
 

1 

Selenium alters the gene content but not the 
taxonomic composition of the soil microbiome 

 
Alison E. Bennett1, Scott Kelsey1, Casey Saup2, Mike Wilkins3, Antonino Malacrinò4,5 

 
1 Dept. of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus (OH), USA 
2 School of Earth Sciences, The Ohio State University, Columbus (OH), USA 
3 Dept. of Soil and Crop Sciences, Colorado State University, Fort Collins (CO), USA 
4 Dept. of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy 
5 Dept. of Biological Sciences, Clemson University, Clemson (SC), USA 
* corresponding author: (AM) antonino.malacrino@unirc.it 
 
 

Supplementary material 
  

mailto:antonino.malacrino@unirc.it


 

2 

Supplementary tables 
 
Table S1. Samples from paired high/low selenium sampling sites in Western Colorado, USA. 
For each sample, we provide information about the underlying geological parent material, 
whether they were classified as High or Low in Selenium, the sampling GPS coordinates, and 
whether samples were used for shotgun or amplicon sequencing (green-colored cell indicates 
that the sample was used for that application). 
Sample Formation Selenium GPS coordinates Shotgun Amplicon 
JW2 Wasatch High 39.32699 N 

108.26165 W 
  

JW3 Wasatch High 39.325620 N 
108.263270 W 

  

DMW1 Wasatch Low 39.32008 N 
108.16945 W 

  

DBMH Wasatch High 39.31594 N 
108.17452 W 

  

MFT1 Mancos Low 38.51696 N 
107.85333 W 

  

SWL1 Mancos High 38.71129 N 
108.02534 W 

  

UNWL Morrison Low 38.344400 N 
108.728850 W 

  

UVMH Morrison High 38.343600 N 
108.732550 W 

  

ECW1GL Morrison Low 38.66999 N 
108.33148 W 

  

GJSRW1H Morrison Low 38.99683 N 
108.61191 W 

  

GJSRW3 Morrison High 38.99149 N 
108.61673 W 

  

GDWL Mancos Low 38.419670 N 
107.771160 W 

  

LZSL Mancos High 38.539840 N 
107.788480 W 

  

LZS3 Mancos High 38.54470 N 
107.78506 W 

  

BLML Morrison High 38.45795 N 
108.84424 W 

  

BLM4 Morrison Low 38.45779 N 
108.84837 W 

  

EWA1 Mancos Low 38.70968 N 
108.17004 W 

  

TRK3 Wasatch High 39.30972 N 
108.27467 W 

  

TRK4 Wasatch Low 39.30971 N 
108.27479 W 

  

DIGL Wasatch Low 39.31537 N 
108.15984 W 
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Supplementary figures 

 
Figure S1. Rarefaction curves from shotgun metagenomics. 

 
 

 
Figure S2. Taxonomic profile of microbial communities in soil with high or low Se from 
shotgun metagenomics. Microbial genera with relative abundances > 1% are plotted. 

  



 

4 

Supplementary results – heavy metals in soil 
 
Samples from our sites were submitted to the Kansas State Soil Testing Lab to measure the 
content of several heavy metals commonly found in soils (Al, As, Cd, Cr, Pb, Cu, Mn, and Zn), 
total P, total N, and EC. For each, we fit the concentration measure in our sample to a linear 
mixed-effect model, using the selenium level (high or low) as a fixed factor and geological 
formation as a random effect. 
 
Table S2. Comparison of concentration of different heavy metals between high and low 
selenium soils. For each metal, we report the mean concentration (± SE) and the results from 
the linear mixed-effect model. 
Element High selenium soils 

(mean ± SE) 
Low selenium soils 

(mean ± SE) 
c2 p 

Al (ppm) 0.15 ± 0.05 0.23 ± 0.06 0.81 0.37 
As (ppm) 3.08 ± 1.09 2.49 ± 0.87 0.31 0.57 
Cd (ppm) 1.41 ± 0.57 0.95 ± 0.46 0.57 0.44 
Cr (ppm) 7.66 ± 1.75 8.07 ± 2.3 0.03 0.84 
Pb (ppm) 10.50 ± 1.18 8.83 ± 0.16 1.44 0.22 
Cu (ppm) 0.83 ± 0.13 0.47 ± 0.11 6.12 0.01 
Mn (ppm) 2.98 ± 0.59 3.41 ± 0.49 0.30 0.58 
Zn (ppm) 1.49 ± 0.57 0.40 ± 0.11 3.43 0.06 
Total P (%) 530 ±142 323 ± 66.2 2.20 0.13 
Total N (%) 0.14 ± 0.04 0.06 ± 0.01 2.76 0.09 
EC (%) 20.07 ±11.4 1.07 ± 0.42 4.11 0.04 
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Supplementary results – amplicon sequencing 

Sampling 
The sampling protocols were the same as those reported in the methods in the main 
document; however, fewer total sites were sampled. 
 

DNA extraction, library preparation, and sequencing 
Total DNA was extracted from soil samples using the Powersoil DNA Isolation Kit (MoBio 
Laboratories, CA, USA). Bacterial communities were characterized through 16S rRNA gene 
sequencing using primers 515f/806r that target the V4 region and maximize coverage of 
bacteria and archaea while also providing polymerase chain reaction products long enough 
for sequencing (Apprill et al., 2015; Parada et al., 2016). These 16S rRNA genes were 
sequenced using an Illumina MiSeq instrument at Argonne National Laboratory. 
 

Data processing and analysis 
The data were processed using the nf-core/ampliseq version 2.7.1 (doi: 
10.5281/zenodo.1493841). Cutadapt (Martin, 2011) was used to trim primer sequences, which 
were then processed sample-wise with DADA2 (Callahan et al., 2016) to eliminate PhiX 
contamination, discard reads with > 2 expected errors, correct errors, merge read pairs, 
remove chimeras, and identify amplicon sequence variants (ASVs). 

Data were then processed using R v4.1.2 (R Core Team, 2020) and phyloseq v1.38 
(McMurdie and Holmes, 2013). All singletons were then discarded. The Shannon diversity 
index was calculated using the package microbiome v1.16 (Sudarshan and Shetty, 2017), and 
differences between high- and low-selenium soils were tested by fitting a linear mixed-effects 
model with the package lme4 (Bates et al., 2014) using the selenium level (high or low) as a 
fixed factor and geological formation as a random effect. We also tested the effect of the 
selenium level (high or low) on the structure of microbial communities using PERMANOVA on 
a Bray‒Curtis distance matrix between samples (999 permutations, stratified using the 
variable “geological formation”). Differences in the structure of the soil microbial communities 
were visualized using NMDS. Data were then normalized using Wrench (Kumar et al., 2018), 
and using the package MaAsLin2 (Mallick et al., 2021), we identified taxa with differential 
abundance between soils with high and low Se. 
 

Results 
Our results showed that the presence of high levels of Se did not influence the diversity 
(𝛘2=2.08, p=0.14; Fig. S3A) or structure (F1, 8=1.08, p=0.23; Fig. S3B) of the soil microbial 
communities. Similarly, when testing for differences in individual ASVs between the two soil 
groups, we did not find any taxa that were significantly more abundant in soils with high or low 
levels of Se (Fig. S3C). 
 



 

6 

 
Figure S3. (A) Shannon diversity index in soil samples with high (n = 6) and low (n = 4) Se. 
(B). NMDS (Non-Metric Multi Dimensional Scaling) of soil samples with high (n = 6) and low 

(n = 4) selenium levels. The ellipses represent the 95% CIs for each group. (C) Volcano 
plots showing that no microbial taxa were differentially abundant between sites with high 

(log2FC > 0) and low (log2FC < 0) Se levels. 
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