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Version 0: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
This manuscript presents a study where the authors conducted bulk RNA-seq and proteomics analyses on four different
kidney cell lines (in vitro) to investigate the similarities and differences in gene expression changes between RNA and
protein in response to insulin resistance. To gain further insights, they compared these molecular alterations to those
observed in human DKD kidneys by re-analyzing publicly available bulk and single cell RNA-seq datasets. The study
successfully identified several disease-associated genes (CTSS, NRBF2, C3, CXCL1, TFPI2, and PFKFB3) and pathways
(inflammatory response, ER stress, and glycoprotein metabolism) that exhibited consistent changes between insulin-
resistant kidney cell lines and human DKD biopsies. Additionally, the authors observed a defective mitochondrial function in
insulin-resistant podocytes, mesangial cells (MCs), and proximal tubular cells (PTC). 

Overall, the authors generate new RNA-seq and Mass Spec datasets for four different kidney cells under basal and insulin-
resistant conditions. A limitation of the study is that the majority of molecular changes were observed in in vitro cell lines.
However, the authors mitigated this limitation by comparing their in vitro findings with publicly available DKD human kidney
data. To further enhance findings, the authors should incorporate additional validation data and improve the data
interpretation. Some specific concerns are outlined below: 

1. Figure 1B: Total Akt expression was dramatically reduced under DM condition + IR transduction in Pod and MC. Using
total Akt as a loading control for quantification may not be appropriate. Please add another house keep gene such as
tubulin/ b-actin as protein loading control. 

2. Figure 1C-F: IR transduction alone significantly alters glucose uptake when insulin is not supplemented. The loss of
insulin-stimulated glucose uptake among the kidney cell types might be due to the baseline change of glucose uptake after
IR transduction. The authors need to emphasize that point. 

3. Supplemental Figure 3: RGN is not a well-known PT marker. The authors should change it to other putative PT markers
such CUBN, LRP2 and SLC34A1. 

4. Figure 2C-F: Volcano plot to show the differential genes may not be a good approach. For example there are so many
volcano plots that gene font sizes are too small to read. It may be more informative if the authors can add Venn diagrams to
show the proportion of genes that are concordant or discordant between RNA and protein measurements. 

5. Figure 3D: The correlations between GFR and NRBF2 are positive in both glom (0.25) and tubule (0.28). This result
means that lower GFR has lower NRBF2 expression. However, the NRBF2 expression is upregulated in both early- and
late- DKD kidneys which presumably have lower GFR. The authors should provide explanation for the underlying factors
that contribute to this inconsistent results. 

6. Figure 4: From the perspective of targeted therapy, it would be more interesting if the authors can show the



pathways/metabolisms that are unique to glom or tubule. In addition, it would be necessary to compare these pathways with
those identified in chronic kidney disease (CKD) by Qiu et al. (PMID: 30275566) using other genetic analysis approaches. 

7. Figure 5: In the same cell type, the DE genes identified from RNA and protein profiling are quite different. Does this
inconsistency stems from the discordance between transcription and translation processes or if it is due to technical
artifacts? To address this issue, the authors can select one of these discordant genes for each cell type and validate them by
qPCR (RNA) and western blot (protein). 

8. Figure 6C-J: The authors should compare the expression of these selected genes between healthy and DKD. This
analysis will help determine if the observed changes in gene expression in the in vitro cell culture model are consistent with
the alterations observed in human DKD. 

9. Figure 7: The authors should select specific mitochondrial genes that were identified from the RNA or protein analysis and
perform validation experiments using qPCR and western. This validation is crucial to assess whether the expression
changes of these mitochondrial genes are solely observed at the protein level without significant alterations at the RNA
level. 

10. The figures provided in the study appear to be of low resolution, which compromises the ability to accurately assess the
quality of the data presented. 

Reviewer #2 

(Remarks to the Author) 
In this manuscript, the authors take a shotgun profiling approach towards 4 kidney cell types of interest involved in diabetic
kidney disease. They profiled the transcriptome and proteome of immortalized human podocytes, mesangial, glomerular
endothelial, and proximal tubule cells. Bioinformatic analyses focused on insulin resistance DEGs and pathway enrichment
or depletion shared on the transcriptomic and proteomic level. The authors point towards common enrichment of pathways
that are largely known and not novel, as well as cell type-specific regulation of mitochondrial function on the protein but not
transcript level, which is interesting. The authors try to validate their findings in microdissected human kidney of early and
late stage DKD as well as single-cell datasets from DKD patients. Mitochondrial dysfunction is validated in seahorse
experiments. 

This is a nice and interesting but mostly descriptive study largely relying on an in vitro model analyzing immortalized cells
artificially transferred into a state of insulin resistance. The datasets will be of interest to the DKD community and should be
provided in a searchable web database. Given the comments below, I would argue the manuscript receives a major revision
before publication. 

I have the following concerns: 

1. For the validation of cell type specificity in single-cell datasets, the authors only included cells from their 4 cell types of
interest. They should, of course, show the expression levels in all other cell types of the kidney if they want to prove
specificity. Otherwise, the results presentation might be highly misleading. No methodological detail was provided how the
single-cell dataset was created/subset/QC’ed etc. 
2. The authors only validate single genes in their human single cell dataset. Can they also demonstrate pathway
enrichment/depletion in early/late DKD vs. controls? This might actually be more insightful and representative than looking
at the single gene level. 
3. Also, I suggest the authors include validation experiments in human DKD and healthy control tissue (which is available to
the KPMP consortium). This could include, e.g., staining on the protein or mRNA level the top targets they have identified in
their analysis and demonstrating cell type specificity with double stainings. 
4. I was disappointed by the absence of any mechanistic studies leveraging the immortalized in vitro system available to the
authors. They should go back and demonstrate with siRNA or pharmacological treatment some of the effects they claim to
have found in their bioinformatics and seahorse analyses. For example, do the authors see a rescue when targeting
TYCF21, RASL11B, MGP, TWF2, BDH2, S100A1, and PIGR? 
5. Given the lack of mechanistic insight, I feel the in vivo/human validation should be much more comprehensive to convince
the readers that the effects analyzed in immortalized cells cultured in a highly artificial manner on plastic actually represent
in vivo changes in patients. The authors should clearly acknowledge these limitations in the discussion. 
6. Suppl. Fig. 2a-b demonstrates that proteome sample distances are not as clean as that of the transcriptome among
podocytes. Can the authors comment on or have they analyzed in more depth the seemingly present uniqueness of some of
these cell states among podocytes? 
7. I fail to recognize the clear separation of insulin-resistant cells that the authors claim in their analysis of PCAs within
individual cell populations (Suppl. Fig. 2c-d). 
8. I do not understand how the authors picked the 3 pathway “clusters” presented in Figure 4. Can they explain in more detail
or add an informational cartoon to demonstrate why they picked these 3? How do the data presented in this graph advance
the story? 
9. The authors should give p values for their correlation analyses between RNA and protein. GO GSEA heatmaps lack color
legends. Some plots lack sufficient legends (e.g., Suppl. Figs. 2c-d). 
10. All codes used to produce the results and figures presented should be made available in a repository such as GitHub or



similar. 

Reviewer #3 

(Remarks to the Author) 
The authors performed a beautiful integrative analysis generating the common and cell-type specific transcriptome and
proteome changes in 4 different insulin resistant kidney cell line models, and further validate their findings in human DKD
cohorts. 
Major revision: 
1. For the goal of open science and better replication, the authors should provide more statement on data and code
availability 
1) In the data availability part, the authors stated that the RNA-Seq and TMT proteomics data are stored in NCBI BioProject
PRJNA905899. I searched the ID PRJNA905899 in NCBI BioProject website (https://www.ncbi.nlm.nih.gov/bioproject), but
it told me “No items found”. Will the authors tell me how to actually access those data. 
2) I believe that the authors only stated the availability of the RNA-Seq and TMT proteomics data from cell lines. What about
the data from human cohorts? The authors should tell us where to retrieve those data if available, and if not available, please
provide the reason. I would also suggest a drawing a demographic summary table of the subjects in each cohort. Also, GEO
IDs such as (GSMxxx) or the KPMP IDs for each sample include in this study should be provided. 
3) The author should provide a code availability statement. Whether or not they would share the code to replicate the study. 
2. The authors should provide a more detailed description of the human cohort samples included in this study, specifically
the method part “Human cohorts”. How many early DKD bulk transcriptome data were generated from PIMA cohort? How
many advance DKD bulk transcriptome data were generated from ERCB cohort? Was the bulk transcriptome data of living
donor (n=18 as pointed in Figure 4) from ERCB cohort or the PIMA cohort? 
3. In figure 4, since LD, early DKD and advanced DKD bulk transcriptome data were from different cohorts (PIMA Indian and
ERCB), how the authors processed the data to make them comparable across different cohorts? Did they directly merge the
transcripotome data from PIMA and ERCB, and then calculated the z score? Or did they simply calculate the z score within
each cohort? Using either method, I would be concerned about the credibility of the results comparing transcriptome data
from different cohorts. The same concern also arise in Figure 3C. It seemed that early DKD (from PIMA Indian) and
advanced DKD (from ERCB) were both compared to living donors (n=18). Was the living donor belong to PIMA or ERCB
cohort, or from a third dataset? 
4. For the cell line transcriptome and proteome experiments. There are totally 4 (cell type)×4(condition)×5(sample)=80
samples for each transcriptome and proteome experiments. Did those experiments done in one batch? If they were done in
different batches, did each batch balanced the insulin resistance VS insulin sensitive group? What method the authors used
to mitigate batch effects? For example, if the insuline resistance GEC were in one batch, and the insulin sensitive GEC were
in another batch, it would be difficult to determine whether the transcriptome difference between two conditions were insulin
resistant effect or batch effect. 
5. From figure 7a, it is interesting that in Pod and PTC that mitochondrial related genes were up-regulated while protein level
were down-regulated in response to insulin resistance. What’s the potential mechanism mediating such discrepancy? Is it
possible to visualize how those mitochondrial related genes were coordinated changed (using method such as z score) in
human cohorts comparing LD, early DKD and advanced DKD in both bulk transcriptome and single cell transcriptome data? 
6. Line 110-112, "NPHS2, PECAM, EBF1 and RGN were examples of cell-specific genes that were solely detected in Pods,
GECs, MCs and PTCs, respectively (Supplementary Fig. 3)." The author should clarify the expression levels of the above
proteins in different cell lines by Westernblot to further support the results of bioinformatics. 
7. Line146-158, the author found that C3, CXCL1, CTSS, NRBF2, PFKFB3 and TFPI2 are closely related to the progression
of DKD. However, the role of NRBF2 in DKD is currently unknown. We suggest that the authors should detect NRBF2
expression levels in immortalized cell lines or human DKD patient biopsy specimens by WB OR IHC. 

Version 1: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
The authors have addressed all my concerns. 

Reviewer #2 

(Remarks to the Author) 
The authors are to be commended for their additional work on this MS. Some specific points that may warrant minor
revisions: 
1. The question of cell type specificity of some of their cell type “target” markers remains. If anything, Suppl. Fig. 15 and 16
now demonstrate that the markers from their cell lines hardly align with the single-cell data. For example, MGP, which the
authors use as an EC marker, is shown to be highest expressed in interstitial cells. In addition, it is also expressed in PECs
and podocytes, so specificity is an issue. Also, MGP was only weakly expressed in early DKD endothelial cells. TWF2 is
actually highly expressed in immune cells. TCF21 is fine regarding podocyte specificity. I think the discussion on cell type
specificity is not an academic one, because if down the line, targeting approaches are to take away information from this



work, cell type specificity is highly important. This should be clearly acknowledged as a limitation and discussed at more
length. 
2. New Figure 4 is a good start for validation and I agree the new data strengthen the manuscript. Right now, it still feels
somewhat naked and might be supplemented with additional analyses (qPCR, WB) that would substantiate the authors’
hypothesis that “podocytes were protected against actin cytoskeletal changes” upon NRBF2 overexpression. 
Overall, this will be a nice resource for the community. 

Reviewer #3 

(Remarks to the Author) 
I have reviewed the revised manuscript titled “Integrative transcriptomic and proteomic profiling of human insulin-resistant
kidney cell-lines and biopsies reveals novel mechanisms underpinning DKD” . The authors have addressed my previous
concerns and comments carefully and effectively. The revisions have significantly improved the quality and clarity of the
paper.I am satisfied with the changes made and agree to accept the revised manuscript. 

Version 2: 

Reviewer comments: 

Reviewer #2 

(Remarks to the Author) 
The authors have sufficiently addressed all comments. Congrats on the nice paper! 

Open Access This Peer Review File is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were
made.
In cases where reviewers are anonymous, credit should be given to 'Anonymous Referee' and the source.
The images or other third party material in this Peer Review File are included in the article’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/



 

Reviewer #1 (Remarks to the Author): 
 
This manuscript presents a study where the authors conducted bulk RNA-seq and 
proteomics analyses on four different kidney cell lines (in vitro) to investigate the similarities 
and differences in gene expression changes between RNA and protein in response to insulin 
resistance. To gain further insights, they compared these molecular alterations to those 
observed in human DKD kidneys by re-analyzing publicly available bulk and single cell RNA-
seq datasets. The study successfully identified several disease-associated genes (CTSS, 
NRBF2, C3, CXCL1, TFPI2, and PFKFB3) and pathways (inflammatory response, ER 
stress, and glycoprotein metabolism) that exhibited consistent changes between insulin-
resistant kidney cell lines and human DKD biopsies. Additionally, the authors observed a 
defective mitochondrial function in insulin-resistant podocytes, mesangial cells (MCs), and 
proximal tubular cells (PTC). 
 
Overall, the authors generate new RNA-seq and Mass Spec datasets for four different 
kidney cells under basal and insulin-resistant conditions. A limitation of the study is that the 
majority of molecular changes were observed in in vitro cell lines. However, the authors 
mitigated this limitation by comparing their in vitro findings with publicly available DKD 
human kidney data. To further enhance findings, the authors should incorporate additional 
validation data and improve the data interpretation. Some specific concerns are outlined 
below: 
 
Thank you for this excellent summary and very helpful suggestions. One point we apologise 
for not making clear initially is that not all the human data is freely publicly available but was 
obtained through collaboration with Matthias Kretzler’s team at University of Michigan and 
Robert Nelson’s team at NIDDK, Arizona.  
 
1. Figure 1B: Total Akt expression was dramatically reduced under DM condition + IR 
transduction in Pod and MC. Using total Akt as a loading control for quantification may not be 
appropriate. Please add another house keep gene such as tubulin/ b-actin as protein loading 
control. 
 
We thank the reviewer for this point, which should have been included in the original 
submission. Please see updated Figure 1b: we now include repeated and more 

representative western blots, with more equivalent total protein levels loaded per well, and -

actin as a loading control. We have also added additional blots to show insulin receptor 
phosphorylation (Tyr 1150/1151) to further illustrate the induction of insulin resistance in our 
cell-model culture conditions. 
 
 
2. Figure 1C-F: IR transduction alone significantly alters glucose uptake when insulin is not 
supplemented. The loss of insulin-stimulated glucose uptake among the kidney cell types 
might be due to the baseline change of glucose uptake after IR transduction. The authors 
need to emphasize that point.  
 
Thank you for the comment. We apologise for not being clear that all the cells in figure 1c-f 
had stable expression of the insulin receptor (IR). The difference shown in this figure is 
growing the cells in a “diabetic” environment (DM) which induces insulin resistance by virtue 
of media containing high glucose, high insulin and high pro-inflammatory cytokine levels (Lay 
et al. Diabetologia, 2017). You are correct that the basal level of glucose uptake appears to 
differ between “diabetic” and “non-diabetic” environments in the different cell types. We agree 
it is important to highlight this point. 
 



We do also agree that changing IR levels may alter basal glucose uptake. To address this 
comment, we have added additional data (NEW Supplementary Figures 1m-1p) to 
demonstrate the percentage change in cellular glucose uptake between “wild-type” and “IR-
transduced” cells in the absence of insulin stimulation (i.e., under basal conditions). This 
shows that in our cell models, IR transduction alone has no significant effect on glucose uptake 
under basal conditions. A comment has also been added to the text: please see lines 99-100. 
We also hope the addition of further blots showing phosphorylation of the insulin receptor 
(point 1 above) also helps to illustrate the development of insulin resistance in these cells.   
 
 
3. Supplemental Figure 3: RGN is not a well-known PT marker. The authors should change 
it to other putative PT markers such CUBN, LRP2 and SLC34A1. Megalin. 
 
Thank you for this comment and we apologise for not making it clear why we chose this 
marker. We chose to include RGN (Regucalcin), as this is an enzyme that is exclusively 
expressed in proximal tubular cells (PTCs) in the kidney and was specifically present only in 
our PTCs. Other data available to us which led us to include RGN as an important PTC-
specific gene was the single nuclear RNA sequencing from 
http://humphreyslab.com/SingleCell/ (Reviewer Figure 1a) and Human protein atlas 
(https://www.proteinatlas.org/ENSG00000130988-RGN/tissue/kidney#img, Reviewer figure 
1b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unfortunately, it appears that many apparently specific PT markers (LRP2 (Megalin) and MME 
(CD10)) may be detected in multiple kidney cell types, which we found, and as illustrated 
below was also the case analysing the excellent freely available Humphreys’ lab kidney single 
nuclear data set (http://humphreyslab.com/SingleCell/.) (Reviewer Figure 2a-c). SLC34A1 is 
a specific marker of PTC (Reviewer Figure 2d) but unfortunately, we did not find any mRNA 
or protein signal in any of our cell types. We absolutely acknowledge that human cell lines are 
not perfect models and can lose cellular markers over time. We have added this important 
point to our new section highlighting limitations of this study (lines 428-432). 

 

Reviewer Figure 1. RGN expression in human kidney.  
a Data from Humphreys lab ‘Kidney Interactive Transcriptomics’ (Humphreyslab.com/SingleCell/) 
demonstrating RGN expression in human kidney single nuclear sequencing data (Wilson et al. 
2019) and b data from ‘Human Protein Atlas’ (https://www.proteinatlas.org/) demonstrating high 
levels of RGN protein expression in proximal tubular cells. 
 

a b 
RGN 

http://humphreyslab.com/SingleCell/
https://www.proteinatlas.org/ENSG00000130988-RGN/tissue/kidney#img
http://humphreyslab.com/SingleCell/


  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reviewer Figure 2. PT marker gene expression in human kidney single-nuclear 
sequencing  
Human kidney single nuclear sequencing data (Wilson et al. 2019) from Humphreys lab ‘Kidney 
Interactive Transcriptomics’ (Humphreyslab.com/SingleCell/), demonstrating the expression of 
a MME (CD10) in proximal tubular cells and highly expressed in podocytes b CUBN (Cubilin) in 
all cell types, particularly proximal tubular cells, podocytes and parietal epithelial cells c LRP2 
(Megalin) in proximal tubular cells, podocytes and parietal epithelial cells and d SLC34A1 
specifically in proximal tubular cells. 
 
 

a b 

c d 

MME CUBN 

LRP2 SLC34A1 



4. Figure 2C-F: Volcano plot to show the differential genes may not be a good approach. For 
example there are so many volcano plots that gene font sizes are too small to read. It may 
be more informative if the authors can add Venn diagrams to show the proportion of genes 
that are concordant or discordant between RNA and protein measurements. 
 
Thank you for this helpful suggestion. We have added additional Venn diagrams to updated 
Figure 2 and have updated the volcano plots to make them more readable (with fewer labels 
on each plot). We think that the volcano plots are still informative, to provide an overview of 
the level of differential expression fold changes and significance (FDR) in the different cell 
types. 
 
 
5. Figure 3D: The correlations between GFR and NRBF2 are positive in both glom (0.25) 
and tubule (0.28). This result means that lower GFR has lower NRBF2 expression. However, 
the NRBF2 expression is upregulated in both early- and late- DKD kidneys which 
presumably have lower GFR. The authors should provide explanation for the underlying 
factors that contribute to this inconsistent results. 
 
The reviewer is correct to point this out, thank you for prompting us to further explain this 
finding. In the initial submission, we showed that NRBF2 was upregulated in both early and 
late-stage DKD (compared to healthy living donors) and there was a negative correlation 
between NRBF2 and the GFR slope, meaning higher NRBF2 expression was associated with 
steeper decline of renal function. However, we also demonstrated a positive correlation with 
GFR in early DKD (which may be seemingly inconsistent). We did not investigate the 
correlation between NRBF2 and GFR in late-stage DKD at this time. We speculate that the 
modest positive correlation of NRBF2 with measured GFR at time of biopsy in the early DKD 
cohort is due to the hyperfiltration status of these individuals with early DKD (please see NEW 
Supplementary Table 3 for baseline characteristics of the human cohorts-These early-stage 
patients had a mean GFR of 145 ml/min/1.73m2 compared to 46 ml/min/1.73m2  in late-stage 
patients).  
 
We have now investigated NRBF2 expression in additional studies of late-stage DKD in 
Chronic kidney disease (CKD) cohorts (‘Ju CKD’ data in the ‘Nephroseq’ database). This 
shows that both glomerular and tubular NRBF2 expression has a negative correlation with 
GFR, (i.e., higher NRBF2 expression is associated with lower GFR levels). We have updated 
the text to further clarify this result (updated lines 159-162) and include the associations 
between NRBF2 expression and GFR in the late-stage DKD cohorts analysed in Ju et al. (New 
Supplementary Figure 7). We conclude that our data shows that higher levels of NRBF2 are 
associated with lower GFR in late DKD and steeper slope of GFR decline.  
 
Mechanistically, we found that low cellular levels of NRBF2 are detrimental in all 4 cell types 
studied (New Figure 4) - please see reviewer 2 (point 4) and reviewer 3 (point 7). We think 
this shows the importance of mechanistically investigating targets found in a multi-Omic 
approach as it appears the increased levels of NRBF2 in kidney cells are a protective response 
in diabetes. 
 
 
6. Figure 4: From the perspective of targeted therapy, it would be more interesting if the 
authors can show the pathways/metabolisms that are unique to glom or tubule. In addition, it 
would be necessary to compare these pathways with those identified in chronic kidney 
disease (CKD) by Qiu et al. (PMID: 30275566) using other genetic analysis approaches. 
 
Thank you for this suggestion. We agree it would be interesting to elucidate the pathways that 
differ between the glomerular and tubular compartments; however, we don’t think this will be 
clearly therapeutically beneficial (as we do not know of methods of doing this). However, with 



the developments in cell-targeted Adeno Associated Viral (AAV) gene therapy we think 
identifying cell-specific changes could ultimately have therapeutic benefit. Indeed, we have 
recently published promising mouse data showing the therapeutic benefit of targeting the 
podocyte with AAV gene therapy in nephrotic syndrome (PMID:37863058). This is one of the 
reasons that we chose to also study the cell-type specific responses (Updated Figure 6) and 
highlight the discordance in regulation of mitochondrial bioenergetic processes between 
kidney cell types (Updated Figures 7 and 8). Of note (and in relation to mitochondrial 
bioenergetic responses), we also see differences between the glomerular cell types (i.e., 
glomerular endothelial cells have a different response to podocytes and mesangial cells); 
which would not necessarily be captured by only looking at glomerulus vs tubular responses.  
 
With regards to comparing our results with those identified using other approaches, we have 
added a comment on this in the discussion (please see lines 408-413) The noteworthy study 
by Qiu et al. (PMID: 30275566) generates glomerular and tubular eQTL datasets which were 
integrated with CKD GWAS. The authors found CKD-associated variant rs11959928 
influenced tubular DAB2 expression and that reduced DAB2 was protective in animal models. 
While our study does not use information on human genetic variation (we instead focus on 
changes driven by an insulin-resistant environment), for interest, we include expression of 
DAB2 in our dataset below (see Reviewer Figure 3), which indicates DAB2 transcript and 
protein expression is reduced in insulin resistant proximal tubules. We would be happy to add 
this to the manuscript in supplementary data if deemed necessary. 
 
Interestingly, the pathway enrichment analysis by Qiu et al. found tubular eGenes to be 
enriched for endo-lysosomal function and eGenes from both tubular and glomerular 
compartment to be enriched for ‘autophagy’ and ‘mitochondrial degradation’. We have cited 
this study when discussing our findings on mitochondrial regulation (please see line 383-
384).  
 
 

 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
7. Figure 5: In the same cell type, the DE genes identified from RNA and protein profiling are 
quite different. Does this inconsistency stems from the discordance between transcription 
and translation processes or if it is due to technical artifacts? To address this issue, the 
authors can select one of these discordant genes for each cell type and validate them by 
qPCR (RNA) and western blot (protein). 
 
Thank you for raising this important point.   
 
We have performed further validation (western blots and qPCRs) of some of the discordant 
genes, that appear to be downregulated at the protein level, yet remain unchanged at the RNA 

Review Figure 3.  
Expression of DAB2 transcript and DAB2 
protein in insulin-sensitive and insulin-
resistant human proximal tubular cells 
(PTCs) in vitro; n=5, *p < 0.05 
 
 
 
 
 



level, specifically focusing on proteins important for mitochondrial function (please see 
updated figure 7 (g-j) and the detailed response to point 9 below). In updated figure 6, we 
also now demonstrate the DE genes (in response to insulin-resistance in a cell-type-specific 
manner) that are consist at both RNA and protein level. Although, of course, our proteomics 
dataset does not contain information on all protein-coding genes that we detect in our 
transcriptomics data. Furthermore, we think it of interest that at the transcript level several 
long- non-coding transcripts are detected.  
 
 
 
8. Figure 6C-J: The authors should compare the expression of these selected genes 
between healthy and DKD. This analysis will help determine if the observed changes in gene 
expression in the in vitro cell culture model are consistent with the alterations observed in 
human DKD. 
 
We agree this is important and are sorry this was not clear in the initial submission. We think 
it may have partially been due to the poor resolution of Fig 6C-J. Please see updated figure 
6 with improved resolution and updated supplementary figure 15. These figures show the 
gene changes we identified in our insulin resistant in vitro model that are consistently regulated 
in equivalent cell types in human DKD vs healthy controls, using scSEQ data. 
 
 
9. Figure 7: The authors should select specific mitochondrial genes that were identified from 
the RNA or protein analysis and perform validation experiments using qPCR and western. 
This validation is crucial to assess whether the expression changes of these mitochondrial 
genes are solely observed at the protein level without significant alterations at the RNA level. 
 
Thank you for this important suggestion. As mentioned above, we have now performed 
additional experiments to validate our discordant findings between regulation of mitochondrial 
bioenergetic genes at protein- vs RNA-level. 
 
We performed western blotting to detect protein expression OXPHOS complex subunits (using 
an OXPHOS antibody cocktail and specific NDUFB8 antibody) and qPCR to detect expression 
of equivalent subunits at the RNA level in all 4 cell types. We studied complex I (NDUFB8) 
complex II (SDHB), complex III (UQRC2) complex IV (COX II) and complex V (ATP5A). We 
found a reduction in OXPHOS complex at the protein level in podocytes (complex I and IV), 
mesangial cells (complex I and IV), and proximal tubular cells (complex IV) and, if anything, a 
trend towards increased expression of these OXPHOS subunits in GECs. We did not detect 
a significant reduction in any of the subunits at the RNA level, in any of the cell lines, consistent 
with our RNAseq data. We think this is broadly supportive of our transcriptomic and proteomic 
analysis. 
 
We have now also updated Fig. 7 and Supplementary Fig. 17 to demonstrate the 
protein/RNA changes for all OXPHOS complexes, TCA cycle and glycolysis enzymes that we 
detected in our proteomics and transcriptomics dataset. We also now include a summary 
schematic. 
 
 
10. The figures provided in the study appear to be of low resolution, which compromises the 
ability to accurately assess the quality of the data presented. 
 
We apologise for this. We have updated all figures at higher resolution.  



 
 
Reviewer #2 (Remarks to the Author): 
 
In this manuscript, the authors take a shotgun profiling approach towards 4 kidney cell types 
of interest involved in diabetic kidney disease. They profiled the transcriptome and proteome 
of immortalized human podocytes, mesangial, glomerular endothelial, and proximal tubule 
cells. Bioinformatic analyses focused on insulin resistance DEGs and pathway enrichment or 
depletion shared on the transcriptomic and proteomic level. The authors point towards 
common enrichment of pathways that are largely known and not novel, as well as cell type-
specific regulation of mitochondrial function on the protein but not transcript level, which is 
interesting. The authors try to validate their findings in microdissected human kidney of early 
and late stage DKD as well as single-cell datasets from DKD patients. Mitochondrial 
dysfunction is validated in seahorse experiments. 
 
This is a nice and interesting but mostly descriptive study largely relying on an in vitro model 
analyzing immortalized cells artificially transferred into a state of insulin resistance. The 
datasets will be of interest to the DKD community and should be provided in a searchable 
web database.  
 
Given the comments below, I would argue the manuscript receives a major revision before 
publication. 
 
Thank you for your positive comments regarding our manuscript. We agree that our 
submission was descriptive and primarily a resource paper. However, in our updated 
manuscript, we have added further mechanistic insight by exploring the role of NRBF2 in 
podocytes, mesangial cells, glomerular endothelial cells and proximal tubular cells, which we 
hope increases its interest (please see (point 4 below) and reviewer 3 (point 7) 
 
As described, the transcriptomic and proteomic datasets from insulin-sensitive and insulin-
resistant cell lines are submitted to NCBI under the BioProject PRJNA905899, and will be 
made available upon publication. Other data are also accessible at https://epdc.sib.swiss 
(European Platform for Diabetes and Complications) and https://atlas.kpmp.org/repository 
(Kidney Precision Medicine Project). All participants from human cohort provided informed 
consent. Due to privacy and data protection concerns, individual-level genotype and gene 
expression data from the early DKD (American Indian with type 2 diabetes) study cannot be 
made publicly available. 
 
 
I have the following concerns: 
 
1. For the validation of cell type specificity in single-cell datasets, the authors only included 
cells from their 4 cell types of interest. They should, of course, show the expression levels in 
all other cell types of the kidney if they want to prove specificity. Otherwise, the results 
presentation might be highly misleading. No methodological detail was provided how the 
single-cell dataset was created/subset/QC’ed etc. 
 
Thank you for these important points and suggestions.  
 
In our analysis of the single-cell data, we chose to focus on our 4 cell types of interest to show 
consistency between the changes we observe in our insulin-sensitive/insulin-resistant human 
kidney cells in vitro and changes observed in these cell types in human DKD. We have focused 
our analysis and paper on these 4 cell types, due to their established roles in early DKD 
pathogenesis. 

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA905899
https://epdc.sib.swiss/
https://atlas.kpmp.org/repository


 
That said, we agree that it is important to show the expression of these genes of interest in 
context of other kidney cells detected in single cell sequencing from advanced-stage DKD. 
We now include this information in NEW supplementary figure 16. For TWF2 (example of a 
gene regulated in insulin-resistant MCs), the inclusion of immune cell subtypes in this analysis 
(which have high TWF2 expression) reduce the observed differences between DKD and 
control in cell types of interest.  
 
As we also detail above; it is important to again note that our in vitro dataset focuses on insulin 
resistance as an important molecular driver of DKD, and therefore may not capture or 
represent expression changes that are caused by other molecular drivers of this complex 
disease. We have added a comment on this to our “study limitations” section (lines 432-434).  
 
We also acknowledge that extensive methodological detail of the single-cell dataset was not 
listed in our methods, we instead referenced previous publications and the published protocol 

from the Kidney Precision Medicine Project (https://www.protocols.io/view/single-cell-rna-
sequencing-scrna-seq-7dthi6n). We now briefly cover these steps in our methods (please see 

lines 617- 630). 
 
 
2. The authors only validate single genes in their human single cell dataset. Can they also 
demonstrate pathway enrichment/depletion in early/late DKD vs. controls? This might actually 
be more insightful and representative than looking at the single gene level. 
 
This reviewer correctly points out that we used single-cell sequencing data to identify and 
present examples of single genes that are consistently regulated in response to insulin 
resistance in vitro and in human DKD in a cell-type specific manner. We also, importantly, 
demonstrate examples of three pathways that are enriched in glomeruli or tubulointerstitium 
from early- and/or late-stage DKD vs control tissue (Figure 5). These pathways were identified 
in our insulin-resistant kidney cell lines and are consistently enriched in human disease, using 
bulk transcriptomic data. 
 
To address the question of whether pathways regulated in a cell-type-specific manner in 
insulin resistance were also regulated in human DKD, we have now performed an additional 
analysis, where we highlight KEGG pathways that are significantly regulated in a cell-type-
specific manner in insulin resistance in vitro (updated Supplementary Fig. 13c) identified the 
“core enrichment genes” from those pathways and calculated Z-scores for expression in 
single-cell sequencing data from human DKD. 
 
Using this approach, we found that the significant increase in GAP junctions was also evident 
in proximal tubular cells in DKD (reviewer figure 4). We have included these results as a 
proof-of-principle that we can detect consistent changes in pathway enrichment genes 
(identified in our in vitro models of insulin resistance) in equivalent cell types in vivo.  
However, given the current limitations of the single-cell-sequencing data (such as 
representation of rarer cell types and sequencing depth), we were unable to detect enough of 
the pathway-specific genes in a sufficient podocytes and mesangial cells to perform this 
analysis. In future studies, and with increasing availability of scSEQ data, a thorough 
investigation of pathway enrichment using single-cell multi-omics data will be required. It is 
currently beyond the scope of this study to perform this in-depth analysis, but we have added 
this important point to the discussion (please see lines 408-413).  

https://www.protocols.io/view/single-cell-rna-sequencing-scrna-seq-7dthi6n
https://www.protocols.io/view/single-cell-rna-sequencing-scrna-seq-7dthi6n


 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Also, I suggest the authors include validation experiments in human DKD and healthy 
control tissue (which is available to the KPMP consortium). This could include, e.g., staining 
on the protein or mRNA level the top targets they have identified in their analysis and 
demonstrating cell type specificity with double stainings. 
 
Thank you for these suggestions. Our validation focuses on using transcriptomics data from 
human kidney tissue (healthy vs DKD), rather than staining at the protein or mRNA level in 
tissue sections which is, unfortunately, often only semi-quantitative. Additionally (and again, 
unfortunately) many antibodies are not optimised for staining tissue sections. We have 
considered using RNAscope to measure mRNA levels for targets of interest, but historic 
kidney tissue is often not prepared optimally for this technique. We have added a sentence on 
this in our updated limitations section (lines 434- 437).  
 
 
4. I was disappointed by the absence of any mechanistic studies leveraging the immortalized 
in vitro system available to the authors. They should go back and demonstrate with siRNA or 
pharmacological treatment some of the effects they claim to have found in their 
bioinformatics and seahorse analyses. For example, do the authors see a rescue when 
targeting TYCF21, RASL11B, MGP, TWF2, BDH2, S100A1, and PIGR? 
 
We apologise for not having more mechanistic studies in our initial submission. To rectify this 
and show the potential strength of our multi omics approach we have investigated the 
importance of NRBF2 in podocytes (Pods), glomerular endothelial cells (GECs), mesangial 
cells (MCs) and proximal tubular cells (PTCs).  
 
We chose to focus our efforts on NRBF2, as this gene had not previously been studied in DKD 
or any form of kidney disease, unlike the other targets that we found were changing across all 

insulin resistant cell types and in human DKD (CTSS, C3, CXCL1, TFPI2 and PFKFB3). We 

generated NRBF2 knock-down Pods, GEC, MCs and PTCs, using short-hairpin RNA and 
NRBF2 overexpressing Pods using lentiviral constructs expressing human NRBF2. Our 
additional experiments are displayed in NEW Fig. 4 and supplementary Fig. 8. These results 
show that NRBF2 knockdown (compared to control cells expressing ‘scrambled’ shRNA) 
results in marked morphological differences and evidence of vacuolisation in each of the 4 cell 
types, significant cell loss of GECs, MCs and PTCs and fewer but larger Pods, within 96 hours. 
We then focused on NRBF2 over-expression in human podocytes and found this protected 
against morphological differences induced by a diabetic, insulin resistant environment.  
 
Collectively, we think this example illustrates the potential power of this approach, using cell 
models to identify novel targets for focused validation in human cohorts, follow up mechanistic 
studies to ultimately identify potential therapeutic targets which could be exploited in the future 
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in a cell-type specific manner. We consider the addition of this data and greatly strengthens 
this project.  
 
The other cell -specific genes highlighted above remain very valid and important molecular 
targets which will form the basis of multiple follow up studies, as mentioned in our article (lines 
226-227 and 345-347).  
 
 
5. Given the lack of mechanistic insight, I feel the in vivo/human validation should be much 
more comprehensive to convince the readers that the effects analyzed in immortalized cells 
cultured in a highly artificial manner on plastic actually represent in vivo changes in patients. 
The authors should clearly acknowledge these limitations in the discussion. 
 
We have added discussion on the limitations of our study (please see lines 425-440 - ‘Study 
Limitations’) but also hope the reviewer agrees we now have included an exemplar of how 
this data may be progressed in the future; providing additional mechanistic insight into the role 
played by NRBF2 in kidney cells. 
 
 
6. Suppl. Fig. 2a-b demonstrates that proteome sample distances are not as clean as that of 
the transcriptome among podocytes. Can the authors comment on or have they analyzed in 
more depth the seemingly present uniqueness of some of these cell states among 
podocytes? 
 
The sample distances in the proteomic data were indeed not as well distinguished as that of 
the transcriptomic data, among podocytes and proximal tubular cells. We had investigated 
different methods of normalization for proteomics and concluded on the TMM method and 
voom transformation. This yielded slightly better separation between these two cell lines, as 
applied to transcriptomics. Both ‘omics’ data showed an agreement on the closeness of the 
samples from the two cell lines, as shown in the PCA in (updated) Fig. 2a and New 
Supplementary Fig. 2a. These two cell lines were clearly separated in the third principal 
component in PCA, rather than the first two components, thus explaining the unclear grouping 
in the hierarchical clustering on sample distances. We added PCA on the third component in 
New Supplementary Fig. 2a. 
 
 
7. I fail to recognize the clear separation of insulin-resistant cells that the authors claim in 
their analysis of PCAs within individual cell populations (Suppl. Fig. 2c-d). 
 
We have now added rings to our PCA plots, to highlight the separation of the Insulin Receptor 
expressing, insulin-resistant cell lines with regards to the other samples. Please see updated 
Supplementary Figure 2d-e. We have removed the work “clear” from the description of the 
data (line 109) 
 
  
 
8. I do not understand how the authors picked the 3 pathway “clusters” presented in Figure 
4. Can they explain in more detail or add an informational cartoon to demonstrate why they 
picked these 3? How do the data presented in this graph advance the story? 
 
 
Thank you for prompting further clarification. We have updated the text with more explanation 
of how the pathways were detected (please see lines 177-179) 
 



The pathways displayed in figure 5 (previously figure 4) were consistently upregulated in all 
insulin-resistant cell lines at the RNA and protein level. These ‘pathway clusters’ were 
identified from our GOBP-GSEA results, which are presented in the heatmap in 
Supplementary figure 9. As detailed in the methods (please see lines 569-587) enriched 
GO terms were filtered for significance in at least one cell type (nominal p-value<0.05 and q-
value<0.1 from both transcriptomics and proteomics, either from individual DE or Consensus 
OPLS). Terms were then hierarchically clustered with the semantic similarity between GO 
terms based on the graph structure of GO (Wang measure) using the R package GOSemSim 
(v2.12.1) and then displayed as a heatmap of normalised enrichment scores (NES)). 
 
Other examples of individual GO terms consistently regulated between cell types are 
highlighted in new Supplementary figure 12 and lines 195-197 (i.e., those where hierarchical 
clustering did not identify more than 2 similar GO terms with consistent regulation between 
insulin resistant cell types). These include ‘Hippo signalling’, ‘regulation of pinocytosis’, ‘Signal 
transduction in response to ammonium ion’, and ‘iron ion transport’.  
 
The data presented in the graphs for Fig. 5 (parts b, c, e, f, h, i) demonstrate Z-scores of 
expression for the ‘core enrichment genes’ for each pathway, using glomerular and tubular 
transcriptomics data from early- and late-stage DKD samples. Overall, our figure re-enforces 
potential importance of these pathways in DKD pathogenesis and that we observe consistent 
regulation between our cell lines and human disease for these responses.  
 
 
9. The authors should give p values for their correlation analyses between RNA and protein. 
GO GSEA heatmaps lack color legends. Some plots lack sufficient legends (e.g., Suppl. 
Figs. 2c-d). 
 
 
Thank you for pointing this out. We apologise for omitting some of this important information 
in our initial submission. We have updated Supplementary Figure 2 and the legend has been 
updated. We now provide further details in all of the figure legends and added p values for the 
correlation analysis (Fig 3a). The colour legends for the GO-GSEA heatmaps are included in 
the PDF (Supplementary Figures 9-11) and indicate the normalised enrichment score (NES).  
 
 
10. All codes used to produce the results and figures presented should be made available in 
a repository such as GitHub or similar. 
 
We agree and have made our codes are available at https://github.com/sib-
swiss/BEAt_DKD. 
 

 
Reviewer #3 (Remarks to the Author): 
 
The authors performed a beautiful integrative analysis generating the common and cell-type 
specific transcriptome and proteome changes in 4 different insulin resistant kidney cell line 
models, and further validate their findings in human DKD cohorts. 
 
We thank this reviewer for their positive comments on our manuscript and helpful 
suggestions, which we respond to below. 
 
Major revision: 
 
1. For the goal of open science and better replication, the authors should provide more 



statement on data and code availability. In the data availability part, the authors stated that 
the RNA-Seq and TMT proteomics data are stored in NCBI BioProject PRJNA905899. I 
searched the ID PRJNA905899 in NCBI BioProject website 
(https://www.ncbi.nlm.nih.gov/bioproject [ncbi.nlm.nih.gov]), but it told me “No items found”. 
Will the authors tell me how to actually access those data. 
 
We have updated our statement on data and code availability (please see lines 657 - 664) 
 
 
2) I believe that the authors only stated the availability of the RNA-Seq and TMT proteomics 
data from cell lines. What about the data from human cohorts? The authors should tell us 
where to retrieve those data if available, and if not available, please provide the reason. I 
would also suggest a drawing a demographic summary table of the subjects in each cohort. 
Also, GEO IDs such as (GSMxxx) or the KPMP IDs for each sample include in this study 
should be provided. 
 
As described above, the transcriptomic and proteomic datasets from insulin-sensitive and 
insulin-resistant cell lines are submitted and available to NCBI under the BioProject 
PRJNA905899. Other data are also accessible at https://epdc.sib.swiss (European Platform 
for Diabetes and Complications) and https://atlas.kpmp.org/repository (Kidney Precision 
Medicine Project). All participants from human cohort provided informed consent. Due to 
privacy protection concerns, individual-level genotype and gene expression data from the 
early DKD study cannot be made publicly available. 
 
We have taken your very useful suggestion to present a demographic summary table of 
each cohort and now include these as Supplementary Tables 3 which are referred to in our 
updated methods (line 592).  
 
We also include the KPMP IDs for the samples that we include in our study (please see 
Supplementary Table 8). 
 
 
3) The author should provide a code availability statement. Whether or not they would share 
the code to replicate the study. 
 
We agree. Please see statement above, all code is, or will be made, available at 
https://github.com/sib-swiss/BEAt_DKD. 
 
 
4. The authors should provide a more detailed description of the human cohort samples 
included in this study, specifically the method part “Human cohorts”. How many early DKD 
bulk transcriptome data were generated from PIMA cohort? How many advance DKD bulk 
transcriptome data were generated from ERCB cohort? Was the bulk transcriptome data of 
living donor (n=18 as pointed in Figure 4) from ERCB cohort or the PIMA cohort? 
 
We have now added additional details to the manuscript, including a demographics table for 
these cohorts (please see new Supplementary table 3). We have updated our methods 
section and, for each analysis, details of the sample numbers can be found in respective figure 
legends. In this study, we analysed bulk transcriptome data from n=69 (glomeruli) and n=47 
(tubules) for early DKD biopsies (American Indian cohort) and n=12 for glomerular and n=17 
for tubular transcriptomic data from advanced DKD cohorts. The living donors used in this 
study is not part of the Native American or ERCB cohort. These are living donor transplant 
biopsies obtained at the time of transplantation used as controls. (Yasuda et al. 2006 Clin. 
Exp. Nephrol. PMID:16791393) Biospecimens from all cohorts were collected after informed 
consent and with the approval of local ethics committee from all cohorts.  

https://urldefense.com/v3/__https:/www.ncbi.nlm.nih.gov/bioproject__;!!PDiH4ENfjr2_Jw!HeDdESSQPFQ3GzPobdd6-LW656v9qhOu43JD7Gb8pNf-ob7csew2LdRsk9Na_XpMtIRi5D3kLZPowEVueWn8UeBRCV8pJDlOSbSGivk$
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA905899
https://epdc.sib.swiss/
https://atlas.kpmp.org/repository


 
 
5. In figure 4, since LD, early DKD and advanced DKD bulk transcriptome data were from 
different cohorts (PIMA Indian and ERCB), how the authors processed the data to make 
them comparable across different cohorts? Did they directly merge the transcripotome data 
from PIMA and ERCB, and then calculated the z score? Or did they simply calculate the z 
score within each cohort? Using either method, I would be concerned about the credibility of 
the results comparing transcriptome data from different cohorts. The same concern also 
arise in Figure 3C. It seemed that early DKD (from PIMA Indian) and advanced DKD (from 
ERCB) were both compared to living donors (n=18). Was the living donor belong to PIMA or 
ERCB cohort, or from a third dataset? 
 
 
The reviewer has rightfully pointed out an important issue and is indeed correct about 
combining different datasets. We share similar concerns and therefore have tried to address 
this in our pipeline. A large source of batch-to-batch variation are differences in sample 
processing (Leek et al, 2010 Nature Rev Genet PMID:20838408). To address this and 
minimize the batch effects, samples were collected and processed centrally following a 
harmonized protocol including consistent reagents, technologies, and even personnel where 
feasible. For the living donor samples, although from another cohort, we had harmonized the 
sample collection and sample preparation protocol.  
 
To account for combining the samples, we also have always included “bridge samples” in each 
of our batches, which help when applying batch correction methods and to allow for effective 
merging of the datasets, inspection for batch effects, and addressing those with established 
tools (Zhang et al, 2018, BMC Bioinformatics PMID:30001694).  
 
All these measures should reduce the variation due to technical differences/artifacts while 
maintaining the true biological signal, and allow the comparison of cohorts, although no 
method so far can eliminate all these biases. We have also added a discussion of these 
limitations (please see ‘Study limitations’ line 437- 440) 
 
 
 
6. For the cell line transcriptome and proteome experiments. There are totally 4 (cell 
type)×4(condition)×5(sample)=80 samples for each transcriptome and proteome 
experiments. Did those experiments done in one batch? If they were done in different 
batches, did each batch balanced the insulin resistance VS insulin sensitive group? What 
method the authors used to mitigate batch effects? For example, if the insulin resistance 
GEC were in one batch, and the insulin sensitive GEC were in another batch, it would be 
difficult to determine whether the transcriptome difference between two conditions were 
insulin resistant effect or batch effect. 
 
This is another important point which we addressed in our experimental design. The 
transcriptome samples were performed in one batch. The proteome samples were in two 
batches for each cell type, with replicates appropriately partitioned into the two batches and 
containing a common reference sample, which allowed for batch correction performed in the 
limma model construction. Please see Supp. Fig. 2e. We have also added a comment on this 
to our methods section (please see lines 539-540). 
 
 
7. From figure 7a, it is interesting that in Pod and PTC that mitochondrial related genes were 
up-regulated while protein level were down-regulated in response to insulin resistance. 
What’s the potential mechanism mediating such discrepancy? Is it possible to visualize how 
those mitochondrial related genes were coordinated changed (using method such as z 



score) in human cohorts comparing LD, early DKD and advanced DKD in both bulk 
transcriptome and single cell transcriptome data? 
 
 
We agree that this interesting finding required further attention and explanation, and (as we 
note above for reviewer 1 point 9) we performed additional validation of this finding and 
present an updated Fig. 7 and Supplementary Fig. 17b and c. 
 
There are several potential mechanisms which may mediate the discrepancy between RNA 
and protein abundance of the mitochondrial genes, for example increased protein degradation 
or impaired translation. As many of these protein complexes reside within the mitochondria, 
this may also reflect a reduction in functional mitochondria (which may occur via a process of 
mitophagy, for example). We discuss potential biological mechanisms for our finding within 
the discussion, please see lines 377-378 and 402-403) 
 
Unfortunately, we do not think (optimal) further validation of our mitochondrial findings in 
human cohorts is practical at present as this would require transcript and protein information 
from individual cells. Spatial proteomics will not have the required resolution to distinguish 
between individual glomerular cell types. 
 
 
8. Line 110-112, "NPHS2, PECAM, EBF1 and RGN were examples of cell-specific genes 
that were solely detected in Pods, GECs, MCs and PTCs, respectively (Supplementary Fig. 
3)." The author should clarify the expression levels of the above proteins in different cell 
lines by Western blot to further support the results of bioinformatics. 
 
We have now added western blotting to Supplementary Fig. 1 to show expression of protein 
markers in appropriate cell lines. We also, importantly, now include a “study limitations” 
section, where we acknowledge the problems faced when using cell lines (Lines 428-432). 
 
 
7. Line146-158, the author found that C3, CXCL1, CTSS, NRBF2, PFKFB3 and TFPI2 are 
closely related to the progression of DKD. However, the role of NRBF2 in DKD is currently 
unknown. We suggest that the authors should detect NRBF2 expression levels in 
immortalized cell lines or human DKD patient biopsy specimens by WB OR IHC. 
 
Thank you for this suggestion. As this reviewer points out, the role of NRBF2 in the kidney 
had not been explored and its role in DKD unknown. We have looked at this in NEW Figure 
4 and please see our detailed response to reviewer 2 point 4. 
 
 
 
 
 
 
 
 
 
 



REVIEWER COMMENTS 
 
Reviewer #1(Remarks to the Author): 
 
The authors have addressed all my concerns. 
 
Thank you 
 
Reviewer #2 (Remarks to the Author): 
 
The authors are to be commended for their additional work on this MS. Some specific 
points that may warrant minor revisions: 
 
Thank you 
 
1. The question of cell type specificity of some of their cell type “target” markers 
remains. If anything, Suppl. Fig. 15 and 16 now demonstrate that the markers from their 
cell lines hardly align with the single-cell data. For example, MGP, which the authors 
use as an EC marker, is shown to be highest expressed in interstitial cells. In addition, it 
is also expressed in PECs and podocytes, so specificity is an issue. Also, MGP was only 
weakly expressed in early DKD endothelial cells. TWF2 is actually highly expressed in 
immune cells. TCF21 is fine regarding podocyte specificity. I think the discussion on 
cell type specificity is not an academic one, because if down the line, targeting 
approaches are to take away information from this work, cell type specificity is highly 
important. This should be clearly acknowledged as a limitation and discussed at more 
length. 
 
We fully agree with this reviewer that Supp fig 15 and 16 show that the genes we focus on 
for their cell-type-specific regulation have high expression in other cell types, beyond the 
4 cell lines we focus on in our manuscript. The intention of this section is to highlight the 
genes which we found to have cell-type-specific regulation, not necessarily cell-type-
specific expression. We apologise this was not made clear and have amended the text 
lines 203 and 216-217 to highlight that Supp Fig 14 looks initially at the subset of cells 
labelled as Pods, ECs, MCs and PTCs. We have removed the UMAPs for MGP and TWF2 
in this figure, as we agree that they are not good examples of cell-type-specific 
expression, even amongst these 4 cell types. 
 
The discovery that there is cell-type regulation is potentially helpful therapeutically as 
the genes/pathways could be specifically targeted in a cell specific manner with gene 
therapy (Adeno Associated Virus [AAV] or other approaches) in the future.  
 
However, with regards to MGP expression, our data show that this gene is selectively 
regulated in ECs in insulin resistant conditions and that this is consistently shown in vivo 
from our single cell sequencing analysis. We found that MGP expression is lower in ECs 
from DKD vs healthy living donors. Although interstitial cells show high MGP expression, 
we did not see a significant regulation of MGP in this cell type. Likewise, although our 
analysis demonstrates a high expression of TWF2 in the immune cell subcluster, we 



found that this gene was selectively regulated in MCs in DKD (Supp Fig. 16b and Fig 6f 
and j).  
 
We have elaborated on this in the discussion of the results (lines 350-351) and in our 
study limitations (lines 441-445). 
 
 
2. New Figure 4 is a good start for validation and I agree the new data strengthen the 
manuscript. Right now, it still feels somewhat naked and might be supplemented with 
additional analyses (qPCR, WB) that would substantiate the authors’ hypothesis that 
“podocytes were protected against actin cytoskeletal changes” upon NRBF2 
overexpression. 
 
Thank you for this helpful comment. The purpose of this figure was “proof-of concept” 
that our non-biased poly OMIC approach could identify novel cellular targets in the 
evolution of Diabetic Kidney Disease (potentially therapeutic and as biomarkers). We 
think NRBF2 illustrates this as all knock-out cell lines showed significant cell death in 
“normal” culture conditions (compared with scramble control). We then examined 
podocyte over expression and again get a readout of protection of the cytoskeletal 
structure in a diabetic environment. In podocytes the integrity of the actin cytoskeleton 
is critical for function1 
 
We absolutely agree that we have not thoroughly examined the mechanisms 
underpinning this. We intend to do this going forward and are currently putting a project 
grant together to do this. We intend examining all four cell types (podocytes, mesangial 
cells, Glomerular endothelial cells and mesangial cells) for survival, motility, 
autophagic flux, mitochondrial function and ER stress in diabetic and non-diabetic 
settings. We then intend exploring mechanism by performing total and phosphor-
specific proteomics on all of these samples. We will examine all 4 kidney cell types 
manipulated in 3 ways [scramble – NRBF2 knock-down – NRBF2 over-expression]) in 
diabetic and non-diabetic culture conditions. We will then validate pathways or targets 
identified. We think examining this interesting finding comprehensively will be of great 
interest and is an independent paper due to the volume of work required. If deemed by 
the reviewer that extra information is required we are happy to get the cells out and do 
some blotting for actin related proteins etc but do not think will greatly add to this body 
of work. We have alluded to this important issue in the discussion (lines 313-314) 
 
 
1. Blaine, J., and Dylewski, J. (2020). Regulation of the Actin Cytoskeleton in 

Podocytes. Cells 9. 10.3390/cells9071700. 
 
 
 
 
 
 
 



Reviewer # 3(Remarks to the Author): 
 
I have reviewed the revised manuscript titled “Integrative transcriptomic and proteomic 
profiling of human insulin-resistant kidney cell-lines and biopsies reveals novel 
mechanisms underpinning DKD” . The authors have addressed my previous concerns 
and comments carefully and effectively. The revisions have significantly improved the 
quality and clarity of the paper. I am satisfied with the changes made and agree to 
accept the revised manuscript. 
 
Thank you 



We have no reviewers comments to address as all 3 very happy with paper now. 
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