
Peer Review File

Large-scale Single-nuclei Profiling Identifies Role for ATRNL1
in Atrial Fibrillation
Corresponding Author: Dr Patrick Ellinor

This file contains all reviewer reports in order by version, followed by all author rebuttals in order by version. 

Version 0: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
In this manuscript Hill et al, perform scRNA-seq on samples from the left atria of non-failing hearts from a cohort of healthy
organ donors and subjects with atrial fibrillation. While they found no differences in cellular composition and very limited
cell-type-specific differences, they found that ATRNL1 was overexpressed among AF patients. Functional studies in hESC-
derived aCM suggest a potential role of ATRNL1 in modulating action potential. 
Furthermore, they used cell-type-specific expression in atria to prioritize candidate AF risk genes within AF-associated risk
loci. 
This study introduces a unique dataset that can provide valuable insights into cellular changes associated with AF. 

However, I have several concerns with the data analysis and presentation that would require a major revision of the
manuscript. 

Major concerns: 
1. Description of analysis is insufficient and code has not been provided (apologies if I missed this). 
2. Sample processing and QC measures are described but no actual thresholds are provided. The authors should provide
supplemental figures that summarize the data quality of all samples. 
3. Data should be shared as appropriate. I couldn’t find any description of whether/ how the data will be shared. 
4. It is unclear how many cells were collected per individual (range). 
5. Large variation in total cell number and high inter individual variation will affect the ability to detect differences in
proportion. Supplemental Figure 1b suggests that the cell-type proportions are highly variable between individuals. 
6. The patient samples should be discussed in more detail. Some metadata are captured but the severity of the phenotype
and time since diagnosis are not clear to me. 
7. The DEG analysis needs to be documented in detail. 
a. How was pseudobulking performed? Which cut-offs were chosen for the minimal number of cells to include a sample? 
b. It seems likely that both high variation and potentially a weak phenotype contribute to the limited number of DEG. Given
that DEGs only came from 2 of the largest 3 clusters detection power is likely a major issue. This should be investigated and
presented in the supplement as well. It’s fine to have low power, however it would be very informative to see these analyses.
c. For the resulting DEG (mainly ATRNL1): how variable was their expression across samples? 
8. Supplemental Tables are not well annotated (missing description of column headers etc) 
9. The circular RNA analysis is confusing. While an interesting observation, the interpretation of the result seems overly
confident. It would be better to keep this speculation to the discussion. 

Minor concerns 
1. The manuscript needs substantial editing. 
2. Line 121: ‘Very few substantial changes in transcription were identified after completing this comparison, consistent with
our pseudo-bulk PCA results.’ While the results are indeed the same (I.E. no changes), this didn’t need to be the case for
cell-type-specific gene expression. 
3. Last sentence of abstract: “In sum, we have identified a role for ATRNL1 and other differentially regulated genes that may
serve as potential therapeutic targets for this common arrhythmia.” It seems that ATRNL1 was the only one identified? 



4. How was the window size around sentinel variants chosen? What is the actual window size it’s 1MB in the figure legend
and 500kb in the method section. 
Why not use LD as way to define blocks instead? Did the authors observe a distance dependency between identified genes
and the variant at the center of the block? (for example, the identified genes were not uniformly distributed within the window
but grouped closer to the variant?) 

Reviewer #2 

(Remarks to the Author) 
In this study, Hill et al. investigate the cellular and transcriptional landscape of atrial fibrillation using singe nucleus RNA
sequencing. By examining left atrial samples from 16 donor controls and 18 patients with atrial fibrillation the authors
identified cardiomyoyctes and macrophages as displaying the greatest transcriptomic differences. Among differentially
expressed genes in cardiomyocytes, the authors chose to focus on Attractin-like 1 (ATRNL1). They provide evidence that
ATRNL1 is expressed in cardiomyocytes and that modulating ATRNL1 impacts the electrophysiological properties of hPSC-
derived atrial cardiomyocytes. Lastly, they utilize their snRNAseq dataset to examine the expression of candidate genes
associated with atrial fibrillation. 

Specific comments: 

1. Please provide additional information describing the location of the atrial tissue subjected to snRNAseq and include more
detailed clinical information. Please also provide QC metrics (genes/cell, UMIs/cell, %mitochondrial reads/cell) to better
assess the quality of the snRNAseq data. 

2. The claim that cellular composition is not changed between donor and atrial fibrillation tissues is not well supported by the
presented data. The authors do not provide any information pertaining to the sub-composition of major cardiac cell types
between donor and atrial fibrillation samples. 

3. Please expand on comments made that sex dependent differences were observed at the transcriptomic level. 

4. Is ATRNL1 expressed in ventricular cardiomyocytes? Please provide quantification of the immunostaining images shown
in Figure 3. 

5. It is not clear whether ATRNL1 exerts its effects through the long isoform, short isoform, or circRNA species. Does
knockdown or overexpression of these isoforms of ATRNL1 lead to different outcomes? The impact on electrophysiology is
not very detailed and restricted to immature iPSC-derived atrial cardiomyocytes. 

6. Cardiac cell type specific expression of genes associated with candidate atrial fibrillation loci should be validated across
different snRNAseq datasets. For example, from this manuscript and published available data. 

Reviewer #3 

(Remarks to the Author) 
In this manuscript by Hill et all, the authors perform snRNAseq on LA tissue from AF patients and identify a role of ATRNL1
in AF. I would like to congratulate the authors on the work performed and the well written paper. However, I do have some
concerns regarding especially the patient populations included and perhaps the lack of a clear difference in phenotype
(expect from the AF), which rather appears more or less to be a form of "lone AF", which no longer is an accepted for m of
AF. I have the following comments: 

- Supplementary table 1 should include more summarized date and statistical analysis on the patient characteristics that is
also provided for the individual patients in Supplementary table 1 including for instance LVEF, LA size, co-comorbidities and
other relevant information. Although it is very nice to have the individual data provided it is difficult to get a complete
overview from by the individual values. 

- I have a hard time figuring out what the reason for the occurrence of AF is in the AF cohort is? There is always a reason for
AF to occur, but the patient cohorts seem very similar. Is it a genetic component only then? Or are there co-comorbidities the
authors do not have the information on that could be the underlying cause. Please elaborate. 

- Are there any information available on the AF history for these patients? 

- The differential abundance testing identified not any major shifts in cell type composition between the SR and AF cohorts.
However, I am no sure if I understand the conclusion that the Masson's Trichrome staining confirms the finding of similar
tissue composition between the SR and AF cohorts. The staining only provides information on the collagen content and the
volume of cardiomyoctes, but does not provide any information on the other cell types. For this purpose the authors would
need to perform additional immunostainings with specific cellular markers. 

- Have the authors quantified the fibrotic content in the tissue? Usually more fibrosis is reported in AF patients, which is a
change in tissue composition. 



- A recent paper (PMID: 37440641) in which the authors performed scRNA-seq of AF patients the MP/DC cluster expanded
twofold, whereas endothelia and mural cells decreased in frequency. Could the authors please comment on the findings of
this paper compared to their findings? 

- Why do the authors only have access to LA tissue and not RA tissue? It could have been interesting to see if the same
results were obtained in RA. Furthermore please specify from what exact location of the LA the samples were taken (LA
posterior wall, LA free wall, RA appendage or somewhere else)? Especially the LA posterior wall is important for AF
induction and would have been interesting to investigate as well. 

- Please provide negative controls for the immunohistochemical staining performed in atrial tissue. 

- I agree that the Cx43 and ATRNL1 co-stain in the same region, but this does not confirm a co-localization of the proteins. I
would be careful concluding this as an overlap in fluorescence does not necessarily indicate co-localization. Additionally I
would suggest the authors to perform Pearson's correlation coefficient (PCC) as a statistic for quantifying co-localization. 

- I must disagree with the statement on line "272-273" regarding the SK channels stating: "KCNN2 and KCNN3 encode
small conductance calcium-activated potassium channels. However, 
the role of these channels at steady state and during AF remains unclear". Numerous studies have both in animal models
and in human tissue samples provided clear evidence of the role of SK channels in action potential repolarization in SR,
while changes in trafficking and function of the channels as well as transcriptional and translational changes during AF also
has been demonstrated. Please include these information on the role of SK channels in SR and AF. 

- Line "301-303" states that the authors performed "in vivo and in vitro" immunoflouresence. Please clarify what you mean
with in vivo immunofloresence? If the reference is to tissue staining the in vivo phrasing needs to be changed. 

Version 1: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 

Reviewer #2 

(Remarks to the Author) 
The authors have significantly revised their manuscript and it is much improved. If possible, it is recommended that the
authors perform RNAscope to address expression of the ATRNL long, short, and circular RNA form in human atrial and
ventricular cardiac specimens with and without AF. This information would be useful to the field moving forward. 
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Reviewer One 
In this manuscript Hill et al, perform scRNA-seq on samples from the left atria of 
non-failing hearts from a cohort of healthy organ donors and subjects with atrial 
fibrillation. While they found no differences in cellular composition and very 
limited cell-type-specific differences, they found that ATRNL1 was overexpressed 
among AF patients. Functional studies in hESC-derived aCM suggest a potential 
role of ATRNL1 in modulating action potential. Furthermore, they used cell-type-
specific expression in atria to prioritize candidate AF risk genes within AF-
associated risk loci. This study introduces a unique dataset that can provide 
valuable insights into cellular changes associated with AF. 
 
However, I have several concerns with the data analysis and presentation that 
would require a major revision of the manuscript. 
 
Authors’ response: We sincerely appreciate your thoughtful comments and 
constructive feedback.  
 
 
 
1. Description of analysis is insufficient and code has not been provided 
(apologies if I missed this). 
 
Authors’ response: We thank you for pointing out this deficiency. Overall, we 
conducted sample collection, snRNA-seq, and downstream computational analysis very 
similar to our previous studies1,2. For our analyses we utilized previously described and 
widely used analytical packages, and so we do not have any custom code that was 
used in this manuscript. We appreciate the Reviewer’s point and to better describe our 
analysis better up-front, we have edited the Results section to read as follows: 
 

“snRNA-seq of human left atrial tissue from AF cases and controls 
To characterize the cellular and molecular characteristics associated with AF, we 
performed snRNA-seq on samples from either the anterior wall of the LA near the 
appendage, or from the posterior LA wall near the annulus of human patients 
with AF who were not in heart failure (n=19). We carried out strict quality control, 
including sample sex check, unique molecular identifier (UMI) decay curve 
analysis, and a crosscheck of genotype fingerprinting with genome sequencing 
data (see Methods). A total of 2 samples failed our quality control standards and 
were removed from all subsequent analysis. Our final data set included 18 AF 
cases and 16 controls (Fig. 1a, Supplementary Table 1, and Supplementary 
Table 2). Next, batch correction was performed with the single-cell variational 
inference framework (scVI)3. Low-quality nuclei, doublets, and misclassified cells 
were then removed following clustering, leaving us with 179,697 nuclei that 
occupied a total of 15 transcriptionally distinct clusters (Fig. 1b, and 
Supplementary Fig. 1). Differential expression analysis was performed to 
determine the top representative genes for each cluster (Supplementary Table 
3), and then clusters were annotated based on the expression of canonical cell 



markers (Fig. 1c). For example, TBX5 was enriched in cardiomyocytes (CMs), 
ERG in endothelial cell clusters (EC-1, EC-2, and LEC), and ADIPOQ was highly 
expressed in adipocytes (Fig. 1d). ” 

 
 
 
2. Sample processing and QC measures are described but no actual thresholds 
are provided. The authors should provide Supplementary figures that summarize 
the data quality of all samples. 
 

Authors’ response: Thank you for raising this important point. Firstly, we have 
added Supplementary Table 12 to our manuscript, which contains all the quality 
control metrics output by CellRanger for each sample library.  

We have also added a new figure (Response Figure 1, below) as 
Supplementary Figure 1 to the updated manuscript. Firstly, we have provided QC 
metrics for each individual library as output from CellRanger (Response Figure 1a). 
Overall, the number of valid barcodes, percentage of reads mapped to the human 
(hg38) genome, and the median UMI counts per cell were comparable between AF and 
CTRL samples. Secondly, we included a full accounting of our post-sample QC process 
(Response Figure 1b-g). After sample quality control, we were left with a dataset 
containing 279,444 non-empty droplets (nuclei) (Response Figure 1b). Next, batch 
correction with scVI and Leiden clustering was performed. Looking at nuclei quality 
control metrics like percentage mitochondrial reads, doublet score (output from 
Scrublet) ,and entropy we identified 2 obvious clusters to be removed, the Doublets and 
MT-Contam clusters (Response Figure 1c). We then performed quality control for all 
nuclei, as described in the methods, identifying an additional 63,659 nuclei for removal 
(Response Figure 1d). Overall, the nuclei identified from this quality control process 
were relatively evenly distributed across samples, and clusters (Response Figure 1e). 
Finally, we performed sub-clustering and marker gene analysis to identify misclassified 
cells for removal leaving us with our final dataset which was re-clustered (nuclei= 
179,697)(Response Figure 1f). After quality control, our dataset contained on average 
5,285 nuclei per sample (range = 2,034 – 9,471) (Response Figure 1g). 

We also included post-quality control metrics, including nUMI, nGenes, percent 
mitochondrial reads, and entropy for each cluster (Response Figure 1h-k). Moreover, 
we reported both the range and mean for each of these metrics across all cell clusters 
in the figure to make it more readily accessible.  
 
 
 
 
 
 



  



Response Figure 1. snRNA-seq sample quality control metrics. (a) Distribution of 
snRNA-seq quality control metrics for each library derived from CellRanger count as 
box boxplots grouped by patient category. (b) UMAP embedding of all nuclei post-
sample QC (n = 279,444) colored by Leiden clustering and labelled according to 
predicted cell type. (c) Distribution of the median of three quality control metrics for each 
cluster shown as boxplots, including percent of unique molecular identifiers (UMIs) 
mapping to mitochondrial genes (% MT),entropy, and the Scrublet estimated doublet 
score. Clusters containing cells to be removed are highlighted in red (n= 28,040 nuclei). 
(d) UMAP embedding of all nuclei after removal of low-quality clusters identified in b 
and c (n = 251,404). Additional low-quality nuclei as detected per cluster and per-
sample are colored in red. (e) Proportion of each sample and cluster removed during 
the quality control procedure shown as stacked bar graph. (f) UMAP representation of 
remaining nuclei after removal of low-quality clusters and per-cluster quality control. 
Red nuclei were deemed as misclassified or low-quality following sub-cluster analysis. 
(g) Number of nuclei per library included in final snRNA-seq embedding. (h) Distribution 
of number of unique molecular identifiers (nUMI). (i) Distribution of number of unique 
genes (nGene). (j) Distribution of percentage of mitochondrial transcripts per cell. (k) 
Distribution of entropy across nuclei of each unique cell type. Center line, median; box 
limits, upper and lower quartiles; whiskers,1.5x interquartile range.  
 
 
3. Data should be shared as appropriate. I couldn’t find any description of 
whether/ how the data will be shared. 
 
Authors’ response: We completely agree with the spirit of the Reviewer’s comment, 
and we have a long track record of publicly distributing out genetic and snRNA data. We 
have made the data available, both raw fastq and processed data matrices, though the 
gene expression omnibus (GEO) as well as through the Broad Institute’s Single Cell 
Portal (https://singlecell.broadinstitute.org/single_cell). Upon publication the Single Cell 
Portal users will have the ability to explore our dataset interactively online without the 
need to download and analyze the large count matrices. Further, all metadata, including 
quality control metrics, will be available through the Single Cell Portal. We have updated 
our data availability statement to reflect these changes, and it reads as follows:  
 
 

“Data Availability 
Processed single-nucleus transcriptomic data are available through the Broad 
Institute’s Single Cell Portal (https://singlecell.broadinstitute.org/single_cell) 
under project ID SCP2489. Raw and processed next-generation sequencing data 
have been deposited at the NCBI Gene Expression Omnibus with accession 
number GSE255992.“ 

 
 
 
4. It is unclear how many cells were collected per individual (range). 
 



Authors’ response: Thank you for pointing this out, please see above response for 
Reviewer-1 question-2 and Supplementary Figure 1g (Response Figure 1g). We 
captured an average of 5,285 nuclei per library after sample QC and as it states in the 
methods, we loaded each 10X lane aiming to achieve 6,000 nuclei per library.  
 
 
 
 
5. Large variation in total cell number and high inter individual variation will affect 
the ability to detect differences in proportion. Supplementary Figure 1b suggests 
that the cell-type proportions are highly variable between individuals. 
 
Authors’ response: Indeed, and this is a common issue with snRNA-seq analysis that 
we1,2 and others4 have had to overcome using various state-of-the art computational 
methods. To overcome the many issues associated with tissue sampling, we chose Milo 
for performing differential abundance testing5. Milo is constructed to be good for 
modeling complex experimental designs where samples may be of different ages, 
backgrounds, sex, disease severity, as well as other sources of variation. Milo largely 
overcomes challenges associated with common differential abundance testing by using 
k-nearest neighbor graphs as opposed to clustering of cells into discrete groups. For our 
Milo-based differential abundance analysis we utilized a k=50, to get at least 1 cell from 
each patient into every neighborhood resulting in a neighborhood embedding of 7,499 
neighborhoods. And as stated in the manuscript, we observed no statistically significant 
changes in cell composition between controls and patients with AF.  
 To further evaluate changes in tissue composition with a different statistical 
approach we have decided to utilize a Bayesian model that we have successfully 
utilized and experimentally validated previously1,2, the single-cell compositional data 
analysis (scCODA) framework. scCODA models cell-type counts with a hierarchical 
Dirichlet-Multinomial distribution that accounts for the uncertainty in cell-type proportions 
and the negative correlative bias via joint modeling of all measured cell-type proportions 
instead of individual ones6. We applied scCODA to our AF dataset to assess differences 
in tissue composition between control donors and patients with AF (Response Figure 
2a). We observed no statistical differences between any cell cluster for AF or control LA 
tissue.  
 To address the concerns of the reviewer we have added Response Figure 2 to 
Supplementary Figure 2 (Supplementary Figure 2c) and discussed in the results 
section. Further, we have added the following line to the discussion to address your 
valid point: 
 

“A potential limitation of our study would that the observed tissue compositional 
variability among the patients profiled here may be difficult to properly account for 
even with modern analytical frameworks (e.g. Milo and scCODA) and could 
require larger sample sizes with greater statistical power to determine the 
distinctions more accurately between patient groups.” 

  
 



 

 
Response Figure 2. Cell composition of controls and patients with atrial 
fibrillation. (a) Box plot displaying the differences in cell composition for each cardiac 
cell type in controls (red) and patients with atrial fibrillation (AF) (blue). Boxplot 
represented as: center line, median; box limits, upper and lower quartiles; whiskers, 
1.5x interquartile range; points, outliers.  
 
 
 
6. The patient samples should be discussed in more detail. Some metadata are 
captured but the severity of the phenotype and time since diagnosis are not clear 
to me. 
 
Authors’ response: We thank the Reviewer for their comment. We focused on patients 
with permanent AF to better control for the many diverse etiologies associated with this 
common arrythmia. In response to comments from all Reviewers, we have cleaned up 
and updated Supplementary Tables 1 and 2 to reflect all the information that was 
available regarding time of diagnosis in relation to transplantation. To describe the 
patient cohorts with more clarity we have updated the Results to read as follows:  
 
 

“To characterize the cellular and molecular characteristics associated with AF, we 
performed snRNA-seq on samples from the LA of human patients with AF who 
were not in heart failure (n=17) as well as non-AF controls 
(n=19)(Supplementary Table 1, and Supplementary Table 2). We selected 
patients without heart failure to better control for the many diverse etiologies 
associated with this common arrythmias. Overall, our controls (CTRL) were 63 % 
female, the mean age was 68 (SD = 7.5), 25% had a history of taking beta-
blockers, and 6% had taken anticoagulants. The AF cases were 61% female, the 
mean age was 66 (SD = 8.2), 56% had a history of taking beta-blockers, and 
44% were being administered anticoagulants.”  

 



 
7. The DEG analysis needs to be documented in detail. 
 
Authors’ response: Thank you for this comment. To clarify our approach, we 
implemented a formal differential expression model controlling for the correlation 
amongst nuclei from the same individual by summing gene counts across all nuclei in a 
cluster within an individual patient and treating the data as a bulk RNA sequencing 
experiment before running limma-voom, in a similar manner as mentioned in the 
methods for marker gene detection. This approach, based on Lun et. al. (2017), is 
performed to avoid systematic batch effects and restore type I error control.7     
 We have updated the DEG section of the methods to read as follows: 
 

“Differential expression analysis 
A formal differential expression model controlling for the correlation amongst 
nuclei from the same individual was performed by summing gene counts across 
all nuclei in a cluster within an individual patient and treating the data as a bulk 
RNA sequencing experiment before running limma-voom, in a similar manner as 
mentioned above. The differential expression analysis across cases and controls 
was performed with the method limma-voom using the R-package limma v3.40.6. 
First, the expression counts were summarized by cluster and sample, including 
each observation with at least 20 nuclei per sample/cluster combination. For 
each cluster, genes were filtered using the algorithm implemented in filterByExpr 
from the R-package edgeR v3.26.877 to retain genes with sufficiently large counts 
with default settings. The data was then normalized using DESeq2 v1.24.078 
normalization. Differential expression was then calculated using the limma-voom 
pipeline79 with the model ‘~af + sex‘‘, followed by extraction of the contrast 
comparing expression in cases versus controls. Genes were considered 
significant in the differential expression analyses when the adjusted P-value (by 
Benjamini Hochberg) was < 0.05. For visualization of the differential expression 
results in violin plots, the filtered and normalized count data was converted to the 
unit counts per million (CPM) as implemented in the cpm function from the 
edgeR R-package. Since there can be notable background contamination 
present in single nuclei RNA-sequencing experiments we generated a flag that 
would identify genes that have a high probability of coming from the background. 
We followed a procedure that was previously described10 to calculate the flag 
based on CellRanger and also CellBender counts.” 

 
 
 
8. How was pseudobulking performed? Which cut-offs were chosen for the 
minimal number of cells to include a sample? 
 
Authors’ response: For our pseudo-bulking approach implemented in the DEG 
analysis, nuclei were only aggregated in an individual if there were more than 20 nuclei 
of the given cluster. As outlined in point 7 above, we have edited the methods to make 
this point clearer (See above response to point 7).  



 
9. It seems likely that both high variation and potentially a weak phenotype 
contribute to the limited number of DEG. Given that DEGs only came from 2 of the 
largest 3 clusters detection power is likely a major issue. This should be 
investigated and presented in the supplement as well. It’s fine to have low power, 
however it would be very informative to see these analyses. 
 
Authors’ response: The variation we observe is similar to what’s found in other 
studies1,2,4. However, we do agree that the phenotype is more subtle than our prior work 
in end-stage heart failure and likely contributes to the lower number of DEGs observed 
in our study. Power or sensitivity for DEG analysis in scRNA-seq studies is overall a 
function of the number of cells profiled per sample, number of samples included in the 
dataset, expression level of each gene, and depth of sequencing. Several studies have 
performed computationally intensive simulations to determine the optimal experimental 
setup for improving DEG analysis8,9. Overall, the common recommendation for 
improving power and reducing false positives from such analysis is to increase the 
number of cells/nuclei profiled per sample. To address this, we have added the 
following limitation to the discussion:  
 

“Moreover, profiling more patients at a greater depth (nuclei per sample) could 
improve our statistical power to accurately identify differentially expressed genes 
across more cell types8.” 
 

 
 
10. For the resulting DEG (mainly ATRNL1): how variable was their expression 
across samples? 
 
Authors’ response: As with any snRNA-seq study we did observe variability in the 
expression of ATRNL1 in cardiomyocytes across samples (Response Figure 3a). 
Although, we do observe that all samples with high levels of ATRNL1 expression are 
from AF cases. We have added Response Figure 3a to Supplementary Figure 4 to 
highlight this variability.  
 
 
 
 



  
 
Response Figure 3. snRNA-seq expression of ATRNL1. (a) Dot plot displaying the 
mean expression of ATRNL1 in cardiomyocytes across all patient samples. The size of 
the dot indicates the percentage of cells from each patient expressing ATRNL1.  
 
 
 
 
 
11. Supplementary Tables are not well annotated (missing description of column 
headers etc) 
 
Authors’ response: We are sorry for the trouble, and we have now added keys for 
each column header to the bottom or right side of the tables where appropriate.  
 
 
 
 
12. The circular RNA analysis is confusing. While an interesting observation, the 
interpretation of the result seems overly confident. It would be better to keep this 
speculation to the discussion. 
 
 
Authors’ response: We thank you for your feedback. We have removed the following 
text from the results:  
 

“Among these genes was THBS1 or thrombospondin 1. Importantly, THBS1 is 
known to be inhibited by miR-18a10, and interestingly, among our putative 
miRNAs to be bound by circATRNL1 is miR-18a. The consistent decrease in 
THBS1 expression (Fig. 4c-d) when ATRNL1 and circATRNL1 are depleted 
suggests that THBS1 expression is being reduced because of excess miR-18a 
being released from circATRNL1.”  

 
 
 



13. The manuscript needs substantial editing. 
 
Authors’ response: We appreciate your careful examination of our work and we have 
thoroughly edited the revised manuscript.  
 
 
 
 
14. Line 121: ‘Very few substantial changes in transcription were identified after 
completing this comparison, consistent with our pseudo-bulk PCA results.’ While 
the results are indeed the same (I.E. no changes), this didn’t need to be the case 
for cell-type-specific gene expression. 
 
Authors’ response: Thank you, we have edited this sentence.  
 
 
 
 
15. Last sentence of abstract: “In sum, we have identified a role for ATRNL1 and 
other differentially regulated genes that may serve as potential therapeutic 
targets for this common arrhythmia.” It seems that ATRNL1 was the only one 
identified? 
 
Authors’ response: We have revised this sentence to focus on ATRNL1.  
 
 
 
16. How was the window size around sentinel variants chosen? What is the actual 
window size it’s 1 MB in the figure legend and 500kb in the method section. 
Why not use LD as way to define blocks instead?  
 
Authors’ response: We thank the Reviewer for pointing out this discrepancy and 
suggesting an alternative method. The window size was chosen as 1 megabase 
indexed around the sentinel variant. There is a typo in the methods section, and it was 
corrected to “+/- 500 kb”. The sentinel variant was defined as the variant with the 
smallest P-value at the genetic locus. Indeed, another option for choosing the window 
could be using LD. An LD approach is less straightforward as it requires choosing an 
appropriate reference to calculate LD and defining an LD cutoff. Additionally, there are 
many genetic loci with multiple independent signals, an LD window around the sentinel 
variant would not capture those complex signals. Furthermore, since the GWAS results 
are a meta-analysis across different datasets (some with different imputation 
references), the availability of the sentinel variant in an LD reference is not guaranteed 
and a different strategy for those variants would have to be implemented. Furthermore, 
the choice of the population for the LD reference would influence the LD pattern and 
therefore the window. Given that the GWAS meta-analysis is multi-ancestry we did not 
want to restrict this approach by using for example a European only LD reference. With 



these issues in mind, we decided that a distance-based approach would be the less 
biased approach for these analyses. 
 
 
 
17. Did the authors observe a distance dependency between identified genes and 
the variant at the center of the block? (for example, the identified genes were not 
uniformly distributed within the window but grouped closer to the variant?) 
 
Authors’ response: We thank the Reviewer for this interesting question. We took a 
closer look at the location of the 59 identified genes relative to the sentinel variant and 
restricted to protein coding genes at the loci. 37% of these genes were also the nearest 
protein coding gene and 63% of the genes were within the 3 closest protein coding 
genes. This points towards an enrichment of the identified genes closer to the sentinel 
variant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Reviewer Two 
In this study, Hill et al. investigate the cellular and transcriptional landscape of 
atrial fibrillation using singe nucleus RNA sequencing. By examining left atrial 
samples from 16 donor controls and 18 patients with atrial fibrillation the authors 
identified cardiomyoyctes and macrophages as displaying the greatest 
transcriptomic differences. Among differentially expressed genes in 
cardiomyocytes, the authors chose to focus on Attractin-like 1 (ATRNL1). They 
provide evidence that ATRNL1 is expressed in cardiomyocytes and that 
modulating ATRNL1 impacts the electrophysiological properties of hPSC-derived 
atrial cardiomyocytes. Lastly, they utilize their snRNAseq dataset to examine the 
expression of candidate genes associated with atrial fibrillation. 
 
Authors’ response: We would like to extend our appreciation for your careful 
examination of our work, and contributions toward improving the manuscript.  
 
 
 
 
1. Please provide additional information describing the location of the atrial 
tissue subjected to snRNAseq and include more detailed clinical information. 
Please also provide QC metrics (genes/cell, UMIs/cell, %mitochondrial reads/cell) 
to better assess the quality of the snRNAseq data. 
 
Authors’ response: Samples for this study were collected from either the anterior wall 
of the LA near the appendage, or from the posterior wall near the annulus. We have 
added this information to the results. 

To address the Reviewers concerns, as well as those of Reviewer One (similar 
response also stated above) regarding the snRNA-seq data we have added 
Supplementary Table 12 to our manuscript, which contains all the quality control 
metrics output by CellRanger for each sample library.  

Moreover, we have also added a new figure (Response Figure 1) as 
Supplementary Figure 1, panels a-d (above) to the updated manuscript Firstly, we 
have provided QC metrics for each individual library as output from CellRanger 
(Supplementary Figure 1a). Overall, the number of valid barcodes, percentage of 
reads mapped to the human (hg38) genome, and the median UMI counts per cell were 
comparable between AF and CTRL samples. Secondly, we included a full accounting of 
our post-sample QC process (Supplementary Figure 1b-g). After sample quality 
control, we were left with a dataset containing 279,444 non-empty droplets (nuclei) 
(Supplementary Figure 1b). Next, batch correction with scVI and Leiden clustering 
was performed. Looking at nuclei quality control metrics like percentage mitochondrial 
reads, doublet score (output from Scrublet) ,and entropy we identified 2 obvious clusters 
to be removed, the Doublets and MT-Contam clusters (Supplementary Figure 1c). We 
then performed quality control for all nuclei, as described in the methods, identifying an 
additional 63,659 nuclei for removal (Supplementary Figure 1d). Overall, the nuclei 
identified from this quality control process were relatively evenly distributed across 
samples, and clusters (Supplementary Figure 1e). Finally, we performed sub-



clustering and marker gene analysis to identify misclassified cells for removal leaving us 
with our final dataset which was re-clustered (nuclei= 179,697)( Supplementary Figure 
1f). After quality control, our dataset contained on average 5,285 nuclei per sample 
(range = 2,034 – 9,471) (Supplementary Figure 1g). 

We also included post-quality control metrics, including nUMI, nGenes, 
%mitochondrial reads, and entropy for each cluster (Supplementary Figure 1h-k). 
Further, we reported both the range and mean for each of these metrics across all cell 
clusters in the figure to make it more readily accessible.  

 
 
 
2. The claim that cellular composition is not changed between donor and atrial 
fibrillation tissues is not well supported by the presented data. The authors do 
not provide any information pertaining to the sub-composition of major cardiac 
cell types between donor and atrial fibrillation samples. 
 
Authors’ response: To address the Reviewer’s concerns, as well as those of Reviewer 
One (above, question 5) regarding cellular composition analysis, we have the same 
response to both points (stated both here and above). We agree that this is a common 
issue with snRNA-seq analysis that we1,2 and others4 have had to overcome using 
various state-of-the art computational methods. To overcome the many issues 
associated with tissue sampling, we chose Milo for performing differential abundance 
testing5. Milo is constructed to be good for modeling complex experimental designs 
where samples may be of different ages, backgrounds, sex, disease severity, as well as 
other sources of variation. Milo largely overcomes challenges associated with common 
differential abundance testing by using k-nearest neighbor graphs as opposed to 
clustering of cells into discrete groups. For our Milo-based differential abundance 
analysis we utilized a k=50, to get at least 1 cell from each patient into every 
neighborhood resulting in a neighborhood embedding of 7,499 neighborhoods. And as 
stated in the manuscript, we observed no statistically significant changes in cell 
composition between controls and patients with AF.  
 To further evaluate changes in tissue composition with a different statistical 
approach we have decided to utilize a Bayesian model that we have successfully 
utilized and experimentally validated previously1,2, the single-cell compositional data 
analysis (scCODA) framework. scCODA models cell-type counts with a hierarchical 
Dirichlet-Multinomial distribution that accounts for the uncertainty in cell-type proportions 
and the negative correlative bias via joint modeling of all measured cell-type proportions 
instead of individual ones6. We applied scCODA to our AF dataset to assess differences 
in tissue composition between control donors and patients with AF (Response Figure 
2a). We observed no statistical differences between any cell cluster for AF or control LA 
tissue.  
 To address the concerns of the reviewer we have added Response Figure 2 to 
Supplementary Figure 2 (Supplementary Figure 2c) and discussed in the results 
section. Further, we have added the following line to the discussion to address your 
valid point: 
 



“A potential limitation of our study would that the observed tissue compositional 
variability among the patients profiled here may be difficult to properly account for 
even with modern analytical frameworks (e.g. Milo and scCODA) and could 
require larger sample sizes with greater statistical power to determine the 
distinctions more accurately between patient groups.” 

 
 
 
3. Please expand on comments made that sex dependent differences were 
observed at the transcriptomic level. 
 
Authors’ response: For standard RNA-seq and pseudobulk RNA-seq analysis, sex will 
always contribute as a strong source of transcriptional variation2. To clarify our 
statement, we have added the following to the results:  
 

 
“The greatest source of variation separating samples, regardless of disease 
status, was sex, as genes from X and Y chromosomes were included in our 
analysis.” 

 
 
 
4. Is ATRNL1 expressed in ventricular cardiomyocytes?  
 
Authors’ response: We were also curious to know whether ATRNL1 was expressed in 
other regions of the heart. To look at the expression of ATRNL1 across different 
anatomical regions of the human heart we investigated the Human Heart Atlas 
(Response Figure 4a)11. We found that ATRNL1 was expressed in both ventricular and 
atrial cardiomyocytes (Response Figure 4a, and 4b). Further, we found that ATRNL1 
was expressed in pacemaker cells and epicardial cells (mesothelial). To confirm the 
presence of ATRNL1 in ventricular cardiomyocytes we performed immunofluorescence 
staining in non-failing LV samples and observed that ATRNL1 was localized at the 
intercalated disk in ventricular cardiomyocytes of the LV (Response Figure 4c). We 
have added Response Figure 4 to the manuscript as an additional Supplementary 
Figure (Supplementary Figure 4) and added the following to the results:  
 
 

“To assess at the expression of ATRNL1 across different anatomical regions of 
the human heart we investigated the Human Heart Atlas11. We found that 
ATRNL1 was expressed in both ventricular and atrial cardiomyocytes 
(Supplementary Fig. 4a, and 4b). Further, we found that ATRNL1 was 
expressed in pacemaker and epicardial cells (mesothelial). To confirm the 
presence of ATRNL1 in ventricular cardiomyocytes we performed 
immunofluorescence staining in non-failing LV samples and observed that 
ATRNL1 was localized at the intercalated disk in ventricular cardiomyocytes of 
the LV (Supplementary Fig. 4c).” 



  



Response Figure 4. Tissue expression of ATRNL1.(a) UMAP embedding of Human 
Heart Cell Atlas colored by cell state. (b) Dot plot showing expression of ATRNL1 
across all common cardiac cell states (non-immune cells only).(c) Immunostaining of 
human left ventricular (LV) tissue. (d) Immunostaining of human left ventricular (LV) 
tissue and left atrial (LA) tissue controlling for primary antibody. Samples treated stained 
with DAPI and secondary antibodies only.  
 
 
 
5. Please provide quantification of the immunostaining images shown in Figure 3. 
 
Authors’ response: We have quantified the fluorescent intensity in all control LA tissue 
(n=2 samples, and n=6 images), and LA tissue from AF patients (n=2 samples, and n=8 
images) masked for cardiomyocytes (Response Figure 5). Overall, we observed high 
fluorescence intensity in hearts with AF compared to controls. These results are 
consistent with our snRNA-seq findings.  
 
 

 
 
 
Response Figure 5. Quantification of ATRNL1 expression in cardiac tissue. Box 
plot of ATRNL1 fluorescence intensity from immunofluorescence analysis. Center line, 
median; box limits, upper and lower quartiles; whiskers,1.5x interquartile range. 
 
 
 
 
 



6. It is not clear whether ATRNL1 exerts its effects through the long isoform, 
short isoform, or circRNA species. Does knockdown or overexpression of these 
isoforms of ATRNL1 lead to different outcomes? The impact on electrophysiology 
is not very detailed and restricted to immature iPSC-derived atrial 
cardiomyocytes. 
 
Authors’ response: We agree this is an interesting and important question. From our 
RNA-seq experiments in hESC-aCM cells we were able to partially disentangle the 
different functions of the long and short isoforms. With siRNA-1, which only targets the 
long isoform of ATRNL1, we observed a slightly different transcriptional response 
compared to an siRNA (siRNA-2) that targets both long and short isoforms (Figure 4c-
d, and 4f-g). However, we acknowledge that siRNA-based knockdown experiments are 
not the most experimentally precise way to decipher the different functions of the 
different ATRNL1 isoforms. We were able to overexpress the short isoform in hESC-
aCMs, which confirmed a role for the short isoform of ATRNL1 in promoting processes 
like glucose metabolism, the ER stress response, response to hypoxia, and MTORC1 
signaling (Figure 4h-i). Further, it appears that short ATRNL1 expression also 
represses cell proliferation and regulates cell junction organization. However, we were 
not able to overexpress the long isoform as it’s too long to express in a lentivirus. 
Consistent with the findings made in cancer studies12, we found that the most prominent 
circATRNL1 isoform in CMs possess putative miRNA binding sites for genes involved in 
cell cycle progression, TGFB production, and glycolysis. Understanding the roles played 
by each isoform not only in human cardiomyocytes, but across all cell types that 
express ATRNL1 would be immensely informative and will be our goal going forward 
with future studies.  
 From or immunofluorescence-based analysis of ATRNL1 in human cardiac tissue 
we found that it localizes along the longitudinal borders of CMs like the protein 
components of the intercalated disk. The antibody used for this analysis recognizes an 
antigen only contained in the long isoform. Thus, the long isoform of ATRNL1 is what 
we are detecting within or near the intercalated disk. New reagents that recognize each 
species of RNA specifically will need to be developed and validated for follow-up work.  
 We agree that the electrophysiology experiments in hESC-aCMs do have some 
limitations. And that there are alternatives (e.g. engineered heart tissues) which could 
improve the interpretation of our results and further establish the role played by 
ATRNL1 in cardiomyocytes.  
 To address the reviewers concerns we have added the following to the 
discussion: 
  

“One limitation of our study is the use of hESC-aCMs, which are not as mature 
as adult human CMs in respect to features like sarcomere structure, Ca2+ 
kinetics, and ion channel density. Recent developments in 3D cardiac tissue 
technologies and methods have led to improvements in CM maturation and 
cardiac tissue modeling, including engineered heart tissue (EHT)13,14. Future 
work evaluating the physiological role of ATRNL1 in CMs will need to be 
conducted in EHTs or other 3D cardiac tissue models containing more mature 
and therapeutically relevant cell populations.” 



 
 
 
7. Cardiac cell type specific expression of genes associated with candidate atrial 
fibrillation loci should be validated across different snRNAseq datasets. For 
example, from this manuscript and published available data. 
 
Authors’ response: We thank the Reviewer for their suggestion. We have evaluated 
the expression of the candidate atrial fibrillation loci across the cell states found in the 
Human Heart Cell Atlas (Response Figure 6)(https://www.heartcellatlas.org/)11. This 
dataset includes cells from 6 different anatomical regions of the heart and contains 
704,290 cells and nuclei combined (Response Figure 4a). We found that our data 
matched their cell state/type annotations very well. The CM AF loci were expressed 
across the different subtypes of atrial and ventricular CMs, as well as pacemaker cells, 
and Purkinje cells. Some candidate genes did display differential expression among the 
CM clusters, including known atrial-enriched transcripts like TBX5 and MYL415. Further, 
with the large enrichment of immune cells in their dataset we observe an increase in 
resolution among our immune cell-enriched candidate AF loci. For example, the 
macrophage marker gene RNF144B also exhibited high expression in neutrophils. 
RNF144B is an E3 ubiquitin ligase known to promote lipopolysaccharide-inducible IL-1b 
expression and inflammasome priming in human macrophages16. The interconnection 
of inflammasome activation and AF have been recently established17. Overall, the 
Human Heart Atlas data agrees with our cell type annotations and provides improved 
cell-type-specific expression information for the identified AF GWAS loci.  
 We have added Response Figure 8 as Supplementary Figure 8 and 
incorporated the following to the results:  
 

“We also identified several known candidates for AF that have been previously 
described, including TTN18, ZFHX319, TBX520 and KCNIP2, which supports the 
validity of our approach. Next, we evaluated the expression of all candidate AF 
loci across the cell states found in the Human Heart Cell Atlas (Supplementary 
Fig. 8a)11. Our data matched the Heart Cell Atlas cell state annotations well. The 
CM AF loci were expressed across the different subtypes of atrial and ventricular 
CMs, as well as pacemaker cells, and Purkinje cells. Some candidate genes did 
display differential expression among the CM clusters, including known atrial-
enriched transcripts like TBX5 and MYL415. Further, with the large enrichment of 
immune cells in the Human Heart Atlas dataset we found improved resolution 
among our immune cell-enriched candidate AF loci. For example, the 
macrophage marker gene RNF144B exhibited high expression in neutrophils. 
RNF144B is an E3 ubiquitin ligase known to promote lipopolysaccharide-
inducible IL-1b expression and inflammasome priming in human macrophages. 
The interconnection of inflammasome activation and AF have been recently 
established16. Overall, the Human Heart Atlas data agrees with our cell type 
annotations and provides improved cell-type-specific expression information for 
the identified AF GWAS loci.” 
 



 
Response Figure 6. Expression of AF GWAS loci from Human Heart Cell Atlas. (a) 
Dot plot displaying the mean expression of AF GWAS genes across all cell states 



identified by the Human Heart Cell Atlas. Top, bars are colored according to the clusters 
presented in our study (Figure 6c). SAN, sinoatrial node; AVN, atrioventricular node; P 
cell, pacemaker cell; aCM, atrial cardiomyocyte; vCM, ventricular cardiomyocyte; EC, 
endothelial cell; PC, pericyte; SMC, smooth muscle cell; FB, cardiac fibroblast; meso, 
mesothelial cell (epicardial cell); Adip, adipocyte; NC, neural cell; NK, natural killer cell; 
Mo, monocyte; MP, macrophage; DC, dendritic cell; Neut, neutrophil.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Reviewer Three 
In this manuscript by Hill et all, the authors perform snRNAseq on LA tissue from 
AF patients and identify a role of ATRNL1 in AF. I would like to congratulate the 
authors on the work performed and the well written paper. However, I do have 
some concerns regarding especially the patient populations included and 
perhaps the lack of a clear difference in phenotype (expect from the AF), which 
rather appears more or less to be a form of "lone AF", which no longer is an 
accepted form of AF. I have the following comments: 
 
Authors’ response: We thank the Reviewer for their kind words and thoughtful 
comments. The population of patients profiled here represents an advanced age group 
over 60 (mean age > 65 for both males and females) affected predominantly with 
permanent AF.  
 
 
 
1. Supplementary table 1 should include more summarized date and statistical 
analysis on the patient characteristics that is also provided for the individual 
patients in Supplementary table 1 including for instance LVEF, LA size, co-
comorbidities and other relevant information. Although it is very nice to have the 
individual data provided it is difficult to get a complete overview from by the 
individual values. 
 
Authors’ response: In response to comments from Reviewers 1 and 2, we have 
cleaned up and updated Supplementary Tables 1 and 2 to include more relevant 
information on these patients, where available. Unfortunately, LA size information was 
not available for these patients.  

We focused on patients with permanent AF to better control for the many diverse 
etiologies associated with this common arrythmia. In response to comments from all 
Reviewers, we have cleaned up and updated Supplementary Tables 1 and 2 to reflect 
all the information that was available regarding time of diagnosis in relation to 
transplantation. To describe the patient cohorts with more clarity we have updated the 
Results to read as follows:  
 
 

“To characterize the cellular and molecular characteristics associated with AF, we 
performed snRNA-seq on samples from the LA of human patients with AF who 
were not in heart failure (n=17) as well as non-AF controls 
(n=19)(Supplementary Table 1, and Supplementary Table 2). We selected 
patients without heart failure to better control for the many diverse etiologies 
associated with this common arrythmias. Overall, our controls (CTRL) were 63 % 
female, the mean age was 68 (SD = 7.5), 25% had a history of taking beta-
blockers, and 6% had taken anticoagulants. The AF cases were 61% female, the 
mean age was 66 (SD = 8.2), 56% had a history of taking beta-blockers, and 
44% were being administered anticoagulants.”  

 



 
 
 
2. I have a hard time figuring out what the reason for the occurrence of AF is in 
the AF cohort is? There is always a reason for AF to occur, but the patient 
cohorts seem very similar. Is it a genetic component only then? Or are there co-
comorbidities the authors do not have the information on that could be the 
underlying cause. Please elaborate. 
 
Authors’ response: This is a great question, and important to acknowledge for the 
conclusions made from this study. Here, we are evaluating patients predominately 
diagnosed with permanent AF without heart failure. Likely these patients are at risk due 
to unknown genetic or environmental contributions; however, we are not sure of their 
etiologies and are evaluating in an unbiased manner based on clinical diagnosis of AF. 
Single cell studies biased on genetics do have value21, however, they don’t represent a 
normal sample size of the population of patients afflicted with AF. Future studies aimed 
at analyzing prioritized cohorts with known etiologies of AF are certainly a logical next 
step toward further characterizing the molecular features of this disease. 
 
 
 
3. Are there any information available on the AF history for these patients? 
 
Authors’ response: Thank you for raising this important point. In response to this 
quesry, we performed a manual chart review and when available, we added more 
information about the history of AF. We have included this data in the “other relevant 
information” in Supplementary Table 2. While this information was not available for all 
patients, all our AF cases were confirmed to have AF, with no heart failure. 
 
 
 
4. The differential abundance testing identified not any major shifts in cell type 
composition between the SR and AF cohorts. However, I am not sure if I 
understand the conclusion that the Masson's Trichrome staining confirms the 
finding of similar tissue composition between the SR and AF cohorts. The 
staining only provides information on the collagen content and the volume of 
cardiomyoctes, but does not provide any information on the other cell types. For 
this purpose the authors would need to perform additional immunostainings with 
specific cellular markers. 
 
Authors’ response: While we agree that immunostaining is a valid method for 
evaluating tissue composition, it’s beyond the scope of this study. We also agree that 
Masson’s Trichome staining doesn’t fully support all changes in tissue composition 
apart from fibrosis, fat deposition, and muscle tissue. To our knowledge, snRNA-seq is 
a valid method that doesn’t rely on the specificity of antibodies for profiling cardiac cell 
diversity and tissue composition. However, we do agree that it’s not without its own bias 



and comes with several limitations as we have mentioned in previous snRNA-seq 
studies1,2,22. 
 
 
 
 
5.  Have the authors quantified the fibrotic content in the tissue? Usually more 
fibrosis is reported in AF patients, which is a change in tissue composition. 
 
Authors’ response: We were able to successfully section and carry out Masson 
Trichrome staining on 28/34 samples for this study and quantified the amount of total 
(including the epi- and endocardium) and interstitial fibrosis found in these samples 
(Response Figure 7). We observed similar results to the snRNAseq data, with no 
marked or significant changes in the amount of interstitial fibrosis in AF vs. controls. 
 Quantification of fibrosis was carried out using ImageJ in a blinded fashion. 
Trichrome staining images were converted to RGB stacks and thresholded for the total 
area of the section. The total area of fibrosis was measured using thresholding, using a 
color image as a guide to identify fibrotic regions. Areas of tissue that were folded, or 
incorrectly identified as fibrosis were subtracted from the total fibrosis measurements. If 
present, the area of the epicardium and endocardium were also measured. To calculate 
total fibrosis, the total area of fibrosis (minus any incorrectly regions) was divided by the 
total area of the tissue and a percentage was calculated. To calculate the interstitial 
fibrosis only, the epicardial and endocardium measurements (if present) were 
subtracted from the total fibrosis and the remaining area was then divided by the total 
area of the tissue minus the epi and endocardium. 
 

 



 
Response Figure 7. Quantification of Interstitial Fibrosis in Human LA Tissue. 
Boxplot of percent interstitial fibrosis quantified from Masson's Trichrome stained LA 
tissue sections. Boxplot represented as: center line, median; box limits, upper and lower 
quartiles; whiskers, 1.5x interquartile range; points, outliers.  
 
 
 
6.  A recent paper (PMID: 37440641) in which the authors performed scRNA-seq of 
AF patients the MP/DC cluster expanded twofold, whereas endothelia and mural 
cells decreased in frequency. Could the authors please comment on the findings 
of this paper compared to their findings? 
 
Authors’ response: Indeed, members of our team were a part of that collaboration 
which stemmed from looking at patients with mitral valve regurgitation (MR) and 
persistent AF undergoing heart surgery. They were able to obtain LA appendage 
samples from these patients (n=7) as well as controls without AF (n=5) and then 
enzymatically digest the cardiac tissue, FACS sort live cells, and finally perform scRNA-
seq. So, both the patient population and methodologies differ greatly between their 
study and ours. Further, they only performed a student’s t-test for changes in cell 
composition, which is not a well-supported model for proper differential abundance 
testing of scRNA-seq data. Although, the HOMER mouse model that they characterized 
is quite compelling and does present with a phenotype more commonly associated with 
persistent AF.  
 To address these results in relation to our study we have added the following to 
the discussion:  
 

“Further studies on a broader range of AF cases classified from mild to severe 
(e.g., AF with heart failure) could help identify subtle changes in intercellular 
signaling and tissue composition that accompany AF. Interestingly, a recent 
scRNA-seq study conducted on patients undergoing open heart surgery with AF 
and mitral valve regurgitation found evidence of macrophage expansion and a 
commensurate decrease in endothelial and mural cell composition in the left 
atrial appendage compared to controls23. The flow cytometry-based cellular 
enrichment approach taken in that study may be an ideal approach for 
characterizing the changes in all non-cardiomyocytes from living tissue, 
especially rare immune cells that our nuclei-based profiling approach may not 
properly account for.” 

 
 
 
7. Why do the authors only have access to LA tissue and not RA tissue? It could 
have been interesting to see if the same results were obtained in RA. Furthermore 
please specify from what exact location of the LA the samples were taken (LA 
posterior wall, LA free wall, RA appendage or somewhere else)? Especially the 
LA posterior wall is important for AF induction and would have been interesting 



to investigate as well. 
 
Authors’ response: We agree that profiling of the RA would also be interesting, and 
certainly we will address the RA in our future work. Samples for this study were 
collected from either the anterior wall of the LA near the appendage, or from the 
posterior wall near the annulus (see above; Reviewer 2, response 1). We have added 
the following to the discussion to highlight the need for future work to include the RA:  
 
 
 

“Importantly, here we only focused on the LA, an important tissue for evaluating 
AF. In AF the right atrium (RA) is also affected, however, the cellular and 
molecular changes to the RA in AF are not well understood. The pulmonary vein 
(PV) is known to play a role in the pathogenesis of AF, and catheter ablation of 
foci in the PV is an effective treatment for arrhythmias24,25. Future studies 
interrogating the single cell characteristics of the PV-LA junction, and the RA are 
also warranted.” 
 
 

 
8. Please provide negative controls for the immunohistochemical staining 
performed in atrial tissue. 
 
Authors’ response: We have provided negative controls from both the LA and LV 
(Response Figure 4d). This data has been added to our manuscript as 
Supplementary Figure 4.  
 
 
 
9. I agree that the Cx43 and ATRNL1 co-stain in the same region, but this does 
not confirm a co-localization of the proteins. I would be careful concluding this as 
an overlap in fluorescence does not necessarily indicate co-localization. 
Additionally, I would suggest the authors to perform Pearson's correlation 
coefficient (PCC) as a statistic for quantifying co-localization. 
 
Authors’ response: We thank the Reviewer for their comment. And we agree that to 
prove true co-localization of two proteins requires more sophisticated biochemical 
assays and higher resolution microscopy. We have modified the text to simply say 
‘localize’ instead of ‘co-localize. Further, we carried out Pearson’s correlation coefficient 
analysis on all images stained for ATNRL1 and Cx43 (2 AF, 2 NF sections, 4 images 
per section) and averaged the Pearson’s correlation coefficient to get an average of 
0.87. We have added this information into the results and methods as follows: 
 

“Results: To confirm this subcellular localization, we co-stained the same LA 
tissues with the intercalated disc component connexin 43 (Cx43/GJA1) (Fig. 3b, 
Supplementary Fig. 3b). We found that ATRNL1 and Cx43 localize at 



intercalated discs in human LA tissue samples (Pearson’s correlation coefficient 
= 0.87). 
 
Methods: Pearson’s correlation coefficient measurements were carried out on 
images co-stained for ATNRL1 and Cx43 using the Image J plug in Just Another 
Colocalization Plugin26. Images were converted to 16 bit and ATRNL1 and Cx43 
images were analyzed. The average of all analyzed images was reported in the 
results section.” 

 
 
 
10.  I must disagree with the statement on line "272-273" regarding the SK 
channels stating: "KCNN2 and KCNN3 encode small conductance calcium-
activated potassium channels. However,the role of these channels at steady state 
and during AF remains unclear". Numerous studies have both in animal models 
and in human tissue samples provided clear evidence of the role of SK channels 
in action potential repolarization in SR, while changes in trafficking and function 
of the channels as well as transcriptional and translational changes during AF 
also has been demonstrated. Please include these information on the role of SK 
channels in SR and AF. 
 
Authors’ response: We appreciate the Reviewer’s point and we have modified this 
section of the results as follows 
 

“KCNN2 and KCNN3 encode small conductance calcium-activated potassium 
channels (SK). The channels are known to regulate cardiac excitability and are 
gated by changes in intracellular Ca2+ derived from the sarcoplasmic reticulum27. 
Importantly, SK channels are known to contribute to arrythmias, as it has been 
found that both gain- and loss-of-function of SK channels can increase AF 
susceptibility27–30. ” 
 
 

 
11. Line "301-303" states that the authors performed "in vivo and in vitro" 
immunoflouresence. Please clarify what you mean with in vivo 
immunofloresence? If the reference is to tissue staining the in vivo phrasing 
needs to be changed. 
 
Authors’ response: Thank you for catching this. We have changed to the following: 
 

“We performed immunofluorescence analysis of human LA tissue and hESC 
derived cardiomyocytes, transcriptomic profiling of siRNA and overexpression 
cells, and electrophysiological phenotyping to characterize the role of ATRNL1 in 
AF and cardiomyocyte physiology.” 

 
 



References 
 
1. Simonson, B. et al. Single-nucleus RNA sequencing in ischemic cardiomyopathy reveals 

common transcripƟonal profile underlying end-stage heart failure. Cell Rep. 42, 112086 

(2023). 

2. Chaffin, M. et al. Single-nucleus profiling of human dilated and hypertrophic 

cardiomyopathy. Nature 608, 174–180 (2022). 

3. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generaƟve modeling for 

single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018). 

4. Koenig, A. L. et al. Single-cell transcriptomics reveals cell-type-specific diversificaƟon in 

human heart failure. Nat. Cardiovasc. Res. 1, 263–280 (2022). 

5. Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, J. C. DifferenƟal 

abundance tesƟng on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol. 40, 

245–253 (2022). 

6. BüƩner, M., Ostner, J., Müller, C. L., Theis, F. J. & Schubert, B. scCODA is a Bayesian model 

for composiƟonal single-cell data analysis. Nat. Commun. 12, 6876 (2021). 

7. Lun, A. T. L. & Marioni, J. C. Overcoming confounding plate effects in differenƟal expression 

analyses of single-cell RNA-seq data. Biostat. Oxf. Engl. 18, 451–464 (2017). 

8. Schmid, K. T. et al. scPower accelerates and opƟmizes the design of mulƟ-sample single cell 

transcriptomic studies. Nat. Commun. 12, 6625 (2021). 

9. Vieth, B., Ziegenhain, C., Parekh, S., Enard, W. & Hellmann, I. powsimR: power analysis for 

bulk and single cell RNA-seq experiments. Bioinforma. Oxf. Engl. 33, 3486–3488 (2017). 



10. Gc,  van A. et al. MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-

related heart failure. Aging Cell 10, (2011). 

11. Kanemaru, K. et al. SpaƟally resolved mulƟomics of human cardiac niches. Nature 619, 801–

810 (2023). 

12. Chen, G. et al. UpregulaƟon of Circular RNA circATRNL1 to SensiƟze Oral Squamous Cell 

Carcinoma to IrradiaƟon. Mol. Ther. Nucleic Acids 19, 961–973 (2020). 

13. Tani, H. & Tohyama, S. Human Engineered Heart Tissue Models for Disease Modeling and 

Drug Discovery. Front. Cell Dev. Biol. 10, 855763 (2022). 

14. Hansen, A. et al. Development of a drug screening plaƞorm based on engineered heart 

Ɵssue. Circ. Res. 107, 35–44 (2010). 

15. Wang, T. Y. et al. Human cardiac myosin light chain 4 (MYL4) mosaic expression paƩerns 

vary by sex. Sci. Rep. 9, 12681 (2019). 

16. Ariffin, J. K. et al. The E3 ubiquiƟn ligase RNF144B is LPS-inducible in human, but not mouse, 

macrophages and promotes inducible IL-1β expression. J. Leukoc. Biol. 100, 155–161 (2016). 

17. Xing, Y., Yan, L., Xu, Z., Ma, X. & Liu, J. The relaƟonship between atrial fibrillaƟon and NLRP3 

inflammasome: a gut microbiota perspecƟve. Front. Immunol. 14, (2023). 

18. Choi, S. H. et al. AssociaƟon Between TiƟn Loss-of-FuncƟon Variants and Early-Onset Atrial 

FibrillaƟon. JAMA 320, 2354–2364 (2018). 

19. Gudbjartsson, D. F. et al. A sequence variant in ZFHX3 on 16q22 associates with atrial 

fibrillaƟon and ischemic stroke. Nat. Genet. 41, 876–878 (2009). 

20. Postma, A. V. et al. A gain-of-funcƟon TBX5 mutaƟon is associated with atypical Holt-Oram 

syndrome and paroxysmal atrial fibrillaƟon. Circ. Res. 102, 1433–1442 (2008). 



21. Reichart, D. et al. Pathogenic variants damage cell composiƟon and single cell transcripƟon 

in cardiomyopathies. Science 377, eabo1984 (2022). 

22. Tucker, N. R. et al. TranscripƟonal and Cellular Diversity of the Human Heart. Circula on 142, 

466–482 (2020). 

23. Hulsmans, M. et al. Recruited macrophages elicit atrial fibrillaƟon. Science 381, 231–239 

(2023). 

24. Haïssaguerre, M. et al. Spontaneous iniƟaƟon of atrial fibrillaƟon by ectopic beats 

originaƟng in the pulmonary veins. N. Engl. J. Med. 339, 659–666 (1998). 

25. Mahida, S. et al. Science Linking Pulmonary Veins and Atrial FibrillaƟon. Arrhythmia 

Electrophysiol. Rev. 4, 40–43 (2015). 

26. Bolte, S. & Cordelières, F. P. A guided tour into subcellular colocalizaƟon analysis in light 

microscopy. J. Microsc. 224, 213–232 (2006). 

27. Zhang, X.-D., Thai, P. N., Lieu, D. K. & Chiamvimonvat, N. Cardiac small-conductance calcium-

acƟvated potassium channels in health and disease. Pflugers Arch. 473, 477–489 (2021). 

28. Mahida, S. et al. Overexpression of KCNN3 results in sudden cardiac death. Cardiovasc. Res. 

101, 326–334 (2014). 

29. Li, N. et al. AblaƟon of a Ca2+-acƟvated K+ channel (SK2 channel) results in acƟon potenƟal 

prolongaƟon in atrial myocytes and atrial fibrillaƟon. J. Physiol. 587, 1087–1100 (2009). 

30. Ozgen, N. et al. Early electrical remodeling in rabbit pulmonary vein results from trafficking 

of intracellular SK2 channels to membrane sites. Cardiovasc. Res. 75, 758–769 (2007). 

 



Point-by-point Response 
 
 

 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have significantly revised their manuscript and it is much improved.  
 
Authors’ response: We sincerely appreciate your help improving this manuscript.  
 
 
If possible, it is recommended that the authors perform RNAscope to address 
expression of the ATRNL long, short, and circular RNA form in human atrial and 
ventricular cardiac specimens with and without AF. This information would be 
useful to the field moving forward. 
 
Authors’ response: We completely agree with the Reviewer that the in situ validation 
of each of these forms of ATRNL, in health and disease, and across the cardiac 
chambers will be a logical and helpful next step. In addition to the development of 
RNAscope probes for each isoform, we are also working on the development of an 
antibody targeting the short form of ATRNL, but these studies will extend well into the 
next year. Given the scope of these studies, we respectfully believe that such work 
extends beyond the current manuscript.  
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