1	Supplemental Online Content
2	
3	Ishii J, Nishikimi M, Kikutani K, et al. Resuscitation attempt and outcomes
4	among patients with asystole out-of-hospital cardiac arrest. JAMA Netw Open.
5	2024;7(11):e2445543. doi: 10.1001/jamanetworkopen.2024.45543
6	
7	eMethods. Setting, Data Collection, Definition, Exposures, and Risk-Set
8	Matching Analysis
9	eTable 1. Secular Trends in the Patient Outcomes at 30 Days
10	eFigure 1. Secular Trends in the Patient Outcomes at 90 Days
11	eFigure 2. Secular Trends in the Outcomes Among Patients With ROSC at Any
12	Time
13	eTable 2. Secular Trends in the Performance of Prehospital and In-Hospital
14	Advanced Life Support (ALS) Procedures in the Analyzed Patients
15	eTable 3. Characteristics of Patients With OHCA and an Initial Rhythm of
16	Asystole Who Received Prehospital AAM and Were at Risk of Receiving AAM in
17	the Time-Dependent Propensity Score-Matched Cohort
18	eTable 4. Characteristics of Patients With OHCA and an Initial Rhythm of
19	Asystole Who Received Prehospital Epinephrine Administration and Were at
20	Risk of Receiving Prehospital Epinephrine Administration in the Time-Dependent
21	Propensity Score-Matched Cohort
22	eTable 5. Association Between Prehospital ALS Procedures and Patient
23	Outcomes at 90 Days
24	eTable 6. Time Spent on CPR Procedures Until ROSC
25	eReferences.

26

- 27 This supplementary material has been provided by the authors to give readers
- 28 additional information about their work.

29 eMethods. Setting, Data Collection, Definition, Exposures, and Risk-Set Matching

30 Analysis

31

32 JAAM-OHCA registry

33 The JAAM-OHCA registry is a nationwide prospective registry of out-of-hospital cardiac arrest 34 (OHCA) patients maintained by the Japanese Association of Acute Medicine (JAAM). The detailed 35 methodology of the JAAM-OHCA registry is described in a previous report.¹ In brief, this registry consists of 36 prehospital data collected using the Utstein-style template^{2,3} and in-hospital data, including patient 37 characteristics, resuscitation and intensive care procedures, and outcomes. The neurological status of the 38 survivors was evaluated by the medical staff at each institution 1 month after the event. As quality control, if 39 the data form of the JAAM-OHCA registry was incomplete, the JAAM-OHCA registry committee, composed 40 of specialists in the fields of emergency medicine and epidemiology, returned it to the respective institution 41 requesting that it be completed to the best extent possible, which resulted in no loss of follow-up to determine 42 the outcomes at 30 days among the patients included in this study.

43

44 Emergency medical service (EMS) system in Japan

45 An ambulance carries three emergency providers and at least one emergency life-saving technician 46 who is skilled at intravenous (IV) catheterization, IV epinephrine administration, and advanced airway 47 management (AAM). EMS personnel do not place intraosseous access. Cardiopulmonary resuscitation (CPR) 48 is conducted according to the Japanese guidelines, which are compliant with the international resuscitation 49 guidelines.⁴ Termination-of-resuscitation (TOR) can be implemented only when patients satisfy all of the 50 following requirements: patients in a terminal state, patients who have provided advance directive (AD) 51 against resuscitation attempts, patients' family members expressing their wish to withhold CPR, and 52 physicians in charge directing the EMS personnel to terminate CPR in a direct communication. The EMS 53 personnel can withhold CPR only for cases in which death is obvious, such as cases of decapitation, 54 incineration, late postmortem changes (decomposition, mummification, etc) and early postmortem changes 55 (rigor mortis, postmortem lividity, etc).⁵

56

57 Data collection, definition, and exposures

58	Characteristics of the patients, OHCA event, resuscitative procedures and outcomes were collected
59	from the JAAM-OHCA registry. AAM, IV catheterization, and IV epinephrine administration were defined as
60	the prehospital advanced life support (ALS) procedures. IV epinephrine administration, tracheal intubation,
61	and targeted temperature management (TTM) were defined as in-hospital ALS procedures. The main
62	exposure variables were year of OHCA and prehospital ALS procedures (AAM and IV epinephrine
63	administration). Because of the collinearity between IV catheterization and IV epinephrine administration, we
64	did not include IV catheterization as an exposure variable. In addition, we calculated the time spent on CPR
65	procedures until return of spontaneous circulation (ROSC) was achieved in the prehospital and in-hospital
66	settings as indices of medical resource consumption.
67	
68	Advanced life support termination-of-resuscitation (ALS-TOR) rule ⁶ and TOR in the in-hospital setting
69	Regarding ALS-TOR rule, patients are regarded as candidates for TOR when all the following 5
70	criteria are met: (1) event not witnessed by the EMS personnel; (2) no automated external defibrillator (AED)
71	used or manual shock applied in the out-of-hospital setting; (3) no ROSC in the out-of-hospital setting; (4) no
72	bystander witness of the arrest; (5) no bystander-administered CPR. As for in-hospital TOR, there are no
73	established criteria in Japan. ⁴ The Japan Resuscitation Council Resuscitation guidelines 2020 suggest that
74	$EtCO_2 \ge 10 \text{ mmHg at } 20 \text{ minutes after the initial measurement or initiation of resuscitation is a potential}$
75	predictor of ROSC and survival at hospital discharge. ⁴ Therefore, physicians often judge whether to terminate
76	or continue resuscitation efforts based on several predictive factors, including the EtCO2, measured at a
77	certain time (such as 20 minutes) after the initiation of resuscitation.
78	
79	Risk-set matching analysis with time-dependent propensity score (PS)
80	PS indicating the time-varying probability of receiving the prehospital procedures was calculated
81	by a competing risk time-to-event analysis using the Fine-Gray regression model. ⁷⁻¹¹ In the model, time to
82	receiving the procedures was the dependent variable, and arrival of the EMS personnel was set as time 0

- 83 because the patients were at-risk of receiving the procedure only after this time-point. We fit two models: one
- 84 with the dependent variable of time-to-AAM and the other with the dependent variable of time-to-IV

85 epinephrine administration. We included age, sex, witness status^{7,12} (family, friend, colleague, passers-by, 86 others, or no witness), bystander-initiated CPR, year of occurrence, day of occurrence (weekday or weekend), 87 time of occurrence (daytime or nighttime), external etiology of the cardiac arrest, prehospital involvement of 88 physician and time from the emergency call to arrival of the EMS personnel as the time-independent 89 covariates. In the analysis, we did not include the data of patients who were not in cardiac arrest at the time of 90 arrival of the EMS personnel (but subsequently suffered from cardiac arrest while being treated by the EMS 91 personnel), because patients with a non-asystole rhythm as the first-documented rhythm were excluded from 92 the study. The time-dependent covariates included the remaining prehospital procedures (AAM or IV 93 epinephrine administration) and shock delivery by the EMS personnel. 94 We performed 1:1 risk-set matching with replacement of each of the prehospital procedures using the 95 calculated time-dependent PS.^{13,14} A patient who underwent the prehospital procedures at any given minute 96 after arrival of the EMS personnel was sequentially matched with a patient who was likely to have received 97 prehospital procedures and had a similar PS in the same minute. These at-risk patients could have 98 subsequently undergone the prehospital procedures after the matching or never undergone prehospital procedures, because the matching should be independent of future events.^{13,14} At-risk patients could have been 99 100 matched multiple times as at-risk patients or patients undergoing the prehospital procedures (only if the 101 patients underwent the prehospital procedures) until undergoing the prehospital procedures (matching with 102 replacement).¹⁵ We set the caliper width for the nearest neighbor matching at 0.2 SD of the PS in the logit 103 scale.¹⁶ To assess the performance of the risk-set matching, we calculated a standardized difference for each 104 covariate. A standardized difference of less than 0.25 was regarded as a well-balanced match.¹⁵ We created 105 two PS-matched cohorts: one for AAM and the other for IV epinephrine administration. In each of the 106 matched cohorts, we fitted a conditional logistic model with matched pairs to calculate the odds ratios (ORs) 107 with 95% confidence intervals (CIs).¹⁷ The ORs represented the estimated magnitude of the association of the 108 prehospital procedures with the outcomes as compared with that of those at risk of undergoing prehospital 109 procedures.

110 **eTable 1.** Secular Trends in the Patient Outcomes at 30 days

	No. (%) of patients (n = 35 843)								
	2014 (n = 1848)	2015 (n = 4984)	2016 (n = 5513)	2017 (n = 5706)	2018 (n = 5999)	2019 (n = 5901)	2020 (n = 5892)	P value	Total (n = 35 843)
CPC ≤2	2 (0.1)	9 (0.2)	9 (0.2)	12 (0.2)	15 (0.3)	9 (0.2)	11 (0.2)	.69	67 (0.2)
CPC ≤3	5 (0.3)	23 (0.5)	21 (0.4)	27 (0.5)	30 (0.5)	38 (0.6)	28 (0.5)	.11	172 (0.5)
Survival	30 (1.6)	68 (1.4)	87 (1.6)	76 (1.3)	79 (1.3)	84 (1.4)	73 (1.2)	.24	497 (1.4)
ROSC	424 (22.9)	1122 (22.5)	1274 (23.1)	1314 (23.0)	1349 (22.5)	1360 (23.0)	1178 (20.0)	.003	8021 (22.4)

111 A All Patients Included in Analysis

112

113 B Patients Older Than 80 years

	No. (%)	of patient							
	2014 (n = 693)	2015 (n = 1919)	2016 (n = 2159)	2017 (n = 2347)	2018 (n = 2444)	2019 (n = 2446)	2020 (n = 2445)	P value	Total (n = 14 453)
CPC ≤2	0 (0)	3 (0.2)	0 (0)	3 (0.1)	2 (0.1)	1 (0.04)	3 (0.1)	.81	12 (0.1)
CPC ≤3	1 (0.1)	5 (0.3)	5 (0.2)	9 (0.4)	7 (0.3)	13 (0.5)	10 (0.4)	.08	50 (0.3)
Survival	9 (1.3)	25 (1.3)	27 (1.3)	20 (0.9)	19 (0.8)	30 (1.2)	28 (1.1)	.56	158 (1.1)
ROSC	174 (25.1)	452 (23.6)	517 (23.9)	533 (22.7)	576 (23.6)	596 (24.4)	520 (21.3)	.10	3368 (23.3)

114

(continued)

115 eTable 1. (continued)

116 C Patients Without ROSC at Hospital Arrival

	No. (%)								
	2014 (n = 1718)	2015 (n = 4698)	2016 (n = 5182)	2017 (n = 5337)	2018 (n = 5598)	2019 (n = 5470)	2020 (n = 5463)	P value	Total (n = 33 466)
CPC ≤2	1 (0.1)	0 (0)	4 (0.1)	5 (0.1)	7 (0.1)	4 (0.1)	2 (0.04)	.57	23 (0.1)
CPC ≤3	2 (0.1)	6 (0.1)	7 (0.1)	11 (0.2)	16 (0.3)	9 (0.2)	6 (0.1)	.74	57 (0.2)
Survival	13 (0.8)	24 (0.5)	36 (0.7)	31 (0.6)	34 (0.6)	29 (0.5)	25 (0.5)	.21	192 (0.6)
ROSC	294 (17.1)	836 (17.8)	943 (18.2)	945 (17.7)	948 (16.9)	929 (17.0)	749 (13.7)	<.001	5644 (16.9)

117

118 D Patients Who Were Candidates for TOR by The ALS-TOR Rule

	No. (%)		-						
	2014 (n = 748)	2015 (n = 1863)	2016 (n = 1973)	2017 (n = 1899)	2018 (n = 2142)	2019 (n = 2059)	2020 (n = 2047)	P value	Total (n = 12 731)
CPC ≤2	0 (0)	0 (0)	2 (0.1)	3 (0.2)	3 (0.1)	0 (0)	0 (0)	.73	8 (0.1)
CPC ≤3	1 (0.1)	0 (0)	2 (0.1)	4 (0.2)	5 (0.2)	1 (0.04)	1 (0.04)	.99	14 (0.1)
Survival	2 (0.3)	5 (0.3)	5 (0.3)	6 (0.3)	9 (0.4)	6 (0.3)	7 (0.3)	.55	40 (0.3)
ROSC	94 (12.6)	231 (12.4)	271 (13.7)	232 (12.2)	269 (12.6)	245 (11.9)	205 (10.0)	.007	1547 (12.2)

119 Abbreviations: CPC, Cerebral Performance Category; ROSC, return of spontaneous circulation; TOR, termination of

120 resuscitation; ALS-TOR, advanced life support-termination of resuscitation.

eFigure 1. Secular trends in the patient outcomes at 90 days

121

122 **eFigure 1.** Secular Trends in the Patient Outcomes at 90 days

123 A Secular trends in the proportion of patients who showed a favorable neurological outcome (CPC <2 and CPC <3) at 90

- 124 days and survived at 90 days among the analyzed patients.
- 125 B Secular trends in the patients aged >80 years old.
- 126 C Secular trends in the patients without ROSC at hospital arrival.
- 127 D Secular trends in the patients who were candidates for TOR by the ALS-TOR rule.
- 128 CPC indicates Cerebral Performance Category; ROSC, return of spontaneous circulation; TOR, termination-of-resuscitation;
- 129 ALS-TOR, advanced life support termination-of-resuscitation.

eFigure 2. Secular trends in the outcomes among patients with ROSC at any time

130

131 **eFigure 2.** Secular Trends in the Outcomes Among Patients With ROSC at Any

132 Time

133 A Secular trends in the proportion of patients who showed a favorable neurological outcome (CPC <2 and CPC <3) at 30

134 days and survived at 30 days among the patients who achieved ROSC at any time during the resuscitation process.

135 B Secular trends in the proportion of patients who showed a favorable neurological outcome (CPC ≤2 and CPC ≤3) at 90

136 days and survived at 90 days among the patients who achieved ROSC at any time during the resuscitation process.

137 ROSC indicates return of spontaneous circulation; CPC, Cerebral Performance Category.

138 **eTable 2.** Secular Trends in the Performance of Prehospital and In-Hospital

139 Advanced Life Support (ALS) Procedures in the Analyzed Patients

	No. (%) of patients (n = 35 843)							_	
	2014 (n = 1848)	2015 (n = 4984)	2016 (n = 5513)	2017 (n = 5706)	2018 (n = 5999)	2019 (n = 5901)	2020 (n = 5892)	<i>P</i> value	Total (n = 35 843)
AAM	938 (50.8)	2279 (45.7)	2815 (51.1)	3090 (54.2)	3224 (53.7)	3090 (52.4)	3216 (54.6)	<.001	18 652 (52.0)
IV catheteriz ation	724 (39.2)	2015 (40.4)	2047 (37.1)	2483 (43.5)	2508 (41.8)	2488 (42.2)	2506 (42.5)	<.001	14 771 (41.2)
Epinephri ne	454 (24.6)	1159 (23.3)	1305 (23.7)	1526 (26.7)	1784 (29.7)	1909 (32.4)	1989 (33.8)	<.001	10 126 (28.3)

140 A Prehospital Procedure

141

142 B In-hospital Procedure

	No. (%)	of patient							
	2014 (n = 1848)	2015 (n = 4984)	2016 (n = 5513)	2017 (n = 5706)	2018 (n = 5999)	2019 (n = 5901)	2020 (n = 5892)	P value	Total (n = 35 843)
Epinephri ne	1572 (85.1)	4153 (83.3)	4687 (85.0)	4854 (85.1)	4939 (82.3)	4798 (81.3)	4516 (76.6)	<.001	29 519 (82.4)
Tracheal intubation	1215 (65.7)	3204 (64.3)	3638 (66.0)	3542 (62.1)	3663 (61.1)	3702 (62.7)	3135 (53.2)	<.001	22 099 (61.7)
ТТМ	35 (1.9)	88 (1.8)	89 (1.6)	88 (1.5)	85 (1.4)	79 (1.3)	61 (1.0)	<.001	525 (1.5)

143 Abbreviations: AAM, advanced airway management; IV, intravenous; TTM, targeted temperature management.

144 **eTable 3.** Characteristics of Patients With OHCA and an Initial Rhythm of Asystole

- 145 Who Received Prehospital AAM and Were at Risk of Receiving AAM in the Time-
- 146 Dependent Propensity Score-Matched Cohort^a

	No. (%) of patie	ents	
	Control group (n = 18 135)	AAM group (n = 18 135)	Standardized difference
Age, median (IQR), y	76 (62-85)	78 (67-86)	0.145
Sex			
Male	10 516 (58.0)	10 426 (57.5)	0.040
Female	7619 (42.0)	7709 (42.5)	0.010
External cause of arrest	2188 (12.1)	1391 (7.7)	0.148
Witness category			
Family	2609 (14.4)	3007 (16.6)	
Friend	234 (1.3)	278 (1.5)	
Colleague	124 (0.7)	108 (0.6)	0.049
Passer-by	445 (2.5)	213 (1.2)	0.046
Others	1719 (9.5)	1552 (8.6)	
No witness	13 004 (71.7)	12 977 (71.6)	
Category of bystander CPR			
Chest compression only	7486 (41.3)	7641 (42.1)	
Chest compression with ventilation	709 (3.9)	906 (5.0)	0.052
No bystander CPR	9940 (54.8)	9588 (52.9)	
Year of occurrence			
2014	913 (5.0)	930 (5.1)	
2015	2660 (14.7)	2265 (12.5)	
2016	2776 (15.3)	2781 (15.3)	
2017	2873 (15.8)	3049 (16.8)	0.035
2018	3121 (17.2)	3191 (17.6)	
2019	3022 (16.7)	3053 (16.8)	
2020	2770 (15.3)	2866 (15.8)	

147

(continued)

148 eTable 3. (continued)

	No. (%) of patie		
	Control group (n = 18 135)	AAM group (n = 18 135)	Standardized difference
Day of occurrence			
Weekday	12 052 (66.5)	11 986 (66.1)	0.009
Weekend	6083 (33.5)	6149 (33.9)	0.008
Time of occurrence			
Daytime	7305 (40.3)	7226 (39.8)	0.000
Nighttime	10 830 (59.7)	10 909 (60.2)	0.009
Prehospital involvement of physician	1533 (8.5)	1057 (5.8)	0.102
Response time, median (IQR), min ^b	9 (7-11)	9 (7-10)	0.043

149 Abbreviations: AAM, advanced airway management; CPR, cardiopulmonary resuscitation.

150 ^a Continuous variables were expressed as medians (interquartile range [IQR]: 25-75), and categorical variables were

151 expressed as proportions (%).

152 ^b Time from call to contact with the patient.

153 **eTable 4.** Characteristics of Patients With OHCA and an Initial Rhythm of Asystole

154 Who Received Prehospital Epinephrine Administration and Were at Risk of

- 155 Receiving Prehospital Epinephrine Administration in the Time-Dependent
- 156 Propensity Score-Matched Cohort^a

	No. (%) of patier	nts	_
	Control group (n = 9714)	Epinephrine group (n = 9714)	Standardized difference
Age, median (IQR), y	77 (64-85)	78 (67-86)	0.118
Sex			
Male	5575 (57.4)	5772 (59.4)	0.041
Female	4139 (42.6)	3942 (40.6)	0.041
External cause of arrest	1098 (11.3)	714 (7.4)	0.136
Witness category			
Family	1316 (13.5)	2023 (20.8)	
Friend	129 (1.3)	149 (1.5)	
Colleague	74 (0.8)	83 (0.9)	0.005
Passer-by	204 (2.1)	137 (1.4)	0.095
Others	828 (8.5)	1011 (10.4)	
No witness	7163 (73.7)	6311 (65.0)	
Category of bystander CPR			
Chest compression only	4030 (41.5)	4291 (44.2)	
Chest compression with ventilation	431 (4.4)	484 (5.0)	0.064
No bystander CPR	5253 (54.1)	4939 (50.8)	
Year of occurrence			
2014	499 (5.1)	447 (4.6)	
2015	1290 (13.3)	1150 (11.8)	
2016	1483 (15.3)	1274 (13.1)	
2017	1531 (15.8)	1486 (15.3)	0.094
2018	1673 (17.2)	1754 (18.1)	
2019	1691 (17.4)	1868 (19.2)	
2020	1547 (15.9)	1735 (17.9)	

(continued)

157 158

159

160 eTable 4. (continued)

	No. (%) of patier	nts	
	Control group (n = 9714)	Epinephrine group (n = 9714)	Standardized difference
Day of occurrence			
Weekday	6467 (66.6)	6479 (66.7)	0.002
Weekend	3247 (33.4)	3235 (33.3)	0.003
Time of occurrence			
Daytime	3859 (39.7)	3994 (41.1)	0.029
Nighttime	5855 (60.3)	5720 (58.9)	0.028
Prehospital involvement of physician	739 (7.6)	687 (7.1)	0.021
Response time, median (IQR), min ^b	8 (7-10)	9 (7-11)	<.001

161 Abbreviations: CPR, cardiopulmonary resuscitation.

162 ^a Continuous variables were expressed as medians (interquartile range [IQR]: 25-75), and categorical variables were

163 expressed as proportions (%).

164 ^b Time from call to contact with the patient.

165 **eTable 5.** Association Between Prehospital ALS Procedures and Patient Outcomes

166 at 90 Days

	AAM			Epinephri	ne	
Patients with outcome, No./total No. (%)			Patients with outcome, No./total No. (%)			
Outcome	Control	AAM	OR	Control	Epinephrine	OR
	group	group	(95% CI)	group	group	(95% CI)
CPC ≤2	17/18 135ª	20/18 135ª	1.67	14/9714 ^ь	7/9714 ^b	0.60
	(0.1)	(0.1)	(0.73-3.81)	(0.1)	(0.1)	(0.22-1.65)
CPC ≤3	41/18 135 ^a	44/18 135 ^a	1.29	22/9714 ^b	25/9714 ^b	1.13
	(0.2)	(0.2)	(0.78-2.11)	(0.2)	(0.3)	(0.57-2.27)
Survival	99/18 135ª	110/18 135ª	1.17	51/9714 ^b	80/9714 ^b	1.54
	(0.5)	(0.6)	(0.85-1.61)	(0.5)	(0.8)	(1.01-2.36)

167 There were 9079 missing data for outcome at 90 days in the risk-set matched cohort.

168 ^b There were 5131 missing data for outcome at 90 days in the risk-set matched cohort.

169 Abbreviations: ALS, advanced life support; AAM, advanced airway management; OR, odds ratio; CPC, Cerebral

170 Performance Category.

171

172	eTable 6.	Time S	pent on	CPR I	Procedures	Until ROSC
114			pont on		1000000100	0110111000

	Hour (min)				
	Analyzed patien (n = 35 843)	ts	Patients who were candidates for TOR (n = 12 731)		
	Total time	Time incurred to obtain one patient with CPC ≤2 at 30 days	Total time	Time incurred to obtain one patient with CPC ≤2 at 30 days	
Prehospital	20 928ª	312ª	7568 [₫]	946 ^d	
	(1 255 685)	(18 742)	(454 089)	(56 761)	
In-hospital	14 506⁵	217⁵	5271 ^e	659 ^e	
	(870 348)	(12 990)	(316 266)	(39 533)	
Total	35 434°	529 ^c	12 839 ^f	1605 ^f	
	(2 126 033)	(31 732)	(770 355)	(96 294)	

- ^a There were 5 missing data.
- 174 ^b There were 828 missing data.
- [°]There was 1 missing data.
- 176 ^d There was 1 missing data.
- ^e There were 293 missing data.
- 178 ^fThere was 1 missing data.
- 179 Abbreviations: CPR, cardiopulmonary resuscitation; ROSC, return of spontaneous circulation; TOR, termination-of-
- 180 resuscitation; CPC, Cerebral Performance Category.

181 eReferences.

182	1.	Kitamura T, Iwami T, Atsumi T, et al. The profile of Japanese Association for Acute
183		Medicine - out-of-hospital cardiac arrest registry in 2014-2015. Acute Med Surg.
184		2018;5(3):249-258. doi:10.1002/ams2.340
185	2.	Jacobs I, Nadkarni V, Bahr J, et al. Cardiac arrest and cardiopulmonary resuscitation
186		outcome reports: update and simplification of the Utstein templates for resuscitation
187		registries. A statement for healthcare professionals from a task force of the
188		international liaison committee on resuscitation (American Heart Association,
189		European Resuscitation Council, Australian Resuscitation Council, New Zealand
190		Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican
191		Heart Foundation, Resuscitation Council of Southern Africa). Resuscitation.
192		2004;63(3):233-249. doi:10.1016/j.resuscitation.2004.09.008
193	3.	Perkins GD, Jacobs IG, Nadkarni VM, et al. Cardiac arrest and cardiopulmonary
194		resuscitation outcome reports: update of the Utstein Resuscitation Registry
195		Templates for Out-of-Hospital Cardiac Arrest: a statement for healthcare
196		professionals from a task force of the International Liaison Committee on
197		Resuscitation (American Heart Association, European Resuscitation Council,
198		Australian and New Zealand Council on Resuscitation, Heart and Stroke
199		Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of
200		Southern Africa, Resuscitation Council of Asia); and the American Heart
201		Association Emergency Cardiovascular Care Committee and the Council on
202		Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Circulation.
203		2015;132(13):1286-1300. doi:10.1161/CIR.000000000000144
204	4.	Japan Resuscitation Council. JRC Resuscitation Guidelines 2020. Bunkyo-ku,
205		Tokyo: Igaku Shoin; 2021.

 $\textcircled{\mbox{\sc c}}$ 2024 Ishii J et al. JAMA Network Open.

206	5.	Kajino K, Kitamura T, Iwami T, et al. Current termination of resuscitation (TOR)
207		guidelines predict neurologically favorable outcome in Japan. Resuscitation.
208		2013;84(1):54-59. doi:10.1016/j.resuscitation.2012.05.027
209	6.	Morrison LJ, Verbeek PR, Vermeulen MJ, et al. Derivation and evaluation of a
210		termination of resuscitation clinical prediction rule for advanced life support
211		providers. Resuscitation. 2007;74(2):266-275.
212		doi:10.1016/j.resuscitation.2007.01.009
213	7.	Izawa J, Komukai S, Gibo K, et al. Pre-hospital advanced airway management for
214		adults with out-of-hospital cardiac arrest: nationwide cohort study. BMJ.
215		2019;364:1430. doi:10.1136/bmj.1430
216	8.	Matsuyama T, Komukai S, Izawa J, et al. Pre-Hospital Administration of
217		Epinephrine in Pediatric Patients With Out-of-Hospital Cardiac Arrest. J Am Coll
218		Cardiol. 2020;75(2):194-204. doi:10.1016/j.jacc.2019.10.052
219	9.	Okubo M, Komukai S, Izawa J, et al. Prehospital advanced airway management for
220		paediatric patients with out-of-hospital cardiac arrest: A nationwide cohort study.
221		Resuscitation. 2019;145:175-184. doi:10.1016/j.resuscitation.2019.09.007
222	10.	Matsuyama T, Komukai S, Izawa J, et al. Epinephrine administration for adult out-
223		of-hospital cardiac arrest patients with refractory shockable rhythm: time-dependent
224		propensity score-sequential matching analysis from a nationwide population-based
225		registry. Eur Heart J Cardiovasc Pharmacother. 2022;8(3):263-271.
226		doi:10.1093/ehjcvp/pvab013
227	11.	Beyersmann J, Schumacher M. Time-dependent covariates in the proportional
228		subdistribution hazards model for competing risks. Biostatistics. 2008;9(4):765-776.
229		doi:10.1093/biostatistics/kxn009
230	12.	Lo CYZ, Fook-Chong S, Shahidah N, et al. Does witness type affect the chance of
231		receiving bystander CPR in out-of-hospital cardiac arrest? Resuscitation.
232		2023;189:109873. doi:10.1016/j.resuscitation.2023.109873

233	13.	Lu B. Propensity score matching with time-dependent covariates. <i>Biometrics</i> .
234		2005;61(3):721-728. doi:10.1111/j.1541-0420.2005.00356.x
235	14.	Li YP, Propert K.J., Rosenbaum P.R. Balanced Risk Set Matching. J Am Stat Assoc.
236		2001;96(455):870-882
237	15.	Stuart EA. Matching methods for causal inference: A review and a look forward.
238		Stat Sci. 2010;25(1):1-21. doi:10.1214/09-STS313
239	16.	Austin PC. An Introduction to Propensity Score Methods for Reducing the Effects
240		of Confounding in Observational Studies. Multivariate Behav Res. 2011;46(3):399-
241		424. doi:10.1080/00273171.2011.568786
242	17.	Liu Y, Yo CH, Hu JR, et al. Sepsis increases the risk of in-hospital cardiac arrest: a
243		population-based analysis. Intern Emerg Med. 2023. doi:10.1007/s11739-023-
244		03475-6
245		

246