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Materials and Methods
8.1 Updating Genetic Parameters

The genetic parameters p and y are updated using Bayesian inference as follows:

8.1.1 Updating p

The posterior distribution of p given the observed data D can be expressed as:

P(pID) « P(D|p) - P(p) ®)

Where P(D|p) is the likelihood of the data given p, and P(p) is the prior distribution of p.

We can use a Metropolis-Hastings algorithm to sample from this posterior:

Algorithm 3 Metropolis-Hastings for updating p
1: Propose a new p* from a proposal distribution g(p*|p)

2: Calculate the acceptance ratio:

P(D|p*)-P(p*)-q(plp*) )
> P(D|p)-P(p)-q(p*|p)

4: Accept p* with probability «

3: @ = min (1

8.1.2 Updating y
Similarly, for y:
P(y|D) o« P(Dly) - P(y) €))

We can use a similar Metropolis-Hastings algorithm or, if conjugate priors are used, closed-form

updates may be available.

8.1.3 Joint Update
In practice, we may want to update p and 7y jointly to account for their potential correlation:

P(p,y|D) < P(D|p,y) - P(p,7y) (10)

This can be done using a multivariate proposal distribution in the Metropolis-Hastings algorithm.

33


https://doi.org/10.1101/2024.09.29.24314557
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.09.29.24314557; this version posted September 30, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

8.2 Convergence and Practical Considerations

Several practical considerations should be taken into account when implementing these updates:

* Monitor convergence using multiple chains and Gelman-Rubin statistics:

s |V
R=1|= 11
W (11)

where V is the between-chain variance and W is the within-chain variance.

* Consider adaptive MCMC methods to improve mixing and convergence speed. For example,
the adaptive Metropolis algorithm haario2001adaptive can be used to automatically tune the

proposal distribution.

* Computational trade-offs and potential parallelization strategies should be considered. For
instance, updates for different individuals can be parallelized, as can the likelihood calcula-

tions for different topics.

These considerations ensure robust and efficient inference of the genetic parameters within our

model.

9 Supplementary Figures
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Figure S1: Age of Onset Captured by Warped Disease Probabilities. Age of diagnosis for
coronary artery disease, tracking closely with underlying genetic risk. We overlay the warped time
predicted disease probability of those in the top and bottom deciles of polygenic risk for coronary
artery disease. In panel at right, we demonstrate the probability of disease (k) for individuals in

each genetic category.
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Figure S2: Topic Specificity. In both real data and simulations, we recognize that diseases tend to

be sparse in the number of topics on which they are loaded.
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Figure S3: Estimating Disease Loadings. Here we demonstrate the approach for estimating
disease loadings using counts of disease occurrences mapped to unwarped times. Lower right,
we demonstrate the marginal probabilities of each disease, the estimated counts, and the first
occurrence. Average Marginal probabilities defined as average(6; ; X Bk.;) where § represents the

unscaled (population level) disease probabilities across time.
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Figure S4: Genetically Enriched Individuals Show Earlier Onset Disease. Here we show that

the marginal probability of disease is earlier for those with high genetic risk. We use a canonical

PRS for each topic.
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Figure S5: Topic-specific Disease Probability. We plot the probabilities of all 10 simulated
diseases over time within a given topic, conditional on the time scale of a chosen patient. In B, we
demonstrate the trajectory of one chosen disease across all topics. This is simulated data in which

the diseases are simulated to be topic-specific so that each disease is minimally loaded on a few

topics.
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Figure S6: Sample Mean. Here we demonstrate several mean functions that govern the process

of disease evolution. These are meant to reflect a sampling of biological processes and are learned

from the model.
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Figure S7: Change in Topic Weights Over Time. Here we consider the difference in estimated
topic weight under a model with time-varying topic weights in comparison to the time-fixed
approach ([1]). Results by topic do not reveal systematic differences. NRI = Neoplastic Respira-
tory, CVD = Cardiovascular, FGND = Female genitourinary, MGND= male genitourinary, CER=
Circulatory, UGI=Upper Gastrointestinal, LGI=Lower Gastrointestinal, SRD=Sense respiratory

depression, MDS = Musculoskeletal, ARP: Arthropathy.
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Figure S8: Top 10 diseases for topic 1 in the UK Biobank
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Figure S9: Top 10 diseases for topic 2
in the UK Biobank
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Figure S10: Top 10 diseases for topic 3 in the UK Biobank
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Figure S11: Top 10 diseases for topic 4 in the UK Biobank
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Figure S12: Top 10 diseases for topic 5 in the UK Biobank
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Figure S13: Top 10 diseases for topic 6 in the UK Biobank
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Figure S14: Top 10 diseases for topic 7 in the UK Biobank
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Figure S15: Top 10 diseases for topic 8 in the UK Biobank
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Figure S16: Top 10 diseases for topic 9 in the UK Biobank
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Figure S17: Top 10 diseases for topic 10 in the UK Biobank
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