Supporting Information

Biocatalytic sulfation of aromatic and aliphatic alcohols catalyzed by arylsulfate sulfotransferases

Isabel Oroz-Guinea,^{1,2,3} ⁽ⁱ⁾ Marko Rath,^{1,2} Isabelle Tischler,² Klaus Ditrich,⁴ Michael Breuer,⁴ Doreen Schachtschabel,⁴ Wolfgang Kroutil^{1,2,3,5}

¹ Austrian Centre of Industrial Biotechnology c/o University of Graz Heinrichstrasse 28, 8010 Graz (Austria).

- ² Institute of Chemistry University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz (Austria).
- ³ Field of Excellence BioHealth University of Graz Heinrichstrasse 28, 8010 Graz (Austria).
- ⁴ BASF SE White Biotechnology Research, Carl-Bosch-Strasse 38, 67056 Ludwigshafen (Germany).

⁵ BioTechMed Graz Heinrichstrasse 28, 8010 Graz (Austria).

 $Corresponding\ author:\ Wolfgang\ Kroutil,\ wolfgang.kroutil@uni-graz.at$

ASST / Source µorganism	Sequence identity	Amino acids	NCBI
ASST Desulfitobacterium dehalogenans ATCC 51507*	93.2	629	AFM01510.1
ASST Desulfitobacterium dichloroeliminans	87.6	628	WP_015263010.1
ASST Dehalobacterium formicoaceticum*	86.8	628	WP_089608557.1
ASST Desulfosporosinus lacus	85.0	627	WP_073033341
ASST Desulfosporosinus sp. HMP52	83.7	628	WP_034601251.1
ASST Desulfosporosinus meridiei	84.6	628	WP_014902777.1
ASST Desulfosporosinus hippei	83.1	628	WP_092334873.1
ASST Desulfosporosinus acididurans	77.3	628	WP_047811757.1
ASST Desulfosporosinus sp. FKA	76.5	629	WP_088186734.1
ASST Desulfitobacterium dehalogenans	76.1	629	WP_014793958.1
ASST Desulfitobacterium dichloroeliminans	75.6	629	WP_015260940.1
ASST Desulfitobacterium hafniense*	71.2	626	KTE91359.1
ASST Desulfitobacterium chlororespirans	71	626	WP_072774114.1
ASST Clostridiales bacterium	70	636	PWM49771.1
ASST Bittarella massiliensis	64.9	625	WP_059003491.1
Clostridium hypothetical protein	64.7	625	WP_021658034.1
ASST Desulfohalotomaculum alkaliphilum	60.4	622	WP_114638903.1
ASST Lachnoclostridium sp. An14	57.2	628	WP_087224291.1
ASST Niameybacter massiliensis	58.7	619	WP_053984844.1
ASST Desulfohalotomaculum alkaliphilum	58.4	618	WP_031517900.1
ASST Desulfosporosinus orientis*	58.8	621	WP_014184280.1
ASST Desulfotomaculum ferrireducens	58.1	618	WP_077713083.1
ASST Hungatella hathewayi	59	624	WP_055659810.1
ASST Desulfosporosinus orientis*	58.3	621	WP_014187168.1
ASST Niameybacter massiliensis	56.6	626	WP_053984585.1
ASST Desulfitobacterium dichloroeliminans	58.9	623	WP_015263770.1
ASST Desulfotomaculum ferrireducens	57	621	WP_077715208.1
ASST Hungatella effluvia*	58.5	624	WP_110321498.1
ASST Niameybacter massiliensis	55.2	622	WP_053983873.1

Table S1 Summary of the sequences retrieved using BLASTp with ASSTA as protein template

* Selected DNA sequences on this work

Fig. S1 Homology tree showing the sequence similarity displayed by the proteins retrieved from the BLAST search using ASSTA from *D. hafniense* as protein template. The four main branches that constitute the tree are numbered to facilitate their differentiation. The model protein is highlighted in yellow and the homologous proteins chosen are marked with red arrows. Homology percentages with ASSTA are written in blue next to all the protein names

Fig. S2 Alignment of the protein sequences chosen from the ASSTA BLAST analysis. The expected catalytic His of ASSTA in marked with a green asterisk (*)

Enzyme	ASSTA	ASSTB	ASSTHeff	ASSTDor	ASSTDfor	ASSTC	ASSTDdeh
pEG ^a	pEG548	pEG549	pEG559	pEG558	pEG556	pEG557	pEG555
Vector	pET26b(+)	pET28a(+)	pET28a(+)	pET28a(+)	pET28a(+)	pET28a(+)	pET28a(+)
Restriction sites	SacI and SalI	NcoI and SalI	NcoI and SalI	<i>Nco</i> I and <i>Sal</i> I	<i>Nco</i> I and <i>Sal</i> I	<i>Nco</i> I and <i>Sal</i> I	NcoI and SalI
Tag	C-term His-tag	C-term His-tag	C-term His-tag	C-term His-tag	C-term His-tag	C-term His-tag	C-term His-tag
Expression strain	BL21(DE3)	BL21(DE3)	BL21(DE3)	BL21(DE3)	BL21(DE3)	BL21(DE3)	BL21(DE3)
Media	LB	LB	LB	LB	LB	LB	LB
[Antibiotic] _{cult}	Kan (50 µg/ml)	Kan (50 µg/ml)	Kan (50 µg/ml)	Kan (50 µg/ml)	Kan (50 µg/ml)	Kan (50 µg/ml)	Kan (50 µg/ml)
O/Nc volume, temperature and shaking	10 ml, 37 °C, 120 rpm	10 ml, 37 °C, 120 rpm	10 ml, 37 °C, 120 rpm	10 ml, 37 °C, 120 rpm			
Usual culture volume	500 ml	500 ml	500 ml	500 ml	500 ml	500 ml	500 ml
Inoculation volume	1 % (5 ml)	1 % (5 ml)	1 % (5 ml)	1 % (5 ml)			
Culture temperature and shaking	37 °C, 140 rpm	37 °C, 140 rpm	37 °C, 140 rpm	37 °C, 140 rpm			
Induction OD ₆₀₀	~0.6	~0.6	~0.6	~0.6	~0.6	~0.6	~0.6
Inducer	IPTG (1 mM)	IPTG (0.4 mM)	IPTG (1 mM)	IPTG (1 mM)	IPTG (1 mM)	IPTG (1 mM)	IPTG (1 mM)
Induction time, temperature and shaking.	O/N, 20 °C, 120 rpm	O/N, 30 °C, 140 rpm	O/N, 20 °C, 120 rpm	O/N, 20 °C, 120 rpm	O/N, 20 °C, 120 rpm	O/N, 20 °C, 120 rpm	O/N, 20 °C, 120 rpm
Purification	Ni ²⁺ -NTA	Ni ²⁺ -NTA	Ni ²⁺ -NTA	Ni ²⁺ -NTA	Ni ²⁺ -NTA	Ni ²⁺ -NTA	Ni ²⁺ -NTA

Table S2 Summary of the strains and culture conditions utilized for the overexpression of the ASSTs

^a pEG refers to the internal plasmid numbering: pEG stand for plasmid of the Elk Group.

ASST	Molecular weight (kDa)	Theoretical molar extinction coefficient [M ⁻¹ cm ⁻¹]
ASSTA	76.0	93360
ASSTB	74.0	110310
ASSTHeff	70.7	99290
ASSTDor	70.5	97650
ASSTDfor	71.4	97770
ASSTC	71.0	96160
ASSTDdeh	71.6	94640

Table S3 Expected molecular weights and theoretical molar extinction coefficients for the different overexpressed ASSTs

Table S4 Determined *pNP* molar extinction coefficient under the different reaction conditions employed

Buffer	рН	Wavelength (nm)	Co-solvent (10%, v/v)	Molar extinction coefficient (ε) mM ⁻¹ cm ⁻¹
	5.5	250 nm		5.0
Bis Tris	6.0	550 IIII		5.0
	7.0	410 nm		8.4
Nat wheember	7.0	410		11.1
Na ⁺ pnospnate	8.0	410 nm		15.7
	8.0	410	_	15.6
	9.0	410 nm		16.7
	9.0			16.9
Na ⁺ carbonate	10.0	410 nm		16.9
	10.5			16.8
	9.0	410 nm		17.4
AMP	10			17.4
	10.5			17.7
			DMSO	18.7
Tris / HCl			Acetone	18.3
	0.0	410	Methanol	17.8
	8.0	410	2-Propanol	19.0
			DMF	19.2
			1,2-(MeO) ₂ Et	18.8

Fig. S3 (**A**) Schematic representation of the high throughput robotic platform (Xavier), including (**1**) an SBS-format plates incubator (Cytomat 2C450), (**2**) an UV/vis and fluorescence microtiter plate (MTP) reader (FLUOstar Omega, BMG), (**3**) a liquid handling robot (Biomek i7 Hybrid, Beckman Coulter), (**4**) MTP shuttle (Servo Shuttle, Beckman Coulter), (**5**) colony detection module (Visual ALP, Amplius), (**6**) BRT II and (**7**) refrigerated centrifuge (Rotanta 460, Hettich). These different devices are controlled and integrated through (**8**) Biomek and DART 2.0 software (representation of the PC on the front view was avoided for clarity). (**B**) Workflow for measuring the ASSTs Michaelis-Menten kinetics (grey background: steps performed manually; blue background: automated steps performed by the robotic platform)

Column:	no column, SecurityGuard [™] C18 cartridge	
Column temperature:	not controlled	
Eluent composition:	H ₂ O/MeOH 50:50, isocratic	
Eluent flow rate:	0.5 mL/min	
Run time:	1.4 min	
Injection volume:	5 μl	
Ionization mode:	API-ES, negative polarity	
Drying gas temperature:	300 °C	
Drying gas flow:	6.0 L/min	
Nebulizer pressure:	15 psig (2.0 bar)	
Capillary voltage:	3000 V	
	100% cycle time	
Signal 1 (scan):	Mass range 30-500	
	Fragmentor 70 V	

Table S5 FIA-MS method applied for the detection of mono-, di- and trisulfated compounds synthesized by ASSTs

Note: All samples were analyzed in scan mode and the chromatograms of the target masses were extracted in post-processing

Analyte	Mass (m/z)
PIPES	301 [<i>M</i> -H] ⁻
pNPS	218 [<i>M</i> -H] ⁻
pNP	138 [<i>M</i> -H] ⁻
Cathechol (2)	109 [<i>M</i> -H] ⁻
Monosulfated 2	189 [<i>M</i> -H] ⁻
Disulfated 2	269 [<i>M</i> -H] ⁻ , 134 [<i>M</i> -2H] ²⁻
Resorcinol (3)	109 [<i>M</i> -H] ⁻
Monosulfated 3	189 [<i>M</i> -H] ⁻
Disulfated 3	269 [<i>M</i> -H] ⁻ , 134 [<i>M</i> -2H] ²⁻
Hydroquinone (4)	109 [<i>M</i> -H] ⁻
Monosulfated 4	189 [<i>M</i> -H] ⁻
Disulfated 4	269 [<i>M</i> -H] ⁻ , 134 [<i>M</i> -2H] ²⁻
1,2,4-benzenetriol (5),	125 [<i>M</i> -H] ⁻
Monosulfated 5	205 [<i>M</i> -H] ⁻
Disulfated 5	285 [<i>M</i> -H] ⁻ , 142 [<i>M</i> -2H] ²⁻
Trisulfated 5	365 [<i>M</i> -H] ⁻
1,3,5-benzenetriol (6)	125 [<i>M</i> -H] ⁻
Monosulfated 6	205 [<i>M</i> -H] ⁻
Disulfated 6	285 [<i>M</i> -H] ⁻ , 142 [<i>M</i> -2H] ²⁻
Trisulfated 6	365 [<i>M</i> -H] ⁻
4,4'-dihydroxybiphenyl (7)	185 [<i>M</i> -H] ⁻
Monosulfated 7	265 [<i>M</i> -H] ⁻
Disulfated 7	345 [<i>M</i> -H] ⁻ , 172 [<i>M</i> -2H] ²⁻

Table S6 Target masses and internal standards used for the detection of the sulfated compounds synthesized in the biotransformations with substrates 2-7

Column:	Phenomenex Luna C18 column, SecurityGuard [™] C18 cartridge		
Column temperature:	not controlled		
Eluent composition:	H ₂ O/MeOH 50:50, isocratic		
Eluent flow rate:	1.0 mL/min		
Run time:	15 min		
Injection volume:	5 μl		
Ionization mode:	API-ES, negative polarity		
Drying gas temperature:	350 °C		
Drying gas flow:	10.0 L/min		
Nebulizer pressure:	35 psig (2.4 bar)		
Capillary voltage:	3000 V		
	100% cycle time		
Signal 1 (scan):	Mass range 35-500		
	Fragmentor 40 V		

Table S7 HPLC-MS method applied for the detection of mono-, di- and trisulfated compounds synthesized by ASSTs

Note: All samples were analysed in scan mode and the chromatograms of the target masses were extracted in post-processing

Fig. S4 Overexpression of the ASSTs displaying sequence homology with ASSTA. **CFE**: cell free extract; **IB**: inclusion bodies; (-): negative control. The expected molecular weights are described in **Table S3**

Fig. S5 IMAC purification of the ASSTs displaying sequence homology with ASSTA. **CFE**: cell free extract; (-): negative control. The expected molecular weights are described in **Table S3**

Activity U/ml _{CFE}				
	Substrate			
ASST	OH Phenol	Catechol	HO HO HO HOH HOH HOH	HRO CONNH OK GlcNAc
ASSTHeff	1.7	20.0	n.d.	n.d.
ASSTDor	0.1	2.0	n.d.	n.d.
ASSTDfor	7.4	26.0	n.d.	n.d.
ASSTC	0.2	1.5	n.d.	n.d.
ASSTDdeh	22.3	135.9	n.d.	n.d.
ASSTA	0.7	3.4	n.d.	n.d.
ASSTB	11.6	16.6	n.d.	n.d.

 Table S8 Activity measured for the different ASSTs

n.d: no activity detected

Reactions conditions: Tris/HCl buffer (50 mM, pH 8.0), *p*NPS (1 mM), acceptor substrate (1 mM) and the ASST-containing CFE. Reaction progress was followed spectrophotometrically at 410 nm

Table S9 Melting temperature values measured by thermofluor assay. Each sample contained Sypro® Orange as fluorescent dye (2.5 µl in 50 mM MES buffer pH 7.0) and the corresponding ASST (1 mg/ml final conc.) dissolved in buffer (Tris/HCl 50 mM at pH 8.0 or 9.0, 25 µl final volume)

	,	$\Gamma_{\rm m}$ (°C)
-	рН 8.0	рН 9.0
ASSTA	44.5 ± 0.7	40.0 ± 0.0
ASSTB	43.0 ± 0.0	38.3 ± 0.6
ASSTC	39.3 ± 0.6	35.7 ± 0.6
ASSTHeff	38.7 ± 0.6	35.7 ± 2.1
ASST Dfor	40.7 ± 0.6	38.0 ± 0.0
ASSTDor	38.0 ± 1.0	38.0 ± 0.0
ASSTDdeh	39.0 ± 0.0	36.0 ± 0.0

Fig. S6 Apparent kinetic parameters of ASSTA, ASSTB, ASST*Heff*, ASST*Dor*, ASST*Dfor*, ASST*C*, and ASST*Ddeh* for *p*NPS. Reaction conditions: Tris/HCl buffer (50 mM, pH 8.0), *p*NPS (0-20 mM), phenol (1) (100 mM) and the purified ASST (50 nM)

Fig. S7. Apparent kinetic parameters of ASSTA, ASSTB, ASST*Heff*, ASST*Dor*, ASST*Dfor*, ASST*C*, and ASST*Ddeh* for *p*NPS. Reaction conditions: Tris/HCl buffer (50 mM, pH 8.0), *p*NPS (0-20 mM), catechol (2) (100 mM) and the purified ASST (50 nM)

Fig. S8 Activity displayed by each enzyme in presence of 10% 2-propanol in the absence any other acceptor substrate. Reactions conditions: Tris/HCl buffer (50 mM, pH 8.0), *p*NPS (1 mM), 2-propanol (10%, v/v) and the purified ASST

Fig. S9 Polysulfation screening of di- and trihydroxy aromatic compounds catalyzed by ASSTs. Coloured dots show the SIM integral ratios (target/buffer) of the substrate and the possible products in the biotransformations. Reactions were carried out in buffer PIPES 20 mM, pH 8.0; acceptor (2, 3, 4, 6, or 7) 0.5 mM; *pNPS* 1.5 mM; and purified ASST.

Fig. S10 Examples of mass spectra obtained in FIA-MS analysis of disulfation reactions with ASST. (a) Conversion of resorcinol (3) to the mono- and disulfate derivative (m/z: 188.9 and 134.0 respectively). (b) Conversion of hydroquinone (4) to the mono- and disulfate (m/z: 188.9 and 134.0 respectively). (c) Conversion of 1,3,5-benzenetriol (6) to the mono- and disulfate (m/z: 204.9 and 141.9 respectively). (d) Conversion of 4,4'-dihydroxybiphenyl (7) to the mono- and disulfate (m/z: 264.9 and 171.9 respectively).

Fig. S11 Polysulfation screening of di- and trihydroxy aromatic compounds catalyzed by ASSTB, ASSTC and ASST*Ddeh* during a long period of time. Colored dots show the SIM integral ratios (target/buffer) of the substrate and the possible products in the biotransformations. Reactions were carried out in buffer PIPES 20 mM, pH 8.0; acceptor (**2**, **3**, **4**, or **6**) 10.0 mM; pNPS 30.0 mM; and purified ASST. Reactions were shaken at 650 rpm during 16 h.

Fig. S12 (a) Mass spectrum obtained in 16 h disulfation reactions catalyzed by ASST*Ddeh* with catechol (2) as acceptor substrate, identifying important observed species. (**b**-**g**) Extracted ion chromatograms showing the elution peaks of different species, i.e., (**b**) PIPES (m/z 301), (**c**) pNPS (m/z 218), (**d**) pNP (m/z 138), (**e**) catechol (2, m/z 109), (**f**) catechol monosulfate (m/z 189) and (**g**) catechol disulfate (m/z 134).

Plasmid sequences

ASSTA D. hafniense as cloned in pET26b in silico

Name: pET26b-PelB- ASSTA-His

Restriction Enzymes

5': SacI

3': SalI

5' Flanking: A

3' Flanking: None

Gene sequence ordered

ATGAATCCGATCAAAAGTGAACAGATTCCCCATATTATCCATAGACAAAAGGATTTGGAAGAAGCTTTTCTGGCTG AATTCTCAGCGGGTCACTATACGCTGGAGAATCCGCTGGTTAAGCTCAACCCTTATGATATTTGCCCCCTTAACGGCC GGCATACCTTCCCCGCCGATAAAAAACATATTCTGCCGGTTTATGGTCTCTATGCCGATTACGAAAATAAGATCGA AATCGTCCTGGCCAATGGGCAGAAGAACACCATAACCCTTAAGACCGAGCCCCTTCATCCCGATGTCCCGGTGGCC ACCTCGATCAAGACCACCCCGGAATACATGGGCAACAACCTGATGTTTCTGACGGCAGCGATGAAGGCTATGCCTG TAGGCTATGACTATGCCGGAGAAGTTCGCTGGTATGCCACAAGGAACTTTGCCTTTGATCTCAAGCGTATGCCCAA TGGACATATTCTCATTGGTACGGAGCGTTTGGTCAAATTGCCCTATTTCACCACAGGTCTATATGAAATGGCCTTTA GTGGGAAGATATTCAAAGAATACCGTCTATCCGGCGGATACCACCATGATCAATTTGTCATGGAAGATGGCAACAT TTCTCAAGTCATGGGACTATAAAAGGGTCCTGCCCCAGGATGTAGCCGGTTCCGGAAGCCAGGATGCCCACGATTG GTTTCATAATAACGCCGTTTGGTACGATAAGAAGACACACAGCTTAAGCTTCTCCGGTCGTCACCAGGATGTGGTG ATCAACCTTGATTATGATACAGGTGAGTTAAACTGGATCATTGGGGATCCTGAAGGATGGCCCCAGGACATGGTGG ACAAATATTTCTTTACCCCGGTTGGGGAAGGGGAATTTGACTGGCAGTATGAGCAGCATGCTTGCGTCGTTTTACCT GATGGGGATATCATGCTCTTTGATAACGGCCACTTCAGAGCGAAGAAAAAGAGAATTACTTGCCCAACGGCCGG AATTTCAGCCGTGGTGTGAGGTACCGTATTGATACCGAAAAGATGACCATAGAACAAGTATGGCAATATGGAAAA GAGCGGGGCGCGGAGTTCTTCTCCCCTACATTTGCAATGTGGAGTATTACAATGAAGGCCATTACCTGGTTCACTC CGGCGGCATCGGCTATGAAAACGGTGAAACCTGCGAAGGTATGGCAGTTATGAAAGTCCTGCAACCGGAGTTTAA GGATAGTGTGTTTACCTTCAATTCCATTACCTGTGAGCTTAAAGATGACGTGCTGATGTATGAGTTGCAAGTACCGG CCAATTGTTACCGGGCTGAAAAATTGCCCCTCTACTATGCCCACGAAACGGCTGAATTAGGTGCGGGCGAAATACT GGGCAATTTAATTGAGACCCAGGAGACAAAGATGAAGATCAAGGCTGTGGAGACAGGTGAAAGAGTGCCGGATCA TTATGAGGCATCCATCACAGAAGAAGAAGAGGATCGGGTTCTCTTTAACGCCATCTTCGAGGCCGGGGAAATGGCTCAG CTGCTTTTGGTGGACGGAGACGGCGGGGGTAAAGAGATATCCTGTCAATACTGTGCCTCAGGCCTTCCAAGCCATGT GTGTAGGGACGTTCCAGAAAGCTGACCCCCGCAATATCGATGTTTATATCAACAAGACCGGATTATCCGGAAAATA TCAAGTAAAGCTCATCGCAGAAGAAAAACTCTATGAGACCGGAGTGTCTATTACAGCT

ASSTB D. hafniense as cloned in pET28a in silico

Name: pET28a-ASSTB-His

Restriction Enzymes

5': NcoI

3': SacI

5' Flanking: CA

3' Flanking: AA

Gene sequence ordered (optimized for E. coli)

TGCGTGCCGGCAATTATACCGCAGAAAGTCCGCTGGTTGTTAAAAATCCGTATATTATTAACCCGCTGGCCGCCGTT ATTTGTTTTAATACCGATGAAGAAACCACCGCCGAAATTACCGTTAAAGGCAAAGCCATTGAAGGCGATCTGAGTC ATACCTTTGCCGCCGCCAAAGAACATGTTCTGCCGGTTTATGGCCTGTATGATGATTATGTTAATACCGTTGTGATC AAACTGAGCAATGGCAAAACCAGCGAAGTGAAAATTGAAGTGGAAGAACTGAATGTTAACAAAGCCCTGTATTGC CGTACCACCCCGGAATATTTTGGTAAAGATTTTATGCTGATCAGCACCACCACCCCGCTGATTGAAAGCGCCCGCA CCGCCGGCTTTGATTATGCAGGCGATCTGCGCTGGTGTATTACCAATCTGCAGAGTTGGGATATTAAGAAACTGGAAAATGGCCGTCTGCTGTATACCAGCCATCGTACCGTGCAGAAACCGTATTATAATGTTGGCGTTATGGAAATGGAT TTTTGTGGCAAAATCTATAAGGAATACCGTCTGCCGGGCGGCTATCATCATGATGCCGTGGAACTGGAAAATGGTA ATATTCTGGCAGCCAGTGATAATGATTTTAATGATAGTGTTGAGGACTTCGTTGTTGAAATTGAACGTGCCACCGGT GCAGTTATTAAGAGCTGGGATCTGCAGAAAATTCTGCCGCGCGGGCAAAGCAGGCGATTGGAATCATCAT GATTGGTTTCATAATAACGCAGTGTGGTATGATAAACCGACCAATAGCATTACCATGAGCGGTCGCCATATGGATG ${\tt CCGTGATTAATTTTGATTATGATAGCGGCGCCCTGAATTGGATTCTGGGCGATCCGGAAGGTTGGAGCGAAGAATG}$ GCAGAAATATTTCTTTAAAAACGTGACCAAGGGTGACTTTGATTGGCAGTATGAACAGCATGCCGCCCGTATTCTG CCGAATGGTGACGTTTTCTGTTTGATAATGGCACCTATCGTAGTAAAAATGAAGCAACCCGCGTTGATCCGGAAC AGAATTTTAGTCGTGGTGTTATCTATCGTATTGATACCGATAAAATGGAAATCGAACAGGTGTGGCAGTATGGCAA AGAACGCGGCGCCGAATTTTATAGTCCGTATATTTGTAATGTGGACTATTATGGTGAGGGTCATTATATGGTGCATA GCGGCGGTATTGCAACCTATCGCGGCAAACATACCGATGGCCTGGGTGCAATGCTGCTGAATAAGTATAAGATGA ACATATCCACCTGACCCTGGAAAGCATTACCGTTGAAGTTCAGAATGATCAGCTGAAATATGAACTGAAAGTGCAG GGCGGTAATTATTATCGCGCACGCCGCGTTAGTCCGTATGATGAAAAAACCAATCTGGTGCTGGGTAAAGGTGAAC TGCTGGGTGGTTTTGGTGTTACCCCGGAATTCATGAAAGTTAATTTTAAAGACGCCGAAACCGAACTGAGTGAAAA ACATAATCTGAATGTTATCCTGGAAGAAGATCGCCTGGCAATTCGCGCCAGCTTTCGTGAAGGCAGCCAGGTTTTT TTAGTTTTGAAGAACAGAATGATAATGACTTCCAGTTTTATGTTAGCCGCGAAGGCCTGAGTGGTGAATTTGGTATC TATCTGAATATTGATAGCAAGCGCTATGATACCCATCTGAGTGTGAAACTG

ASST D. dehalogenans as cloned in pET28a in silico

Name: pET28a-ASSTDdeh-His

Restriction Enzymes

5': NcoI

3': SalI

5' Flanking: GA

3' Flanking: -

Gene sequence ordered (to be optimized for E. coli)

ATGATGAATCCGATTAAAAAGCGAACAGATTCCGCATATTATTCATCGTCAGAAAGATTTTGAAGAAGCATTTCTGG CAGAATTTAGCGCAGGTCATTATACCCTGGCAAATCCGCTGGTTGAACTGAATCCGTATGAAATTTGTCCGCTGACC GCAATGATTCTGTTTGAAACCCCGGTTAGCACCGAAGCAACCATTATTGTTCGTGGTAAAGAACATCCGGGTGATA TTCGTCATACCTTTCCGGCAAATAAAAAACATATTCTGCCGATTTATGGTCTGTATGCAGATTATGAAAATAAAGTT GAAATTGTTCTGGCAAATGGTCAGCGTAATACCGTTACCATTAAAACCGGTCCGCTGCATCCGGATGTTCCGGTTGC AACCAGCATTAAAACCACCAGCGAATATATGGGTAATAATCTGATGTTTCTGACCGCAGCAATGAAAGCAATGCCG GTTGGTTATGATTATGCAGGTGAAGTTCGTTGGTATGCAACCCGTAATTTTGCATTTGATCTGAAACGTATTCCGAA TGGTCATATTCTGATTGGTACCGAACGTCTGGTTAAAATGCCGTATTTTACCACCGGTCTGTATGAAATGGCATTTA GCGGTAAAATTTTTAAAGAATATCGTCTGCCGAGCGGTTATCATCATGATCAGTTTGTTATGGAAGATGGTAATATT CTGGTTCTGACCTTTGATTTTTATAGCGGTACCGTTGAAGATATGTGTGTTCTGCTGGATGCAGAAACCGGTGAAATTCTGAAAAGCTGGGATTATAAAAAAGTTCTGCCGCAGGATGTTGCAGGTAGCCGGTAGCCAGGATGCACATGATTGG TTTCATAATAATGCAGTTTGGTATGATCGTAAAAACCAATAGCCTGAGCCTGAGCGGTCGTCATCAGGATGCAGTTA TTAATATTGATATGAAACCGGTGAACTGAATTGGATTATTGGTGATCCGGAAGGTTGGCCGCAGGATATGGTTGA ATGGTGATATTATGCTGTTTGATAATGGTCATTTTCGTGCAAAAAATAAAGAAAATTATCTGCCGAATAGCCAGAA TTTTAGCCGTGGTGTTCGTTATCGTATTGATACCGAAAAAATGACCATTGAACAGGTTTGGCAGTATGGTAAAGAA ${\tt CGTGGTGCAGAATTTTTTAGCCCGTATATTTGTAATGTTGAATATTATGATGAAGGTCATTATCTGGTTCATAGCGG}$ TGGTATTGGTTATGAAAATGGTGAAACCTGTGAAGGTATGGCAGTTATGAAAGTTCTGCAGCCGGAATTTAAAGAT AATGTTTATACCTTTAATAGCATTACCTGTGAACTGAAAGATGATGTTCTGATGTATGAACTGCAGGTTCCGGCAAA TTGTTATCGTGCAGAAAAACTGCCGCTGTATTATGCATATGAAACCGCAGAACTGGGTGAAGGTAAAATTCTGGGT AATCTGGTTGAAACCCAGGAAACCAAAATGAAAATTAAAGCAGTTGAAACCGGTGAACGTGTTCCGGATCATTAT GAAGCAAGCATTACCGAAGAAGAAGAAGATCGTATTCTGCTGAATGCAATTTTTGATGCAGGTGAACTGGCACAGCTGC TGCTGGTTGATGGTGGTGGTGGTGTTAAACGTTATCCGATTAGCACCGTTCCGCAGGCATTTCAGGCAATGTGTGTT GGTACCTTTCAGAAAGCAGATCCGCGTAATATTGATGTTTATATAAAAACCGGTCTGAGCGGTAAATATCAGG TTAAACTGATTGCAGAAGAAAAACTGTATGAAACCGGTGTTAGCATTACCGCA

ASST D. formicoaceticum as cloned in pET28a in silico

Name: pET28a-ASSTDfor-His

Restriction Enzymes

5': NcoI

3': SalI

5' Flanking: GA

3' Flanking: -

Gene sequence ordered (to be optimized for E. coli)

ATGAACGCAATTAAATCTGAACAGGTTCCTCATATTATTCATCAACAGGAAAAGCTGGAAAAAGCATTCCTCGCTG ATGGTGTTATTCGAAACACCGGTCGCCACAGAGGCCACAGTGGTAGTGCGGGGGCAAAGAACATCTGGGTGACATA CGTCACACATTCCCAGCTGGAAAAAAACACATACTGCCAATCTATGGTCTTTACGCCGACTATGAAAATAAGATCG AATTGATAATGGCTAATGGCCAGAAAAATACCATTAAAATCCAAACTGAACCGCTTCATACAGATGTACCCGTGGC TACTTCTATAAAGACCACCAGAATATATGGGTAACAATTTGATGTTTTTGACCGCCGCGATGCGCTCCATGCCTG TGGGTTATGATTACGCAGGGGATATTAGATGGTATGCAACCAAAAATTTCGCCTTTGACTTGAAACGCCTGCCCAA TGGCCACATTCTGGTGGGAACCGAACGTTTAGTCAAAATGCCCTATTTTACAACTGGTCTTTACGAAATGGCGTTCT CTGGGAAAATTTTTAAAGAATATGTTCTGCCAAGCGGCTATCATCACGACCAGTTCCCGATGGAAGACGGTAATAT GTGTTAAAGTCTTGGGACTATAAAAAAGTCCTGCCACAAGATGTGGCGGGTAGTGGTTCTCAGGATGAACATGATTGATAAATATCGACTATGAGACTGGCGAATTAAATTGGATAATTGGTGATCCGGAGGGTTGGCCTAAAGAAATGGTT GATAAATACTTCTTTACCCCGGTTGGAGATGGTGACTTCGATTGGCAATATGAGCAGCACGCTTGCGTGGTACTGCC GGATGGTGACATTATGCTGTTTGATAATGGGCATTTCCGTGCAAAAAACAAGGAGAATTACTGGCCAAATTCCAAA AACTTTAGCCGCGGAGTACGATATCGTATTGATACCGAGAAAATGACCATAAAACAGGTCTGGCAATACGGCAAG GAACGTGGCGCAGAGTTCTTCTCGCCATATATTTGCAACGTGGAGTATTACAACGAAGGGCATTATCTGGTTCATTC CGGAGGAATTGGTTATGAAAACGGGAAGCCTTGCGAGGGCATGGCGGTTATGAAAACGATGCAGCCTGAATTTAA GGATAACGTGTATACTTTTAACAGCATTACATGTGAACTGAAAGATGACGTTCTGATGTATGAATTGCAGGTGCCT GCCAATTGCTATCGTGCCGAAAAAACTGCCACTTTACTACGCCAACGAAACGGCCGAACTGGGCGCCGGTGAAATTC TAGGAAACTTGATTAAGACTGAAGAGACTAAAATGAAAATCAAAGCTGAAGAAACTGGCGCCCTCGTCCCAGATC GTTGCTGTTAGTTAACGAAGCTGGAGAAATTAAAAGATATCCAATTAACACTGTGCCGCAAGCGTTCCAGGCAATG TCAGGTCAAACTGGTTGCTGAAGAAAAGGTATACGAGACAGGGGTTACAATCAAGGCA

ASSTC D. hafniense as cloned in pET28a in silico

Name: pET28a-ASSTDhaf03-His

Restriction Enzymes

5': NcoI

3': Sal1

5' Flanking: GA

3' Flanking: -

Gene sequence (to be optimize for E. coli)

ATGGTGGATTATGAATATTGTCCCCATATTATCACGAAACAGAATGAGTTAGAAAAAGCATTTATGGAGAAAATTCG AGGCTGGGAATTATTCGCTGGAAAATCCATTAGTGATCCTGAATCCGTATGGCGTGGCACCGCTAACAGCAATGAT CCTCTTTAATACCCCTATCGCTTGCGAAGCGAAAATAATTGTGAAAGGAAAGGAACATCCCGGCGATATTCAACAT ACTTTCCCAGCAGCGACGCGACATATACTGCCGGTCTATGGACTGTATGGAGGTTATAAAAATACTATTAAGATTA TCCTTTCCACGAGTTCGTCAAATACTATCACGATTCAGACCGAACCATTGCCGAAGAGTGTTGCCATTCCCTCGAGC ATTAAGACTACCTCGGAATATATGGGAAACAACCTGATGTTCCTCTCTCCGTCAATGGCTAGTCTTACTGTGGGCTA TGATTATGCCGGGGGATGTACGTTGGTATTGCTCATTGAACGTCTGCATCGATCTCAAACGTATGCCGAACGGCCACT TGCTGATTGGCACCGGACGCCTTGTGAAAGTACCGTACTATACAAGTGGCTTATATGAAATGGCGTTTAGCGGCAA AATATTCAAAGAATTTATCCTACCGGGTGGCTACCATCATGATCAGTTCGTGATGGAAGATGGCAACCTGCTGGTT GAAATGGGATTTTAAAAATATCCTTCCCCAAGATGTGGCAGGCTCAGGAACACAAACAGCGCACGATTGGTTTCAC AACAATGCAGTATGGTATGATAACAGAACTAACTCTCTGACTTTGTCTGGACGACACCAGGATGTGATCATTAACA TTGATTACGAAACTGGGGGGACTCAACTGGATGATTGGGGGATCCTGAAGGATGGCCGCAGGAACTAGTGGATAAAT ACTTTTTTACCCCTGCCGGCGACGGCGAATTCGATTGGCAGTATGAACAGCACGGTTGCGTTGTGCTGCCTGACGG AGACATCATGGTATTCGATAATGGTCATTATAGGTCTAAAAACAAAGAGAATTATCGCTTGAATAAAGACAATTTT TCTCGCGGTGTGCGCTACCGCATAGATACGGAGCGTATGACCATTCAGCAGATTTGGCAGTATGGGAAGGAGCGCG GCGCGGATTTTTTCTCTCCATTCATTTGCAATGTAGAATATTATGATGAGGGACATTATATGGTACATTCTGGAAGGT ATAGGCTACGAAAATGGGAAACCCTGTGAAGGCTTGGCAGTGGGGAAAAGCAAAATCCGAAATTCAAAGACAAT GTTTATACACTCAATTCGATCACGTGCGAACTGGTAAATGATGAATTGGTGTATGAACTGCAAGTTCCGGCAAATTT TTATCGCGCCGAGAAATTACCAATTTATTACGCAAACGAGGTCGCGGAGCTGTGTGAAGGGCAGCGGCTCGGACA GTTCGTGGAAACACAAACCACGTATGAAGATCAAGGCACTCGAGACGAAAGAGCCGATCCCAGAACATTATCA AGCTAAGATTGTGGAAGAAGAGGATAGATTCTGCCTGAACGCAATTTACGAGAGTGGGGGGGAGACAGCTCAACTGCT GGCACCTTCCAAAAATCTGATCCTCGGAATGTAGACACTTTCGTGACCAAGACAGGGTTGTCCGGAAAATACCAAG TCAAACTGGTCGCGGAGGACAAGATATATGAAACCGGTGTGACAATTTCGGCT

ASST D. orientis as cloned in pET28a in silico

Name: pET28a-ASSTDori-His

Restriction Enzymes

5': NcoI

3': SalI

5' Flanking: GA

3' Flanking: -

Gene sequence ordered (to be optimize for E. coli)

ATCAAAAAGGTGAATACAGCTTTAATAACCCGTATGTGAAACTTAACCCCTTATATTATTGCCCCCATTAACCGCACTT GTCATGTTCAAAACTGCGCAGCCTACCACTGTTACCATCACCGTCAAAGGAAAAGACAAGAATGGAGATATATGCT TTAATTTTCCAACGGCCATAGAACACCTGATCCCAGTTTATGGGTTGTATGCCAACTATGCCAATAAAGTAGAACTT GCGTTGGGTGATGGGAAAACAAACGTTATCACCATACAGACGGAAGCTGCCCCTGAAATTGTGAAACTTCCAACCC AGATTAACACGACAGCGGATTATTTTGAGGACAATATTATGTTCGTTAGTCCAACAAGTACTGCCGCTACCGCGGG ATATGACTATAATGGGGATGTGCGCTGGTATGGTTCCCTGAATTTTGCGTTTGATATCAAGAGAGCAAAGAATGGA CGTCTTCTTTTAGGAACACACCGCCTTGTCACGCCTCCTTACCACACCACGGCCTTTATGAAATGGGCATGATCGG TAAAATTTATAAGGAGTATCGGTTACCAAGTGGTTACCACCATGACCAGTTTGAGATGGAAGATGGTAACTTATTA ATCCTGTCCCAAGATTTACCGCGGGGTACAGTTGAAGATATGTGTGTATTAGTAGAAGAAGACGGGTCAGATCA TAAAGAGTTGGGATTACCAAAAAGTGCTTCCGACGAACGCCGGGGGGTTCTGGGTCGCAGGACTCCCACGACTGGTT TCACAATAATGCCGTTTGGTACGATAAAAAGACCAACAGTCTCACTTTGTCTGGCAGACACCAGGACATCATAATT AATCTGGATTTTGAGACCGGTGCACTGAACTGGATAATAGGGGGATCCCGAAGGGTGGCCAAAAGAATTGGTCGAT ATGGTGACATAATGGCCTTTGATAATGGGCATTGGCGCTCTAAAATTAAAGAGAATTACGTCACTGCTAACGATAA TTTTTCGCGAGGGGTTCGTTATCGTATCGATACCAAGAAGATGGAGATCGAACAGGTGTGGCAATATGGGAAAGAA AGAGGCGCGGAATTTTTCAGCACGTACATTTGTAATGTGGAGTACTACGATGAGGGGCACTACTTAATCCATTCTG GCGGCATCGGTTCCATTGATGGCGAAGCCCTTAATAAACCCCCGGTGCAGTTTAGGGGAGAAGATGAAAAAAGG TCGTGCCGAAAAACTGAAGTTATACGCCGCGGAAGATGTTCTGACGCTGGGTAAAGGGGAACTTCTGGGGACATTA GGAGTGACCGAAGAGTTCACCACGATACCCCCGGCAGAAGAAGGCGGGGATGGTTCCGGAAAAATACAATGTAAAA CTGGGCTTAGAAGAAGAACGATCGGCTTATTTTTAAGGCCACATTTGAAAAAGGTCAGATGGTGCTATTACAGCTCGAAG GTGAAACAACGCATTCATATTTTGTGCCTACTACCAAGCGACCATTTTTGGCCATGTGCGTCGGCACGTTTCAGGAA CGCATATAAGTATGAAACCGGGGTCACTATAAAACTA

ASST H. effluvii as cloned in pET28a in silico

Name: pET28a-ASSTHeff-His

Restriction Enzymes

5': NcoI

3': SalI

5' Flanking: GA

3' Flanking: -

Gene sequence ordered (to be optimize for E. coli)

ATGATCCGTTATGAGAAAAAGAATTCACTCATTACACAGCAGGCGGAAGCAGAACAGAAGTTTTTGGAAACATTTG AAGCTGGGGGCCTACACCGCGAGTAGTCCGCTGGTTGTGCGTAATCCTTATCTGATTAGCCCGCCTTTCCGCAATGATC CTGTTTAAAACAGCCGTTAAACAAGAGGTAACACTGACGGTGAAAGGGGAAAGAGCCGGAAGGTGATATCTCTCAT ACTTTCCCGGCAGACACAATTCATATTTTACCAGTGTATGGTCTATACGCAGACTGTGAAAAACACAGTTGAACTTAT CTTATCTGGGGGGGGAACGAGAGACAGTCATGATCAAAACGGAACCGCTGCCTCCTGAGGTCCCTGTTCCTACTTTTTGTAAAGGTTCTGGCGCGCATATGGGGGGACAATGTTATTTTCCTCACGCAGACATCCAAAGCCGACGCGTTGGCCT GCGATTACCGGGGCGATGTTAGATGGTATCTGACAGTTAATGTGTGCTTCGATATGAAACGCCTGGCAAACGGTCA CCTTTTGGTGGGAACCGATCGCTTGATTAAGCTGCCGTACTACGTAAGCGGTGTGTATGAAATGGGTGTTCATGGA AAGATTTACCGCGAATATCGTCTGCCTGGAGGTTACCACCATGATACGTTTGAAATGGAAGATGGTAATATTCTGA TGTTGAGCCAAATACCGGACCGGGATACGGTGGAAGACGTCCTGGTCCTCGTAAATCGCCAGACTGGCGCGATTGT TGGTTTCATAATAATGCCGTTTGGTATGATAAGAAAACGGATTCGATTACACTCTCTGGCCGTCATCAGGATGCTGT CATCAATATCGATTTTAAAAACAGGTGCCCTCAATTGGATTCTTGGAGACCCAGAAGGGTGGCCCGAAGAATATGTA GAAAAATATTTTTTCCGTCCGATATCAGAGCCGTTCGAGTGGTCCTATGAACAGCATGGAGTGGTCGTATGTCCGG ATGGAGACATCATGATGTTCGATAATGGACACTACCGTTCTAAGCTGAAGGCACATTATTCAAAAGCTAAAGATTC ATATAGCCGTGGTGTTCGGTATCATATCGATCGCGAAGCAAGGACTATTGAGCAGGTGTGGCAATATGGGAAAGA GAGAGGCGCGGATTTCTTTAGCCCGTACATTTGCAATGTTGAATACTATGATGAGGGTCGGTACATGGTTCATAGT CTGAACGCCATAACATGCGAGCTGGTAAATGATGAGGTAGTGTACGAGTTGCACGTTCCCTCCAACGTTTTCAGGGCCGAAAAATTGCCCATGTATTACGCAGGTGAAACCGCGGAATTAGGAGCAGGTAAAACCCTAGGCTCCATGTCAC GTACGGGAGAATTCGAGACCGAAATTCCCGCAGTTTGCACAGGAGATCTGATACCGGAGCACTATGAAGCCTCTGT AACGGAGGAAGAGGATCGTATATTGTTTAACGCGACCTTCGAAAAAGGTGAGCTCGCAATGCTTTTGCTGGAAGAA GAGGACGGCAAAGCGCATCGTTATTATAAACACTTCTGCCGCGAAAAATTTTGAGGCGATGTGCGTTGGCACTT TCCTGAAGAATGATCCACGCAACGTAGATGTTTATGTCAATAAATGTGGGATGAGTAAGAACGTCAAAGTGAGGGT TCTGTTAGAAGATAAAATCTACGAAACGGGTGTAGAGATCCGTATGGAA