and inflammation. Thus, through

this approach, we identify a dysregulatedmechanism shared be-

tween AD and AML pointing to the key regulator STAT5. STAT5

activation has been reported to be protective in a mouse model

of AD.45

Use case 2: Relation of senescence related genes and

Ewing’s sarcoma tumors

To identify GEO studies related to cellular senescence, a set

of 301 genes related to senescence was sourced from

SenoRanger.46 The 301 senescence-related genes were identi-

fied via a consensus analysis applied to six independent tran-

scriptomics studies where fibroblast cells were induced to un-

dergo senescence in vitro. The genes that are differentially

highly expressed in senescent cells were compared to gene

expression levels in healthy normal human cells and tissues to

identify genes uniquely expressed at high levels only in senes-

cence cells. Results for submitting the 301 genes for enrichment

analysis against the RummaGEO database can be found at

https://rummageo.com/enrich?dataset=cee77176-0611-40b8-

8a97-26c870d5c363 (Figure S5).

The most significantly overlapping signature identified by

RummaGEO is related to the analysis of Ewing’s sarcoma family

of tumors (ESFT) cell lines and the dysregulation of EWSR1 and

BRCA1 genes.47 The hypothesis is that there are shared biolog-

ical pathways between ES and senescence, particularly those

related to extracellular matrix organization, and the structure

and strength of connective tissue, as provided by GPT-4: ‘‘The

terms ‘Extracellular Matrix Organization (GO:0030198),’ ‘Extra-

cellular Structure Organization (GO:0043062),’ and ‘External

Encapsulating Structure Organization (GO:0045229)’ from GO_

Biological_Process_2023 suggest that both senescent cells

and ESFT cells may undergo changes in their extracellular matrix

and structure, possibly as a response to stress or as a mecha-

nism to evade immune surveillance. Finally, the terms ‘abnormal

cutaneous collagen fibril morphology MP:0008438,’ ‘decreased

skin tensile strength MP:0003089,’ and ‘abnormal tendon

morphology MP:0005503’ from MGI_Mammalian_Phenotype_

Level_4_2021 suggest that both senescence and ESFT may

affect the structure and function of connective tissues, possibly

https://rummagene.com/term-search?page=1&amp;q=PMC5534941-tp2017110x1.docx-6-Alzheimer_s_disease
https://rummagene.com/term-search?page=1&amp;q=PMC5534941-tp2017110x1.docx-6-Alzheimer_s_disease
https://rummagene.com/term-search?page=1&amp;q=PMC5534941-tp2017110x1.docx-6-Alzheimer_s_disease
https://rummageo.com/enrich?dataset=eb388fc4-6ead-46d5-93c1-28c56548ee5d
https://rummageo.com/enrich?dataset=eb388fc4-6ead-46d5-93c1-28c56548ee5d
https://rummageo.com/enrich?dataset=cee77176-0611-40b8-8a97-26c870d5c363
https://rummageo.com/enrich?dataset=cee77176-0611-40b8-8a97-26c870d5c363
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due to alterations in extracellular matrix organization and

structure.’’

Senescence and its role and relation to extracellular matrix or-

ganization are actively being investigated.48,49 Interestingly, the

ES gene Ews has been observed to be essential in modulating

senescence in hematopoietic stem cells.50 Given the relation of

these sets, and the enriched terms related to their overlap, the

hypothesis identifies ECM organization as the central theme of

the apparent overlap. It should be noted that SenoRanger was

created by extracting gene sets from several published studies

that induced fibroblast cell lines to undergo senescence. Hence,

the enrichment for ECM organization when combining ES dis-

ease signatures with fibroblasts undergoing senescence may

provide actionable clues toward the identification of therapeutic

strategies for ES.

The RummaGEO search engine
The RummaGEO website supports four main components of

functionality and search. The first is gene set enrichment that uti-

lizes an in-memory algorithm51 to calculate Fisher’s exact test

results quickly. Enriched signatures can be filtered by a term

and by a silhouette score threshold. For each significantly en-

riched signature, users may also generate a hypothesis with

GPT-4, as described above. In addition to returning significantly

overlapping gene sets, RummaGEO provides term enrichment

from three sources: MeSH terms,52 PubMed key terms, and

terms extracted by an LLM. Once a gene set has been enriched,

the enriched terms are available as an additional tab, in which

users are provided with a bar chart, a table, and a word cloud

created from the enriched terms. The RummaGEO database

can be queried in conjunction with PubMed to find signatures

from GEO studies associated with any publications returned

from a PubMed search. Users can additionally search

RummaGEO through the GEOmetadata to find signatures asso-

ciated with any search term. Furthermore, the human andmouse

gene set libraries and accompanying metadata are available to

download from the RummaGEO website. Additionally, users

can learn more about how to use RummaGEO and the available

API from the ‘‘About’’ and ‘‘Documentation’’ pages.

DISCUSSION

By automatically identifying conditions from uniformly aligned

studies from GEO and computing differential gene signatures,

we were able to produce 171,441 human and 195,265 mouse

gene sets extracted from 29,294 GEO studies. These sets pro-

vide differential expression knowledge across a wide array of

experimental conditions. It should be noted that the identified

gene sets come in pairs of up and down sets for each condition.

Hence, if we term the paired up and down sets as signatures,

then there are �85,000 human and �97,000 mouse signatures

in the RummaGEO database. We also make a substantial effort

to annotate these signatures by parsing GEOmetadata, catego-

rized functional terms extracted by an LLM, and terms from

selected Enrichr libraries. We serve these annotations alongside

the gene set search results. This enables users to gain a broader

perspective about the top matching gene sets. The additional

metadata assists users with filtering the returned matching

gene sets and identifying common themes within the top results.
We also provide users with the ability to generate hypotheses for

overlapping gene sets utilizing abstracts and summaries of the

GEO studies and user-submitted descriptions of their gene set.

We demonstrate how this feature can uncover pathways, tar-

gets, and shared molecular mechanisms across diseases and

conditions. We also show how the data within RummaGEO

can be used for applications such as TF and kinase enrichment

analyses. Transposing the RummaGEO gene sets into a matrix

that defines similarity between genes presents the opportunity

to identify gene modules and predict gene function for under-

studied genes. There are numerous other applications that can

be enabled by reusing the RummaGEO database, for example,

creating a cell type-maker library for single cell identification or

developing dynamical models for cell phenotype trajectory anal-

ysis. In addition, by crossing the gene sets within RummaGEO

with other large sources of gene sets such as Rummagene34

and Enrichr24 we can further discover connections between bio-

logical processes and disease mechanisms. The RummaGEO

resource has some limitations that should be considered.

Although RummaGEO effectively groups samples from each

study by condition, for some studies, especially for those with

a larger number of conditions, the partitioning can be improved.

Additionally, given the large collection of signatures in

RummaGEO, most searches return many significant matches,

making it difficult to prioritize or sort through all the results. More-

over, RummaGEO provides the search at the gene level. Tran-

script level searchmay bemore specific and accurate. Currently,

RummaGEO covers only humans andmice and is geared toward

bulk RNA-seq. Adding more organisms and supporting other

types of assays such as microarrays and single-cell RNA-seq

could extend the breadth and depth of the resource. Overall,

RummaGEO presents an unprecedented resource for the com-

munity to query, analyze, and generate hypotheses with gene

expression signatures massively mined from GEO.
EXPERIMENTAL PROCEDURES

Identifying conditions and computing signatures

All the human andmouseGEO studies aligned by ARCHS4 (version 2.4) with at

least three samples per condition and at least six samples in total for a specific

study were considered for inclusion in the RummaGEO database. Studies with

more than 50 samples were discarded because such studies typically contain

expression data collected from large patient cohorts, and this is not amenable

for simple signature computation that compares two or more conditions. We

also discarded groups of samples that only have one sample and studies

with only one identified condition. Samples were grouped using the metadata

provided by each study. Specifically, k-means clustering of the embeddings of

the concatenated sample_title, characteristic_ch1, and source_ch1 fields

were used to classify the conditions. First, the text that describes each sample

was converted into an embedding vector of 768 dimensions. We begin with

assuming that there are three samples per condition, so the total number of

clusters is n-samples divided by three. We then perform k-means clustering

and compute the between-clusters and within-cluster distances as the objec-

tive function. The k is then decreased to allow 4, 5, 6, or more samples per con-

dition, depending on the similarity of the condition strings in the embedding

space. The silhouette score is used to evaluate the quality of the clusters at

each step. For string embeddings, we use the SentenceTransformer53 Python

module, which utilizes the all-mpnet-base-v2 model enabling embedding of

sentences or paragraphs as 768-dimension vectors. If no control conditions

are identified, then each condition is compared to every other condition. To

create condition titles, common words across all samples for each condition

were retained. The limma-voom R package54 was used to compute differential
Patterns 5, 101072, October 11, 2024 11
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expression signatures for each condition against all other conditions within

each study. Additionally, we attempted to first identify any control conditions

based on the metadata associated with each sample. To achieve this, a set

of keywords that describe control conditions was compiled. The set of such

terms contain, for example, ‘‘wildtype,’’ ‘‘ctrl,’’ and ‘‘DMSO.’’ If such terms

were identified, then they were used to compare the samples labeled with

such terms to all other condition groups. Up and down gene sets were ex-

tracted from each signature for genes with an adjusted p < 0.05. If fewer

than five genes met this threshold, the gene set was discarded. If more than

2,000 genes met this threshold, then the threshold was lowered incrementally

from 0.05 to 0.01, then 0.005, and lastly 0.001, until fewer than 2,000 genes

were retained. A total of 2,000 genes was chosen as the cutoff by computing

the number of significantly enriched terms for RummaGEO signatures based

on cutoffs ranging from 5 to 5,000 submitted for enrichment against multiple

Enrichr libraries. We observe that a cutoff of more than 2,000 genes results

in little or no gain or lower number of significantly enriched terms (Figure S1).

Data-level silhouette scores

For each study with identified conditions based on metadata clustering, a

silhouette score was computed to determine the data-level adherence to the

assigned groupings based on the metadata. All aligned counts were extracted

from ARCHS411 and normalized by the number of reads aligned, followed by

log2 transformation and quantile and Z score normalization. Principal-compo-

nent analysis (PCA) was then performed on the normalized data, and the

silhouette scores were computed from the distance between the samples in

each condition in the two-dimensional PCA space. Silhouette scores range

from �1 to 1, where a value of 1 would indicate perfect clustering and �1

would indicate fully disjointed clusters.

Search engine implementation

Given the large number of gene sets contained within the RummaGEO data-

base, we employ a fast search engine strategy. This strategy is outlined in

more detail in a recent publication that describes the Rummagene resource,

a web-server application that hosts over 700,000 gene sets extracted from

the supplemental materials of publications listed on PMC.34 Briefly, the enrich-

ment analysis is performed by a Rust-powered API whereby gene set overlaps

are computed on bit vectors stored in random access memory.

Identifying functional terms from sample and study metadata

Functional terms were extracted from both the GEO sample (GSM) and the

GEO series (GSE)metadata. These functional terms include tissues, cell types,

and cell lines (these terms were associated with the BRENDA Tissue

Ontology55); diseases and phenotypes (these terms were sourced from

DisGeNET56); drugs and small molecules (these terms were associated with

International Chemical Identifiers keys); and genes and proteins (these terms

were associated with NCBI57 gene symbols). Synonyms and official terms

were retained and associated with each study (GSE). Exact matches of these

various functional terms were searched for in the GSE summary as well as in

the GSMmetadata columns used to partition the samples: sample_title, char-

acteristic_ch1, and source_ch1.

Co-occurrence gene-gene similarity matrix

Gene-gene co-occurrence matrices were computed for human and mouse

coding genes (19,484 for human and 22,350 for mouse) and non-coding genes

(41,366 for human and 29,143 for mouse) using 50,000 randomly selected

RummaGEO gene sets. The co-occurrence probabilities for any two genes

Pða; bÞ were computed as previously described by Ma’ayan and Clark.58 For

each pair of genes a;b, the co-occurrence count is divided by the total number

of occurrences in the matrix. Using the co-occurrence matrix of human coding

genes, we then computed the cosine similarity, Jaccard similarity, and normal-

ized pointwise mutual information (NPWMI) between all pairs of genes as

follows:

Cosineða; bÞ =
Pða; bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðaÞPðbÞp

Jaccardða;bÞ =
Pða; bÞ

PðaÞ+PðbÞ � Pða; bÞ
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NPWMIða; bÞ =
�1

lnðPða; bÞÞ$max

�
0; ln

�
Pða; bÞ
PðaÞPðbÞ

��

Benchmarking TF and kinase enrichment analyses

The co-occurrence matrices from the coding genes were used to create TF

and kinase gene sets libraries by taking the 200 most co-occurring genes

with each TF or kinase. The benchmarking datasets previously employed for

the ChEA330 and KEA331 resources were used to assess the quality of the

TFs and kinases RummaGEO-generated gene set libraries in regard to their

ability to identify the ‘‘correct’’ TFs and kinases given sets of differentially

expression genes or differentially phosphorylated proteins, respectively.

Benchmarking gene sets for TFs are sourced from single TF knockouts ex-

tracted from GEO,11,13,59 shRNA knockdowns in a B cell cell line,32 and the

ChEA3 gene set library. The kinase benchmarking gene sets are derived

from kinase perturbation experiments extracted from GEO,13 LINCS L1000 ki-

nase inhibitor perturbation signatures based on the signatures computed for

L1000FWD,60 phosphoproteomics signatures from PTMsigDB,61 and the

KEA3 gene set library. Fisher’s exact test was applied to perform the enrich-

ment analysis to rank TFs or kinases by p value in each benchmarking dataset.

The input for this test is the gene sets associated with TFs or kinases from the

benchmarking dataset. The output is the rank of the TFs or the kinases (sorted

by p value) in the RummaGEO TF/kinase gene set library. When generating the

receiver operating characteristic (ROC) curves, the positive class is the rank of

the correct TF or the kinase, and the negative class is the ranks of all other TFs

or kinases. Since there is a large class imbalance, the negative class was

downsampled to an equal size as the positive class. Downsampling was

randomly performed over 5,000 iterations, and the mean ROC curves and

AUCs were reported. To generate the composite ROC curves for each bench-

marking library, the numpy interp function was utilized, enabling linear interpo-

lation of the generated points from the 5,000 ROC curves.

Extracting key terms from abstracts

To enrich the metadata of RummaGEO gene sets with descriptive terms from

biomedical text, the human and mouse studies (GSEs) included in

RummaGEO were annotated with three different types of key terms based

on the published paper associated with each study. The GEO DataSets data-

base was first queried for the earliest PubMed ID linked to each study, and the

corresponding article information was then retrieved from the PubMed data-

base using the NCBI’s E-utilities Esearch function. In total, 13,427 human

studies were annotated with data from 8,804 unique articles, and 15,478

mouse studies were annotated with data from 10,269 unique articles. For

53.5% of the human studies and for the 54.0% of the mouse studies, the

PubMedmetadata included key terms provided by the authors and/or the pub-

lishing journals. Another source of key terms is the MeSH thesaurus, a

controlled vocabulary produced by the NLM. MeSH headings were found for

87.7% of the human studies and 92.0% of the mouse studies. A third set of

key terms was generated for all studies in RummaGEO by submitting the ab-

stracts from each article associated with each study to the LLM Mistral-7B-

Instruct-v0.2 LLM,62 accessed via the HuggingFace API. The LLM was

presented with the abstract text and prompted to return up to 10 of the

most relevant biomedical key terms. Without processing any terms, the collec-

tion of human key terms included 16,488 unique PubMed key terms, 7,935

unique MeSH headings, and 48,462 unique LLM-generated key terms. The

mouse key terms comprised 17,742 unique PubMed key terms, 8,212 unique

MeSH headings, and 52,152 unique LLM-generated key terms.

Every term was first normalized to a standard capitalization, punctuation,

and grammatical form. Due to the unstructured nature of the PubMed key

terms and LLM-generated key terms, these two collections were further pro-

cessed to consolidate key terms that are semantically synonymous or similar.

To organize synonymous terms without introducing new terminology, a stem-

ming-like procedure was implemented to identify small clusters of terms (<5)

with high textual overlap. Each term in the cluster was replaced with the

most frequent term, and these substitutions were assessedmanually to ensure

semantic equivalency. Terms that are overly general were then filtered out

manually. The final processed collection of human key terms includes

10,713 unique PubMed key terms, 6,506 unique MeSH headings, and

31,210 unique LLM-generated key terms. The mouse processed key term
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collection contains 11,587 unique PubMed key terms, 7,140 unique MeSH

headings, and 33,302 unique LLM-generated key terms.

Term categorization and enrichment analysis

To enable domain-specific enrichment analyses, RummaGEO key terms were

sorted into four categories using the LLM model Mistral-7B-Instruct-v0.2.62

The categories were defined as follows: category A: disease, phenotype; cate-

gory B: gene, metabolite, protein, drug, lipid, RNA, variant, receptor; category

C: organism, organ, tissue, cell line, cell type, organelle; category D: pathway,

biological process, family of genes, chromosome. The LLM was provided with

a description of each of these categories and was asked to select the most

appropriate choice for each key term. For cases where the LLM responses

were uncertain, the term was categorized manually. Out of all human and

mouse key terms, 5.4% were categorized as A, 33.3% as B, 19.5% as C,

32.5% as D, and 9.3% as ‘‘other’’ (Table S2). Term enrichment is implemented

using the LLM-extracted functional terms for the four categories described

above. Since functional terms are extracted per study (GSE), we compute

term significance utilizing Fisher’s exact test on categorized terms from the

first 5,000 unique GSEs returned from the RummaGEO gene set search, and

additionally adjusted p values are computed with the Benjamini-Hochberg

method.

Assigning enrichment terms to gene sets with Enrichr

To provide additional metadata and functional terms for RummaGEO gene

sets, enrichment analysis is precomputed for each gene set for seven Enrichr63

libraries: ChEA 2022,30 KEGG 2021 Human,27 WikiPathway 2023 Human,29

GO Biological Process 2023,26 MGI Mammalian Phenotype Level 4 2021,64

Human Phenotype Ontology,65 and GWAS Catalog 2023.38 Significance is as-

sessed using Fisher’s exact test, and adjusted p values are computed with the

Benjamini-Hochberg method.66 Only significant terms with an adjusted

p < 0.05 were retained. To assess the significance of the Enrichr terms’

appearance in the RummaGEO gene set search page, the Kolmogorov-

Smirnov test is utilized, comparing the distribution of sets that are significantly

enriched for that term compared to a uniform distribution.

Global visualization of signatures with UMAP

To integrate the human and mouse gene sets from GEO, all genes were map-

ped to uppercase and only protein-coding genes were retained. Gene sets

were then converted to one-hot vectors for each set using the Scikit-learn

package.67 We utilized truncated SVD68 to reduce the dimensionality of the

IDF vectors to the largest 50 singular values. Then, to convert the vectors

into two-dimensional space, UMAP69 was applied with the default parameters.

Hypothesis generation with GPT

To generate hypotheses relevant to the user-inputted gene set, we utilize the

OpenAI chat completion API (endpoint:/v1/chat/completions, model: gpt-4o).

The user is required to submit a textual description of their submitted gene set

in the form of a summary or an abstract. RummaGEO takes this description

together with the matching RummaGEO gene set study abstract and the top

three significantly enriched terms from the overlapping genes from the En-

richr24 librariesWikiPathway 2023Human, GWASCatalog 2023, GOBiological

Process 2023, and MGI Mammalian Phenotype Level 4 2021. The prompt

additionally instructs the LLM to reference all the provided descriptions and

contexts of the gene sets, as well as the highly enriched terms from Enrichr.

Hypotheses are then parsed to find references for any of the enriched terms

and insert the enrichment statistics as part of the hypothesis description

output.
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Data and code availability
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The RummaGEO data, metadata, and correlation matrices are available

from the RummaGEO download page at https://rummageo.com/download.

The RummaGEO source code is available from https://github.com/

MaayanLab/rummageo.70

The code used to generate the figures for the paper is available at https://

github.com/MaayanLab/rummageo/tree/rummageo/figures.

A snapshot of the code was deposited into Zenodo and received the

following https://doi.org/10.5281/zenodo.13358070.
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56. Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-Sacristán, A., Deu-

Pons, J., Centeno, E., Garcı́a-Garcı́a, J., Sanz, F., and Furlong, L.I.

(2017). DisGeNET: a comprehensive platform integrating information on

human disease-associated genes and variants. Nucleic Acids Res. 45,

D833–D839. https://doi.org/10.1093/nar/gkw943.

57. Maglott, D., Ostell, J., Pruitt, K.D., and Tatusova, T. (2011). Entrez Gene:

gene-centered information at NCBI. Nucleic Acids Res. 39, D52–D57.

https://doi.org/10.1093/nar/gkq1237.

58. Ma’ayan, A., and Clark, N.R. (2016). Large Collection of Diverse Gene Set

Search Queries Recapitulate Known Protein-Protein Interactions and

Gene-Gene Functional Associations. arXiv. https://doi.org/10.48550/

arXiv.1601.01653.

59. Edgar, R., Domrachev, M., and Lash, A.E. (2002). Gene Expression

Omnibus: NCBI gene expression and hybridization array data repository.

Nucleic Acids Res. 30, 207–210. https://doi.org/10.1093/nar/30.1.207.

60. Wang, Z., Lachmann, A., Keenan, A.B., and Ma’ayan, A. (2018).

L1000FWD: fireworks visualization of drug-induced transcriptomic signa-

tures. Bioinformatics 34, 2150–2152. https://doi.org/10.1093/bioinformat-

ics/bty060.

61. Krug, K., Mertins, P., Zhang, B., Hornbeck, P., Raju, R., Ahmad, R., Szucs,

M., Mundt, F., Forestier, D., Jane-Valbuena, J., et al. (2019). A curated

resource for phosphosite-specific signature analysis. Mol. Cell.

Proteomics 18, 576–593.

62. Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de

las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., et al.

(2023). Mistral 7B. arXiv.

63. Kuleshov, M.V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q.,

Wang, Z., Koplev, S., Jenkins, S.L., Jagodnik, K.M., Lachmann, A., et al.

(2016). Enrichr: a comprehensive gene set enrichment analysis web server

2016 update. Nucleic Acids Res. 44, W90–W97. https://doi.org/10.1093/

nar/gkw377.

64. Eppig, J.T. (2017). Mouse Genome Informatics (MGI) Resource: Genetic,

Genomic, and Biological Knowledgebase for the Laboratory Mouse.

ILAR J. 58, 17–41. https://doi.org/10.1093/ilar/ilx013.

65. Gargano, M.A., Matentzoglu, N., Coleman, B., Addo-Lartey, E.B.,

Anagnostopoulos, A.V., Anderton, J., Avillach, P., Bagley, A.M.,

Bak�stein, E., Balhoff, J.P., et al. (2024). The Human Phenotype Ontology

in 2024: phenotypes around the world. Nucleic Acids Res. 52, D1333–

D1346. https://doi.org/10.1093/nar/gkad1005.

66. Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery

rate: A practical and powerful approach to multiple testing. J. R. Stat.

Soc. 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

67. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011).

Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12,

2825–2830.

68. Chicco, D., and Masseroli, M. (2015). Software Suite for Gene and Protein

Annotation Prediction and Similarity Search. IEEE/ACM Trans. Comput.

Biol. Bioinform. 12, 837–843. https://doi.org/10.1109/TCBB.2014.

2382127.

69. Van Der Maaten, L., Postma, E.O., and van den Herik, H.J. (2009).

Dimensionality reduction: A comparative review. J. Mach. Learn. Res.

10, 13.

70. Giacomo, M., Clarke, D., Deng, E., and Ma’ayan, A. (2024). RummaGEO

Source Code Snapshot from 08222024 (Zenodo). https://doi.org/10.

5281/ZENODO.13358070.
Patterns 5, 101072, October 11, 2024 15

https://doi.org/10.48550/arXiv.2007.15779
https://doi.org/10.48550/arXiv.2007.15779
https://doi.org/10.7717/peerj.16351
https://doi.org/10.3389/fnagi.2021.690372
https://doi.org/10.1111/febs.16344
https://doi.org/10.1097/BS9.0000000000000016
https://doi.org/10.1097/BS9.0000000000000016
https://doi.org/10.3389/fonc.2022.876981
https://doi.org/10.3389/fonc.2022.876981
https://doi.org/10.1186/s12974-022-02617-5
https://doi.org/10.1186/s12974-022-02617-5
https://doi.org/10.1111/acel.13809
https://doi.org/10.1038/nature25748
https://doi.org/10.1038/nature25748
https://doi.org/10.1016/j.matbio.2017.10.004
https://doi.org/10.1111/acel.13744
https://doi.org/10.1182/blood-2010-04-279349
https://doi.org/10.1101/2023.10.03.560783
https://doi.org/10.1101/2023.10.03.560783
https://doi.org/10.4103/0019-5413.139827
https://doi.org/10.4103/0019-5413.139827
https://doi.org/10.18653/v1/d19-1410
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1093/nar/gkq968
https://doi.org/10.1093/nar/gkw943
https://doi.org/10.1093/nar/gkq1237
https://doi.org/10.48550/arXiv.1601.01653
https://doi.org/10.48550/arXiv.1601.01653
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1093/bioinformatics/bty060
https://doi.org/10.1093/bioinformatics/bty060
http://refhub.elsevier.com/S2666-3899(24)00231-9/sref62
http://refhub.elsevier.com/S2666-3899(24)00231-9/sref62
http://refhub.elsevier.com/S2666-3899(24)00231-9/sref62
http://refhub.elsevier.com/S2666-3899(24)00231-9/sref62
http://refhub.elsevier.com/S2666-3899(24)00231-9/sref63
http://refhub.elsevier.com/S2666-3899(24)00231-9/sref63
http://refhub.elsevier.com/S2666-3899(24)00231-9/sref63
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1093/ilar/ilx013
https://doi.org/10.1093/nar/gkad1005
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://refhub.elsevier.com/S2666-3899(24)00231-9/sref68
http://refhub.elsevier.com/S2666-3899(24)00231-9/sref68
http://refhub.elsevier.com/S2666-3899(24)00231-9/sref68
http://refhub.elsevier.com/S2666-3899(24)00231-9/sref68
https://doi.org/10.1109/TCBB.2014.2382127
https://doi.org/10.1109/TCBB.2014.2382127
http://refhub.elsevier.com/S2666-3899(24)00231-9/sref70
http://refhub.elsevier.com/S2666-3899(24)00231-9/sref70
http://refhub.elsevier.com/S2666-3899(24)00231-9/sref70
https://doi.org/10.5281/ZENODO.13358070
https://doi.org/10.5281/ZENODO.13358070


Patterns, Volume 5
Supplemental information
RummaGEO: Automatic mining of human

and mouse gene sets from GEO

Giacomo B. Marino, Daniel J.B. Clarke, Alexander Lachmann, Eden Z. Deng, and Avi
Ma'ayan



Supplemental Information 
 

for 
 

RummaGEO: Automatic Mining of Human and Mouse Gene Sets from GEO 
 

Giacomo B. Marino1, Daniel J. B. Clarke1, Eden Z. Deng1, Avi Ma’ayan1,* 

 

1Mount Sinai Center for Bioinformatics, Department of Pharmacological Sciences, Department of Artificial Intelligence and 
Human Health, Icahn School of Medicine at Mount Sinai, New York 10029, NY USA 

 
*To whom correspondence should be addressed:  
 
Lead contact and corresponding author: avi.maayan@mssm.edu  
 
 
 
 
 
 
 
 
Figure S1 
 

 
Fig. S1 Significantly enriched terms from selected Enrichr libraries varying based on the cutoff number 
of genes. 
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Figure S2 

 
Fig. S2 RummaGEO kinase and transcription factor libraries partial intersection benchmarking. A. 
Scaled rank (0 highest rank, 1 lowest rank) for transcription factor benchmarking libraries as computed by the 
Fisher’s exact test; B. Deviation of the cumulative distribution for scaled ranks of each transcription factor from 
uniform distribution (Kolmogorov-Smirnov test for goodness of fit compared to uniform distribution: ChEA 2022 
p = 3.83E-35; TFpertGEO1000 p = 1.07E-24; TFpertGEO200 p = 2.56E-21; Cusanovich shRNA TFs p = 
5.47E-01; Single-TF Perturbations p = 2.01E-25; ENCODE TF ChIP-seq 2015 p = 1.01E-10; TFpertGEOdn p = 
4.33E-19; TFpertGEOup p = 6.22E-21; C. 5,000 bootstrapped curves with downsampled negative class were 
generated to compute mean receiver operating characteristic (ROC) curves and mean area under the ROC 
curves (AUC) for transcription factors. D. Scaled rank (0 highest rank, 1 lowest rank) for kinase benchmarking 
libraries as computed by Fisher’s exact test; E. Deviation of the cumulative distribution for scaled ranks of each 
kinase from uniform distribution (Kolmogorov-Smirnov test for goodness of fit compared to uniform distribution: 
PTMsigDB drugtarget signatures p = 1.05E-03; L1000FWD kin targets updn p = 1.06E-08; KEA 2015 p = 
1.14E-03; single kinase perts from GEO updn p = 1.50E-01; 
random P = 5.59E-01; F. 5,000 bootstrapped curves with downsampled negative class generated to compute 
mean receiver operating characteristic (ROC) curves and mean area under the ROC curves (AUC) for kinases.  
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Figure S3 
 

 
Fig. S3 Alzheimer's gene set on Rummagene (use case 1). 
 
 
 
Figure S4 
 

 
 
Fig. S4 Results of submitting the Alzheimer's gene set from Rummagene on RummaGEO (use case 1). 
 
 
 
 
 
 
 



Figure S5 
 

 
 
Fig. S5 Results from submitting SenoRanger gene set on RummaGEO (use case 2). 
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