Evolutionary game analysis of building a sustainable intelligent

elderly care service platform

Yiling Ma¹, Youshuai Sun², Qian Guo^{3,*}, and Xiaoli Wang¹

¹School of Economics and Management, Tongji University, Shanghai, P.R. China ²Accounting Department, Xianda College of Economics and Humanities Shanghai International Studies University, Shanghai, P.R. China

³School of Economics and Management, Anhui Normal University, Wuhu, P.R. China ^{*}corresponding. guoqian5527@ahnu.edu.cn

Appendix

Proof of Proposition 1

The stability analysis of the digital technology company's strategy indicates that when

$$y < \frac{\Delta C_d \beta - L_d - \alpha I Q \lambda \zeta + I Q \lambda (\alpha - 1) z}{R_d z + (\beta - 1) \Delta C_d + I Q \lambda (1 - \alpha \zeta - (1 - \alpha) \zeta z)} \text{ and } z < z_1^*, x = 0 \text{ represents the evolutionary}$$

equilibrium strategy. When
$$y > \frac{\Delta C_d \beta - L_d - \alpha I Q \lambda \zeta + I Q \lambda (\alpha - 1) z}{R_d z + (\beta - 1) \Delta C_d + I Q \lambda (1 - \alpha \zeta - (1 - \alpha) \zeta z)}$$
 and $z > z_1^*$, $x = 1$

becomes the evolutionary equilibrium strategy. Thus, as the probabilities y and z increase, the stable strategy of the digital technology company evolves from x = 0 (non-participation in value co-creation) to x = 1 (participation in value co-creation).

Proof of Proposition 2:

Keeping other parameters constant and given
$$z_1^* = \frac{\Delta C_d ((1-y)\beta + y) - L_d - IQ\lambda (\alpha\zeta (1-y) + y)}{R_d y + IQ\lambda\zeta (y-1)(\alpha-1)}$$
, it

can be observed that as R_d , λIQ and L_d increase, z_1^* decreases. As shown in Figure 2, the crosssection shifts downward, leading to an increase in volume A_2 , which in turn increases the probability that the digital technology company will choose to participate in value co-creation. Conversely, as

 ΔC_d and β increase, z_1^* also increases, causing the cross-section to shift upward, resulting in a decrease in volume A_2 . Therefore, the probability of the digital technology company choosing not to participate increase.

Proof of Proposition 3:

The first derivative of H(z) with respect to z is obtained as

$$\frac{\partial H(z)}{\partial z} = IQ\zeta(1-\alpha) + \left(\left(IQ(1-\lambda) - IQ \right)(1-\alpha)\zeta - R_s \right) x$$

(1) When $(IQ(1-\lambda)-IQ)(1-\alpha)\zeta - R_s > 0$, we can derive $\frac{\partial H(z)}{\partial z} > 0$.

- (2) When $(IQ(1-\lambda)-IQ)(1-\alpha)\zeta R_s < 0$:
 - If $\frac{R_s}{(1-\lambda)(1-\alpha)\zeta} < IQ$, it can be deduced that $\frac{IQ\zeta(1-\alpha)}{IQ(1-\alpha)\zeta + R_s IQ(1-\lambda)(1-\alpha)\zeta} > 1 > x$ and $\frac{\partial H(z)}{\partial z} = IQ\zeta(1-\alpha) + \left(\left(IQ(1-\lambda) - IQ \right)(1-\alpha)\zeta - R_s \right) x > 0;$

• If
$$\frac{R_s}{(1-\lambda)(1-\alpha)\zeta} > IQ$$
 and $\frac{IQ\zeta(1-\alpha)}{IQ(1-\alpha)\zeta + R_s - IQ(1-\lambda)(1-\alpha)\zeta} > x$, we obtain
 $\frac{\partial H(z)}{\partial z} > 0$; If $\frac{R_s}{(1-\lambda)(1-\alpha)\zeta} > IQ$ and $\frac{IQ\zeta(1-\alpha)}{IQ(1-\alpha)\zeta + R_s - IQ(1-\lambda)(1-\alpha)\zeta} < x$, we derive $\frac{\partial H(z)}{\partial z} < 0$.

Summarizing the above, it can be concluded that when $R_s > IQ(1-\lambda)(1-\alpha)\zeta$ and

$$x > x_1^* = \frac{IQ\zeta(1-\alpha)}{IQ(1-\alpha)\zeta + R_s - IQ(1-\lambda)(1-\alpha)\zeta} \text{ are met, } \frac{\partial H(z)}{\partial z} < 0; \text{ otherwise, } \frac{\partial H(z)}{\partial z} > 0. \text{ When}$$

 $\frac{\partial H(z)}{\partial z} < 0$, the stable strategy of the social organization evolves from y = 0 (non-participation in value co-creation) to y = 1 (participation in value co-creation) as z increases. When $\frac{\partial H(z)}{\partial z} > 0$, the stable strategy of the social organization evolves from y = 1 to y = 0 as z increases.

Proof of
$$\frac{\partial J(x)}{\partial x} < 0$$
:

It can be deduced
$$\frac{\partial J(x)}{\partial x} = \Delta R_{pL} - \Delta R_{pH} + (\Delta R_p - \Delta R_{pL})y$$
. Because $\frac{\Delta R_{pH} - \Delta R_{pL}}{\Delta R_p - \Delta R_{pL}} > 1 > y$, we can

obtain $y(\Delta R_p - \Delta R_{pL}) < \Delta R_{pH} - \Delta R_{pL}$. Then it is easy to have

$$\frac{\partial J(x)}{\partial x} = \Delta R_{pL} - \Delta R_{pH} + (\Delta R_p - \Delta R_{pL})y < 0$$

Proof of Proposition 4

The stability analysis of the digital technology company's strategy indicates that when $x < x^*$ and

$$y < \frac{-C_{pL} + C_{pH} - R_{pH} + R_{pL} - x(\Delta R_{pH} - \Delta R_{pL})}{(\Delta R_{pL} - \Delta R_p)x + \Delta R_p + G_p - C_p}, \quad z = 0 \text{ represents the evolutionary equilibrium}$$

strategy. Otherwise, z = 1 represents the evolutionary equilibrium strategy. Therefore, the stable strategy of the service provider evolves from z = 0 (non-participation in value co-creation) to z = 1 (participation in value co-creation) as the probabilities x and y increase.

Proof of Proposition 5

Keeping other parameters constant and given $x^* = \frac{-C_{pL} + C_{pH} - R_{pH} + R_{pL} - (\Delta R_p + G_p - C_p)y}{\Delta R_{pH} - \Delta R_{pL} + (\Delta R_{pL} - \Delta R_p)y}$, it

can be derived that x^* decreases as $R_{pH} - R_{pL}$, $\Delta R_{pH} - \Delta R_{pL}$ and G_p increase. As observed from Figure 4, the cross-section moves toward the origin, resulting in an increase in volume of C_2 , which increases the probability that the service provider will choose to participate in value co-creation. When $C_{pH} - C_{pL}$ and C_p increase, x^* and the volume of C_1 increase, leading to a higher probability of the service provider choosing not to participate.