Supporting Information

Efficient Convergent Synthesis of 1,3-Diazepinone Nucleosides by Ring-Closing Metathesis and Direct Glycosylation

Adam K. Hedger,^{†,‡} Jonathan Findell,^{†,§} Dinesh S. Barak,[†] Celia A. Schiffer,[†] Jonathan K.

Watts,^{‡,*} and Akbar Ali^{†,*}

[†]Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States

[‡]RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States

[§]Department of Chemistry, School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom

*Corresponding Authors

Akbar Ali: Akbar.Ali@umassmed.edu

Jonathan K. Watts: Jonathan.Watts@umassmed.edu;

Table of Contents

1) Schemes S1	S2–S3
2) Figures S1–S7	S4–S10
3) Synthesis of compounds 3 –7	S11–S14
4) Synthesis of diazepinone riboside	S15–S18
5) Synthesis of compounds 15 and 19	S19–S21
6) Synthesis of 2'-deoxyribo-diazepinone nucleoside by 2'-deoxygenation	S22–S28
7) Copies of ¹ H, ¹³ C, DEPT-135, and ¹⁹ F NMR spectra	S29–S76

Scheme S1. Attempted synthesis of 2'-deoxyribo-diazepinone nucleoside by 2'-deoxygenation.

To attempt 2'-deoxygenation, the urea NH in tribenzoyl-protected riboside **10** was first orthogonally blocked with Boc to give fully protected **26** in high yield. We had observed that protection of this diazepinone NH was critical as it otherwise interfered with the 2'-thioacylation (**28** to **29**). From **26**, methanolic ammonia was used to remove the benzoyl protection to furnish *N*-Boc-protected diazepinone riboside **27**, which was selectively 5'- and 3'-TIPDS-protected to provide silyl derivative **28**. This was then reacted with phenyl chlorothionoformate to give the deoxygenation precursor **29**, which was subjected to Barton-McCombie deoxygenation to yield the protected 2'-deoxy-diazepinone nucleoside **30** in 40% yield over two steps. Finally, with the

silyl group could be removed in quantitative yield to give **31** with ease, subsequent attempts to remove the *N*-Boc group with mild acidic conditions including Lewis acids gave a mixture of products. The same *N*-Boc deprotection issue occurred when first attempting to remove this group from nucleoside **30** before the TIPDS removal. These problems, along with the long synthetic scheme prompted us to explore an alternative strategy.

Figure S1. Comparison of ¹H NMR spectra of 2'-deoxyribo-diazepinone nucleoside **16** in D₂O. Top) Fully deprotected nucleoside **16** showing 2'-CH₂ multiplets at 2.15–2.08 and 1.97–1.91 ppm at time zero. Bottom) Same sample after 6 h in D₂O at room temperature showing additional 2'-CH₂ multiplets forming at 2.49–2.42 and 1.88–1.82 ppm.

Figure S2. Comparison of ¹H NMR spectra of 2'-fluoroarabino-diazepinone nucleoside 21 in D_2O : Top) Fully deprotected nucleoside 21 at time zero. Bottom) Same sample after 48 h in D_2O at room temperature showing no change in spectra.

Time = 0 h

Time = 48 h

Figure S3. Comparison of ¹H NMR spectra of 2'-deoxy-2',2'-difluoro-diazepinone nucleoside 23 in D_2O : Top) Fully deprotected nucleoside 23 at time zero. Bottom) Same sample after 48 h in D_2O at room temperature showing no change in spectra.

2D NOESY NMR crosspeaks were used to confirm β and α anomer assignment after glycosylation:

Figure S4. 2D NOESY NMR spectra for nucleoside 14 (β -anomer). Top: Whole spectrum, Bottom: Zoomed region showing through space interaction of anomeric proton with H4'.

Figure S5. 2D NOESY NMR spectra for nucleoside 15 (α -anomer). Top: Whole spectrum, Bottom: Zoomed region showing no through space interaction between anomeric proton and H4'.

Figure S6. 2D NOESY NMR spectra for nucleoside 20 (β -anomer). Top: Whole spectrum, Bottom: Zoomed region showing through space interaction of anomeric proton with H4'.

Figure S7. 2D NOESY NMR spectra for nucleoside 23 (β-anomer). Top: Whole spectrum, Bottom: Zoomed region showing through space interaction of anomeric proton with H4'.

General procedure for RCM reactions with different catalysts

Compound **2** (0.42 g, 1.2 mmol) was dissolved in anhydrous CH_2Cl_2 (200 mL) and this solution degassed using 10 × fill cycles of vacuum and argon. The solution was then heated to 40 °C under an argon atmosphere. After 15 min, RCM catalyst (0.12 mmol, 0.10 eq) was then added to the solution. The solution was stirred for 1 h or until TLC indicated reaction had reached completion (the reaction with the Grubbs first-generation catalyst was slower and took 2 h to complete) (R_f starting material = 0.67, R_f product = 0.51, 25% EtOAc/hexanes, visualized by UV). Solvents were evaporated under reduced pressure, the residue redissolved in a minimum volume of CH_2Cl_2 , and purified by flash chromatography using a silica gel column (SiliaSep, 40 g, gradient elution with CH_2Cl_2). Product containing fractions were pooled and evaporated in *vacuo* to give the diazepinone derivative as a white solid. TLC: $R_f = 0.50$ (25% EtOAc/hexanes).

RCM and Bz deprotection without intermediate purification

Compound 2 (2.50 g, 7.18 mmol) was dissolved in anhydrous CH_2Cl_2 (1.3 L) and solution degassed. The solution was heated to 40 °C, and Zhan 1b catalyst (0.053 g, 0.072 mmol, 0.01 eq) was then added to the solution and stirred for 1 h. Upon completion (monitored by TLC), another three additions of compound 2 (2.50 g each) and Zhan 1b catalyst (0.053 g each) were performed

in the same vessel, as described previously. The solvent was evaporated to provide 9.67 g of brown solid.

Without purification, crude compound 3 (9.67 g) was dissolved in 1,4-dioxane (60 mL) and cooled in an ice bath. Aqueous 8 N HCl (30 mL) was slowly added whilst stirring. The mixture was warmed to room temperature before heating at 45 °C for 48 h. The reaction mixture was cooled to 0 °C and neutralised to pH 7 with aqueous 4 N NaOH (~80 mL). The solvents were evaporated in *vacuo* and the residue was dried under high vacuum overnight. The dried product was ground using a pestle and mortar and triturated with 10% MeOH/CH₂Cl₂, filtering and repeating until TLC (R_f = 0.60, 10% MeOH/CH₂Cl₂, visualised by ninhydrin stain) showed no more product eluting. The solution was passed through a short silica gel bed, eluting with 10% MeOH/CH₂Cl₂ until TLC (same conditions and visualisation) showed no further product coming out. The combined fractions were evaporated in vacuo to give a pale-yellow solid. Recrystallization from MeOH gave compound 4 as a white crystalline solid. First crop: 2.01 g. Second crop: 0.54 g. The filtrate was concentrated in *vacuo*, and the residue was purified by flash column chromatography, using elution gradient of 10-20% MeOH/CH₂Cl₂. Fractions were pooled based on TLC and evaporated. The residue was recrystallised from MeOH to give a third crop: 0.15 g. Total yield over two steps: 2.70 g, 84%.

(Z)-N-(4-Ureidobut-2-en-1-yl)benzamide (5).

Benzoyl-protected diazepinone **3** (0.50 g, 1.56 mmol) was dissolved in a small amount of anhydrous dichloromethane (2 mL), this solution was then charged with 7 N methanolic ammonia (50 mL) in a sealed glass vessel and stirred at room temperature. TLC indicated the reaction was complete within 2.5 h by consumption of starting material, and formation of a new lower spot (stained by ninhydrin stain). Solvents were evaporated under reduced pressure, the residue redissolved in a minimum volume of CH_2Cl_2 , and purified by flash chromatography using a silica gel column (SiliaSep, 12 g, gradient elution with 0–10 % MeOH/CH₂Cl₂). Product containing fractions were pooled and evaporated in *vacuo* to give the product (0.35 g, 96%) as a white solid, which was identified as the ring-opened urea compound **5**. TLC: $R_f = 0.42$ (10% MeOH/CH₂Cl₂).

¹**H NMR** (500 MHz, DMSO-*d*₆): δ 8.65 (t, *J* = 5.4 Hz, 1H), 7.86–7.84 (m, 2H), 7.53–7.50 (m, 1H), 7.47–7.44 (m, 2H), 6.04 (t, *J* = 5.6 Hz, 1H), 5.52–5.42 (m, 4H), 3.94 (t, *J* = 5.8 Hz, 2H), 3.72 (t, *J* = 5.8 Hz, 2H) ppm.

¹³C NMR (126 MHz, DMSO-*d*₆): δ 165.92 (C=O), 158.64 (C=O), 134.40 (C), 131.11 (CH),
130.01 (CH), 128.26 (2 × CH), 127.57 (CH), 127.15 (2 × CH), 36.45 (CH₂), 36.25 (CH₂) ppm.

Methyl (Z)-(4-benzamidobut-2-en-1-yl)carbamate (6).

Benzoyl-protected diazepinone **4** (3.42 g, 10.7 mmol) was dissolved in a solution of 1 % NaOH in methanol and refluxed at 65 °C for 1 h. The reaction mixture was cooled to room temperature, neutralized with aqueous 2 N HCl solution, and concentrated under reduced pressure. The solid

residue was triturated with 10 % MeOH/CH₂Cl₂ and filtered. This was repeated, and combined organic fractions evaporated to dryness. The solid was redissolved in CH₂Cl₂ and purified by flash column chromatography using a silica gel column (SiliaSep, 40 g, elution with 50–100% EtOAc/CH₂Cl₂/. Product containing fractions were pooled, dried, and recrystallized from EtOAc to give the product (2.50 g, 94%) as a white solid, which was identified as the ring-opened carbamate compound **6**. TLC: $R_f = 0.45$ (50% EtOAc/CH₂Cl₂).

¹H NMR (500 MHz, CDCl₃): δ 7.84 (d, J = 7.4 Hz, 2H), 7.49–7.46 (m, 1H), 7.42-7.39 (m, 2H),
7.12 (br s, 1H), 5.70 (q, J = 8.4 Hz, 1H), 5.62–5.57 (m, 1H), 5.30 (br s, 1H), 4.13 (t, J = 6.5 Hz,
2H), 3.88 (t, J = 6.2 Hz, 2H), 3.67 (s, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃): δ 167.42 (C=O), 157.40 (C=O), 134.49 (C), 131.52 (CH), 129.35 (CH), 128.55 (2 × CH), 128.36 (CH), 127.23 (2 × CH), 52.30 (OCH₃), 37.73 (CH₂), 36.18 (CH₂) ppm.

1-Benzoyl-1,3,4,7-tetrahydro-2*H*-1,3-diazepin-2-one (7).

When the *bis*-Bz protected compound **3** (2.0, 6.24 mmol) was treated with 8 N HCl in THF at room temperature for 24 h, compound **7** was isolated as the major product (0.78 g, 58%).

¹**H NMR** (500 MHz, DMSO-*d*₆): δ 8.07 (t, *J* = 4.0 Hz, 1H), 7.53–7.49 (m, 3H), 7.45–7.41 (m, 2H), 5.87–5.83 (m, 1H), 5.81–5.77 (m, 1H), 4.32–4.30 (m, 2H), 3.87–3.85 (m, 2H) ppm.

¹³C NMR (126 MHz, DMSO-*d*₆): δ 170.28, 159.47, 135.70, 131.68, 128.34, 127.26, 126.27, 125.30, 41.63 ppm.

HRMS (ESI) m/z: Calcd. for C₁₂H₁₂N₂O₂Na [M + Na]⁺ 239.0791; found 239.0790.

Synthesis of Diazepinone Riboside

2,3,5-Tri-*O*-benzoyl- α , β -D-ribofuranosyl bromide (9).

Anhydrous CH₂Cl₂ (140 mL) was added to a round-bottom flask, tightly sealed, and degassed using 10 × cycles of vacuum and argon fill. Three argon balloons were used for increased pressure. The CH₂Cl₂ was cooled to 0 °C and acetyl bromide (3.30 mL, 44.4 mmol) was added followed by the slow addition of MeOH (1.89 mL, 46.6 mmol). After stirring for 15 min at 0 °C, a solution of 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose (5.60 g, 11.1 mmol) in anhydrous CH₂Cl₂ (30 mL) was added dropwise over 20 min. After stirring at 0 °C for 3 h, the reaction mixture was concentrated in vacuo, keeping the bath temperature below 10 °C, to yield a pale-yellow syrup. Dry CH₂Cl₂ (25 mL) and toluene (25 mL) were sequentially distilled *in vacuo* from the syrup, keeping the bath temperature below 15 °C, providing the 2,3,5-tri-O-benzoyl- α , β -D-ribofuranosyl bromide 7 (5.84 g, 100%) as a pale-yellow syrup; TLC (2 % MeOH-CH₂Cl₂) indicated complete conversion to the bromo sugar 9. ¹H NMR indicated the product was a 1:1 mixture of a/b-anomers. ¹H NMR (500 MHz, CDCl₃) (~1:1 mixture of a/b -anomers) δ 8.18–8.15 (m, 1H), 8.11–8.07 (m, 3H), 8.02–8.00 (m, 2H), 7.97–7.95 (m, 1H), 7.92–7.90 (m, 2H), 7.63–7.58 (m, 2H), 7.56–7.51 (m, 3H), 7.51–7.32 (m, 10H), 7.27–7.24 (m, 1H), 7.19–7.14 (m, 2H), 6.97 (d, *J* = 4.6 Hz, 0.5H), 6.27 (dd, J = 8.0, 4.6 Hz, 1H), 6.12 (d, J = 4.6, 1H), 5.86 (dd, J = 7.0, 3.1 Hz, 0.5H), 5.46 (dd, J = 7.0, 3.14.5 Hz, 0.5H), 4.95–4.91 (m, 1.5H), 4.85–4.80 (m, 1.5H), 4.73–4.69 (m, 1.5H) ppm.

¹³C NMR (126 MHz, CDCl₃) (~1:1 mixture of a/b -anomers) δ 166.26, 166.09, 165.93, 165.33, 165.08, 165.01, 133.95, 133.86, 133.81, 133.79, 133.61, 133.38, 130.20, 130.08, 130.00, 129.91, 129.85, 129.56, 129.42, 129.17, 128.83, 128.77, 128.74, 128.73, 128.64, 128.62, 128.60, 128.50, 128.35, 125.43, 89.15, 87.05, 83.61, 81.69, 79.16, 72.85, 71.13, 69.83, 63.67, 63.17 ppm.

HRMS (ESI): m/z Calcd. for C₂₆H₂₁O₇ [M – Br + H]⁺ 445.1282; found 445.1268.

(2*R*,3*R*,4*R*,5*R*)-2-((Benzoyloxy)methyl)-5-(2-oxo-2,3,4,7-tetrahydro-1*H*-1,3-diazepin-1yl)tetrahydrofuran-3,4-diyl dibenzoate (10).

To a suspension of the 1,3-diazepinone 4 (0.75 g, 6.69 mmol) in anhydrous CH_3CN (25 mL) was added excess BSTFA (8 mL) and the mixture was stirred at room temperature for 2 h. Solvent and excess reagent were removed by evaporation under reduced pressure and the residue was dried under high vacuum for 30 min to provide the persilylated cyclic urea 8 as a clear oil, which was used immediately in the glycosylation reaction.

A solution of the persilylated cyclic urea **8** in dry benzene (15 mL) was rapidly added to a refluxing mixture of HgO (2.70 g) and HgBr₂ (2.70 g) in dry benzene (150 mL) under dry N₂ atmosphere. After 10 min, a solution of 2,3,5-tri-*O*-benzoyl- α , β -D-ribofuranosyl bromide **9** (4.70 g, 8.92 mmol) in dry benzene (25 mL) was rapidly added and refluxing continued for 18 h. After cooling to room temperature, the reaction mixture was filtered through a pad of celite, and the filter cake was washed with EtOAc. The combined filtrates were washed with saturated aqueous NaHCO₃ (200

mL) and water (200 mL). The organic portion was dried (Na₂SO₄), filtered and evaporated under reduced pressure to about 5 mL and applied to a silica gel column, eluting with EtOAc-hexanes (1:1), to provide the protected nucleoside **10** (2.51 g, 67%) as a white foamy solid. TLC: $R_f = 0.45$ (55% EtOAc/hexanes).

¹**H NMR** (500 MHz, CDCl₃) δ 8.15–8.13 (m, 2H, Ph), 7.96–7.93 (m, 4H, H-Ph), 7.62–7.58 (m, 1H, H-Ph), 7.56–7.48 (m, 4H, H-Ph), 7.38–7.33 (m, 4H, H-Ph), 6.13 (d, *J* = 7.5 Hz, 1H, H-1'), 5.78 (dd, *J* = 6.0, 3.0 Hz, 1H, H-3'), 5.64 (dd, *J* = 7.0, 6.5 Hz, 1H, H-2'), 5.65–5.61 (m, 1H, H-5), 5.59–5.54 (m, 1H, H-6), 4.79 (dd, *J* = 13.0, 4.0 Hz, 1H, H-5'), 4.58–4.54 (m, 3H, 3-H, H-4', H-5'), 3.90–3.83 (m, 1H, H-7), 3.80–3.76 (m, 1H, H-4), 3.71 (dd, *J* = 17.5, 6.0 Hz, 1H, H-7), 3.60–3.55 (m, 1H, H-4) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 166.22 (C-2), 165.63 (C=O-Bz), 165.53 (C=O-Bz), 165.47 (C=O-Bz), 133.66 (CH-Ph), 133.57 (CH-Ph), 133.54 (CH-Ph), 129.94 (2 × CH-Ph), 129.81 (2 × CH-Ph), 129.67 (C-Ph), 129.08 (C-Ph), 129.05 (C-Ph), 128.82 (2 × CH-Ph), 128.58 (2 × CH-Ph), 128.54 (2 × CH-Ph), 127.07 (CH-5), 125.72 (CH-6), 88.40 (C-1'), 79.03 (CH-4'), 71.67 (CH-3'), 71.00 (CH-2'), 64.52 (CH₂-5'), 43.35 (CH₂-4), 41.30 (CH₂-7) ppm.

HRMS (ESI): m/z Calcd. for $C_{31}H_{29}N_2O_8$ [M + H]⁺ 557.1918; found 557.1912.

1-((2*R*,3*R*,4*S*,5*R*)-3,4-Dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-1,3,4,7tetrahydro-2*H*-1,3-diazepin-2-one (11).

To a solution of the protected nucleoside **10** (0.28 g, 0.50 mmol) in CHCl₃ (2 mL) placed in a pressure bottle was added a cold solution of 7 N NH₃ in MeOH (35 mL) and the resulting mixture was kept at room temperature for 24 h, occasionally shaking the reaction vessel. The reaction mixture was concentrated *in vacuo* and the residue was extracted with H₂O (35 mL) and the aqueous solution was repeatedly extracted with CHCl₃ (5 × 25 mL). The aqueous layer was filtered through a syringe filter and lyophilized to provide the de-protected nucleoside **11** (0.113 g, 93%) as an off-white powder.

¹**H NMR** (500 MHz, D₂O) δ 6.00–5.95 (m, 1H, H-5), 5.95–5.90 (m, 1H, H-6), 5.53 (d, *J* = 7.0, 1H, H-1'), 4.14 (t, *J* = 6.5 Hz, 1H, H-2'/3'), 4.10 (dd, *J* = 6.0, 1H, H-2'/3'), 3.94 (dd, *J* = 8.1, 4.0 Hz, 1H, H-4'), 3.91–3.85 (m, 2H, H-5'), 3.80–3.70 (m, 4H, H-4, H-7) ppm.

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 6.08 (d, J = 3.2 Hz, 1H, H-3), 5.82–5.70 (m, 2H, H-5, H-6), 5.32 (d, J = 5.8 Hz, 1H, H-1'), 4.81 (dd, J = 12.4, 5.8 Hz, 2H, H-2'/3'), 4.75 (t, J = 5.5 Hz, 1H, H-2'/3'), 3.81–3.74 (m, 2H, H-5'), 3.70–3.57 (m, 4H, H-4, H-7), 3.54–3.40 (m, 3H, H-4', H-2'/3' ppm. ¹³**C NMR** (126 MHz, D₂O) δ 166.37 (C-2), 128.19 (CH-5), 126.58 (CH-6), 89.72 (CH-1'), 82.87 (CH-4'), 70.61 (CH-2'), 69.97 (CH-3'), 61.53 (CH₂-5'), 41.81 (CH₂-4), 40.49 (CH₂-7).

HRMS (ESI): m/z Calcd. for $C_{10}H_{17}N_2O_5$ [M + H]⁺ 245.1132; found 245.1129.

((2*R*,3*S*,5*S*)-3-((4-Methylbenzoyl)oxy)-5-(2-oxo-2,3,4,7-tetrahydro-1*H*-1,3-diazepin-1yl)tetrahydrofuran-2-yl)methyl 4-methylbenzoate (15).

A mixture of diazepinone 4 (0.25 g, 2.23 mmol) in CH_3CN (10 mL) was treated with BSTFA (2.0 mL, excess) at room temperature under argon. After stirring the reaction mixture at room temperature for 2 h, solvents were evaporated under reduced pressure. The residue was dried under high vacuum to provide the *bis*-silylated product as a clear oil, which was used as such in the glycosylation reaction.

The *bis*-silylated diazepinone **8** was dissolved in 1,2-DCE (15 mL) to give a colorless solution and cooled to -30 °C using a bath of dry ice in CH₃CN. Freshly distilled SnCl₄ (0.81 mL, 6.95 mmol) was added, followed by Hoffer's chlorosugar **13** (0.85 g, 2.19 mmol). This gave a clear yellow solution which was stirred at -30 °C for 1.5 h, at which point the mixture had turned dark brown. Pyridine (2.5 mL) and water (12 mL) were added, and the reaction mixture was stirred at room temperature 1 h. After diluting with water (25 mL), the reaction mixture was extracted with CH₂Cl₂ (3 × 50 mL). The combined organic fractions were filtered through a bed of celite, washed with saturated aqueous NaCl (50 mL), dried (Na₂SO₄), and evaporated to dryness. The resulting dark yellow residue was dissolved in CH₂Cl₂ and purified by flash column chromatography using a silica gel column (SiliaSep, 25 g, gradient elution with 0–20% Acetone/CH₂Cl₂) to give the pure α -anomer compound **15** (0.10 g, 10%) as a white foamy solid. TLC: 8% acetone in CH₂Cl₂; R_f = 0.35).

¹**H NMR** (500 MHz, CDCl₃) δ 7.94–7.89 (m, 4H, H-Ph), 7.27–7.22 (m, 4H, H-Ph), 6.15 (dd, J = 7.7, 5.1 Hz, 1H, NH), 5.84–5.79 (m, 1H, H-5/6), 5.74–5.69 (m, 1H, H-5/6), 5.48 (dt, J = 7.5, 5.5, 2.8 Hz, 1H, H-1'), 4.64 (dd, J = 6.6, 4.2 Hz, 1H, H-4'), 4.53 (dd, J = 11.8, 4.2 Hz, 1H, H-5'), 4.48 (br s, 1H, H-3'), 4.43 (dd, J = 11.8, 4.4 Hz, 1H, H-5'), 3.96–3.93 (m, 2H, H-4, H-7), 3.82–3.69 (m, 2H, H-4, H-7), 2.87 (dt, J = 15.3, 7.7 Hz, 1H, H-2'), 2.42 (s, 3H, CH₃-Tol), 2.40 (s, 3H, CH₃-Tol), 2.13 (ddd, J = 15.1, 8.0, 3.1 Hz, 1H, H-2') ppm.

¹³C NMR (126 MHz, CDCl₃) δ 166.46 (C=O-Tol), 166.11 (C=O-Tol), 165.46 (C-2), 144.41 (C-Ph), 144.06 (C-Ph), 129.86 (2 × CH-Ph), 129.71 (2 × CH-Ph), 129.42 (2 × CH-Ph), 129.35 (2 × CH-Ph), 127.24 (CH-Ph), 127.02 (CH-Ph), 126.92 (CH-5/6), 126.08 (CH-5/6), 87.82 (CH-1'), 81.77 (CH-4'), 75.60 (CH-3'), 65.13 (CH₂-5'), 43.48 (CH₂-7), 40.77 (CH₂-4), 36.56 (CH₂-2'), 21.84 (CH₃-Tol), 21.82 (CH₃-Tol) ppm.

HRMS (ESI): m/z Calcd. for $C_{26}H_{28}N_2O_6Na$ [M + Na]⁺ 487.1840; found 487.1839.

2-Deoxy-2-fluoro-3,5-di-*O*-benzoyl-*α*-D-arabinofuranosyl bromide (19).

A solution of 2-deoxy-2-fluoro-1,3,5-tri-*O*-benzoyl-*a*-D-arabinofuranose (1.40 g, 3.0 mmol) in CH₂Cl₂ (10 mL) was treated with a 30% HBr solution in AcOH (1.80 mL). After stirring at room temperature overnight, the reaction mixture was washed with H₂O (2 ×10 mL) and saturated NaHCO₃ solution (2 × 10 mL). The organic portion was dried (Na₂SO₄) and concentrated under reduced pressure to provide the product **19** as a pale-yellow syrup (1.27 g, 100%). TLC: $R_f = 0.50$ (100% CH₂Cl₂).

¹**H** NMR (500 MHz, CDCl₃): δ 8.11 (dd, *J* = 8.2, 1.2 Hz, 2H), 8.07 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.63 (t, *J* = 7.5 Hz, 1H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 7.43 (t, *J* = 7.8 Hz, 2H), 6.64 (d, *J* = 12.1 Hz, 1H), 5.60 (d, *J* = 50.0 Hz, 1H), 5.55 (dd, *J* = 21.9, 3.6 Hz, 1H, overlapping), 4.84–4.78 (m, 2H), 4.72 (dd, *J* = 11.5, 3.8 Hz, 1H) ppm.

¹³C NMR (126 MHz, CDCl₃): δ 166.19, 165.71, 134.08, 133.42, 130.17 (2C), 129.97 (2C), 128.82 (2C), 128.57 (2C), 100.77 (d, J = 191.7), 87.70 (d, J = 31.3), 84.87, 76.36 (d, J = 31.8), 62.64 ppm.
¹⁹F NMR (470 MHz, CDCl₃): δ -165.92 ppm.

Attempted Synthesis of 2'-Deoxyribo-Diazepinone Nucleoside by 2'-Deoxygenation (2*R*,3*R*,4*R*,5*R*)-2-((Benzoyloxy)methyl)-5-(3-(*tert*-butoxycarbonyl)-2-oxo-2,3,4,7-tetrahydro-1*H*-1,3-diazepin-1-yl)tetrahydrofuran-3,4-diyl dibenzoate (26).

To a stirred solution of diazepinone riboside **10** (3.40 g, 6.10 mmol) in anhydrous THF (60 mL) at room temperature under argon was slowly added Et₃N (1.05 mL, 7.50 mmol) followed by the addition of DMAP (0.37 g, 3.0 mmol) in one portion. After 15 min, a solution of (Boc)₂O (1.64 g, 7.5 mmol) in anhydrous THF (10 mL) was added dropwise. The resulting reaction mixture stirred at room temperature overnight (TLC indicated complete conversion of the starting material), quenched with H₂O (100 mL), and extracted with EtOAc (100 mL). The organic portion was washed with saturated aqueous NaCl solution (100 mL), dried (Na₂SO₄), filtered, and evaporated under reduced pressure. The resulting orange-brown residue was purified by flash column chromatography using a silica gel column (Biotage, 50 g, gradient elution with 0–70% EtOAc/hexanes) to provide the *N*-Boc protected nucleoside **26** (3.60 g, 90%) as a white foamy solid. TLC: R_f = 0.40 (30% EtOAc-hexanes).

¹**H NMR** (500 MHz, CDCl₃): δ 8.18–8.15 (m, 2H), 7.97–7.93 (m, 4H), 7.64–7.61 (m, 1H), 7.58– 7.50 (m, 4H), 7.42–7.33 (m, 4H), 6.32 (d, *J* = 7.7 Hz, 1H), 5.81 (dd, *J* = 6.0, 2.6 Hz, 1H), 5.58– 5.47 (m, 2H), 4.88 (dd, *J* = 12.9, 3.6 Hz, 1H), 4.59–4.55 (m, 2H), 4.25 (d, *J* = 18.5 Hz, 1H), 3.98 (d, *J* = 18.9 Hz, 1H), 3.83 (dd, *J* = 17.0, 2.3 Hz, 1H), 3.74 (dd, *J* = 16.9, 5.0 Hz, 1H), 1.38 (s, 9H) ppm. ¹³C NMR (126 MHz, CDCl₃,): δ 166.18 (C), 165.65 (C), 165.41(C), 158.41(C), 153.09 (C), 133.79 (CH), 133.73 (CH), 129.96 (2 × CH), 129.93 (2 × CH)), 129.82 (2C, CH), 129.53 (C), 128.97 (C), 128.93 (2 × CH), 128.66 (2 × CH), 128.60 (2 × CH), 128.41 (CH), 123.95, 86.84 (CH), 82.16 (C), 79.97 (CH), 71.66 (CH), 71.31 (CH), 64.31 (CH₂), 43.98 (CH₂), 39.67 (CH₂), 28.20 ((CH₃)₃) ppm. *tert*-Butyl 3-((2*R*,3*R*,4*S*,5*R*)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2-oxo-2,3,4,7-tetrahydro-1*H*-1,3-diazepine-1-carboxylate (27).

To a solution of the protected nucleoside **26** (0.60 g, 0.91 mmol) in CHCl₃ (2 mL) placed in a pressure bottle was added a cold solution of 7 N NH₃ in MeOH (70 mL) and the resulting mixture was kept at room temperature for 24 h, occasionally shaking the reaction vessel. The reaction mixture was concentrated *in vacuo* and the residue was extracted with H₂O (50 mL) and the aqueous solution was repeatedly extracted with CHCl₃ (5 × 25 mL). The aqueous layer was filtered through a syringe filter and lyophilized to provide the de-protected nucleoside **27** (0.26 g, 84%) as an off-white solid.

¹**H NMR** (500 MHz, CDCl₃): δ 5.91–5.87 (m, 1H), 5.80–5.77 (m, 1H), 5.70 (d, *J* = 5.7 Hz, 1H, H-1'), 4.33 (d, *J* = 18.9 Hz, 1H), 4.16–4.11 (m, 3H), 4.03 (q, *J* = 3.5 Hz, 1H), 4.0–3.95 (m, 1H), 3.90 (dd, *J* = 17.3, 5.6 Hz, 1H), 3.80 (dd, *J* = 12.6, 3.4 Hz, 1H), 3.74 (dd, *J* = 12.6, 4.6 Hz, 1H), 1.49 (s, 9H) ppm.

¹³C NMR (126 MHz, CDCl₃,): δ 159.85, 153.70, 127.79, 123.50, 88.83, 84.30, 83.96, 71.53, 70.11, 61.35, 43.70, 39.67, 27.33 ppm.

tert-Butyl 3-((6a*R*,8*R*,9*R*,9a*S*)-9-hydroxy-2,2,4,4-tetraisopropyltetrahydro-6*H*-furo[3,2*f*][1,3,5,2,4]trioxadisilocin-8-yl)-2-oxo-2,3,4,7-tetrahydro-1*H*-1,3-diazepine-1-carboxylate (28).

The *N*-Boc protected diazepinone riboside **27** (0.26 g, 0.74 mmol) was dissolved in anhydrous pyridine (15 mL) and the solution was cooled to 0 °C using ice bath. TIPDS-Cl (0.31 mL, 0.96 mmol) was added dropwise. The resulting reaction mixture was stirred at 0 °C for 2 h, and then quenched with ice. The solvents were evaporated under reduced pressure to give a yellow oil. The residue was dissolved in EtOAc (50 mL) and washed with saturated aqueous NaHCO₃ solution and saturated aqueous NaCl solution. The organic portion was dried (Na₂SO₄), filtered, and concentrated in *vacuo* to give a yellow oil. This material was dissolved in a minimum volume of 10% EtOAc/hexanes and purified by flash column chromatography using a silica gel column (Biotage, 25 g, gradient elution with 0–30% EtOAc/hexanes) to provide 3,5-TIPDS-protected nucleoside **28** (0.38 g, 88%) as a white foamy solid. TLC: $R_f = 0.25$ (20% EtOAc/hexanes).

¹**H NMR** (500 MHz, CDCl₃): δ 5.77–5.73 (m, 1H), 5.72–5.68 (m, 1H), 5.55 (d, *J* = 2.7 Hz, 1H, H-1'), 4.39 (t, *J* = 13.5 Hz, 1H), 4.26 (br d, *J* = 18.8 Hz, 1H), 4.15 (br d, *J* = 19.7 Hz, 1H), 4.03–3.98 (m, 3H), 3.91–3.86 (m, 2H), 3.73 (q, *J* = 7.2 Hz, 1H), 1.47 (s, 9H), 1.11–1.02 (m, 28H) ppm.

¹³C NMR (126 MHz, CDCl₃,): δ 157.39 (C), 153.05 (C), 128.74 (CH), 124.17 (CH), 91.87 (CH), 82.00 (C), 81.58 (CH), 73.57 (CH), 70.95 (CH), 62.10 (CH₂), 43.75 (CH₂), 41.37 (CH₂), 28.34 ((CH₃)₃), 17.58, 17.49, 17.45, 17.43, 17.25, 17.11, 17.01, 13.50, 13.25, 12.94, 12.71 ppm.

tert-butyl 2-oxo-3-((6a*R*,8*R*,9*R*,9a*R*)-2,2,4,4-tetraisopropyl-9-((phenoxycarbonothioyl)oxy)tetrahydro-6*H*-furo[3,2-*f*][1,3,5,2,4]trioxadisilocin-8-yl)-2,3,4,7-tetrahydro-1*H*-1,3diazepine-1-carboxylate (29).

To a stirring solution of 3,5-TIPDS-protected riboside **28** (1.02 g, 1.74 mmol) in anhydrous CH₃CN (30 mL) at 0 °C was added DMAP (0.62 g, 5.10 mmol). After stirring the mixture under argon for 5 min, phenylthiochloroformate (0.45 g, 2.6 mmol) was added dropwise. The resulting reaction mixture was stirred at 0 °C for 15 min, warmed to room temperature and stirred for 6 h. After the reaction was complete, solvent was removed under reduced pressure. The residue was dissolved in EtOAc (100 mL) and washed with saturated aqueous NaHCO₃ solution (50 mL) and saturated aqueous NaCl solution (50 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was purified by flash column chromatography using a silica gel column (Biotage, 25 g, gradient elution with 0–50% EtOAc/hexanes) to provide intermediate **29** (1.16 g, 92%) as a yellow gum. TLC: $R_f = 0.40$ (20% EtOAc/hexanes).

¹**H NMR** (500 MHz, CDCl₃): δ 7.40 (t, *J* = 7.9 Hz, 2H), 7.28 (t, *J* = 7.4 Hz, 1H), 7.10 (d, *J* = 7.7 Hz, 2H), 5.86 (d, *J* = 1.7 Hz, 1H), 5.78 (dd, *J* = 5.9, 1.5 Hz, 1H), 5.80–5.71 (m, 2H, overlapping),

4.52 (dd, *J* = 8.7, 5.9 Hz, 1H), 4.31 (br d, *J* = 19.1 Hz, 1H), 4.15–4.11 (m, 2H), 4.01 (dd, *J* = 13.1, 2.7 Hz, 1H), 4.00–3.96 (m, 1H, overlapping), 3.88 (dt, *J* = 8.7, 2.5 Hz, 1H), 3.78 (dd, *J* = 16.9, 5.2 Hz, 1H), 1.47 (s, 9H), 1.12–1.05 (m, 28H) ppm.

¹³**C NMR** (126 MHz, CDCl₃,): *δ* 194.17 (C), 157.19 (C), 153.55 (C), 153.09 (C), 129.65 (2 × CH-Ph), 128.98 (CH-Ph), 126.74 (CH-Ph), 123.74 (CH-Ph), 121.93 (2 × CH-Ph), 89.21 (CH-1'), 83.61 CH-2'), 82.20 (C-*t*Bu), 81.10 (CH-4'), 69.42 (CH-3'), 60.28 (CH₂-5'), 43.77 (CH₂-7), 40.91 (CH₂-4), 28.36 (3 × CH₃-*t*Bu), 17.55, 17.48, 17.45, 17.41, 17.23, 17.19, 17.14, 17.02 (CH₃-TIPDS), 13.48, 13.15, 12.97, 12.90 (CH-TIPDS) ppm.

tert-Butyl 2-oxo-3-((6a*R*,8*R*,9a*S*)-2,2,4,4-tetraisopropyltetrahydro-6*H*-furo[3,2*f*][1,3,5,2,4]trioxadisilocin-8-yl)-2,3,4,7-tetrahydro-1*H*-1,3-diazepine-1-carboxylate (30).

To a solution of compound **29** (0.44 g, 0.68 mmol) in toluene (12 mL) were added AIBN (0.033 g, 0.20 mmol) and tributyltin hydride (0.32 mL, 1.19 mmol) at room temperature. The mixture was degassed using vacuum-argon fill cycles (5 ×) and then heated to 90 °C for 2 h. After cooling the reaction mixture to room temperature, solvent was removed under reduced pressure. The residue was purified by flash column chromatography using a silica gel column (Biotage, 25 g, gradient elution with 0–50% EtOAc/hexanes) to provide deoxygenated intermediate **30** (0.26 g, 66%) as a white foamy solid. TLC: $R_f = 0.66$ (20% EtOAc/hexanes).

¹**H NMR** (500 MHz, CDCl₃): δ 6.02 (dd, *J* = 7.8, 4.6 Hz, 1H, H-1'), 5.80–5.75 (m, 1H, H-5/6), 5.70–5.66 (m, 1H, H-5/6), 4.47 (q, *J* = 7.6 Hz, 1H, H-3'), 4.27–4.23 (m, 1H, H-4/7), 4.14–4.10 (m, 1H, H-4/7), 4.02 (dd, *J* = 12.4, 3.4 Hz, 1H, H-5'), 3.93 (dd, *J* = 12.4, 4.8 Hz, 1H, H-5'), 3.87–3.83 (m, 1H, H-4/7), 3.73 (dd, *J* = 16.8, 4.3 Hz, 1H, H4/7), 3.66 (ddd, *J* = 8.0, 4.7, 3.6 Hz, 1H, H-4'), 2.27 (ddd, *J* = 15.5, 13.6, 7.7 Hz, 1H, H-2'), 2.04 (ddd, *J* = 13.0, 8.0, 4.5 Hz, 1H, H-2'), 1.47 (s, 9H, *t*Bu), 1.10–1.01 (m, 28H, TIPDS) ppm.

¹³C NMR (126 MHz, CDCl₃,): δ 157.22 (C), 153.09 (C), 128.57 (CH-5/6), 124.47 (CH5/6), 84.13 (CH-4'), 83.96 (CH-1'), 81.95 (C-*t*Bu), 70.26 (CH-3'), 61.82 (CH₂-5'), 43.79 (CH₂-7), 39.35 (CH₂-4), 38.17 (CH₂-2'), 28.36 (3 × CH₃-*t*Bu), 17.62, 17.52, 17.49, 17.48, 17.21, 17.11, 17.01 (CH₃-TIPDS), 13.60, 13.31, 13.01, 12.65 (CH-TIPDS) ppm.

tert-Butyl 3-((2*R*,4*S*,5*R*)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2-oxo-2,3,4,7tetrahydro-1*H*-1,3-diazepine-1-carboxylate (31).

To a solution of the protected 2-deoxy nucleoside **30** (0.22 g, 0.38 mmol) in anhydrous THF (4 mL) was added $Et_3N^{\bullet}3HF$ (0.32 mL, 1.9 mmol) and Et_3N (0.13 mL, 0.77 mmol). The resulting reaction mixture was stirred at room temperature overnight. The solvents were evaporated under reduced pressure and coevaporated with toluene and then chloroform. The residue was dissolved in a minimum volume of CH_2Cl_2 and purified by flash column chromatography using a silica gel

column (Biotage, 10 g, gradient elution with 0–10% MeOH/CH₂Cl₂) to provide the TIPDS deprotected nucleoside **31** (0.13 g, ~95%) as a viscid solid (contains trace amounts of Et₃N-3HF). TLC: $R_f = 0.30$ (100% EtOAc).

¹H NMR (500 MHz, CDCl₃): δ 6.03 (t, J = 7.0 Hz, 1H), 5.83–5.78 (m, 1H), 5.70–5.66 (m, 1H),
4.45 (q, J = 5.0 Hz, 1H), 4.23 (br d, J = 18.8 Hz, 1H), 4.14 (br d, J = 19.0 Hz, 1H), 3.86 (q, J = 4.0 Hz, 1H), overlapping), 3.85–3.75 (m, 4H), 2.15–2.09 (m, 2H) ppm.

¹³C NMR (126 MHz, CDCl₃,): δ 157.59 (C), 153.04 (C), 128.50 (CH), 124.51 (CH), 86.33 (CH),
85.77 (CH), 82.07 (C), 71.54, 62.72 (CH₂), 43.88 (CH₂), 40.52 (CH₂), 38.15 (CH₂), 28.34 (CH₃)₃ ppm.

Copies of ¹H, ¹³C, DEPT-135, and ¹⁹F NMR spectra:

¹H NMR spectrum of compound 2 (500 MHz, CDCl₃)

¹³C NMR spectrum of compound 2 (126 MHz, CDCl₃)

¹H NMR spectrum of compound 3 (500 MHz, CDCl₃)

¹³C NMR spectrum of compound 3 (126 MHz, CDCl₃)

¹H NMR spectrum of compound 4 (500 MHz, DMSO-*d*₆)

¹³C NMR spectrum of compound 4 (126 MHz, DMSO-*d*₆)

¹H NMR spectrum of compound 10 (500 MHz, CDCl₃)

¹³C NMR spectrum of compound 10 (126 MHz, CDCl₃)

¹H NMR spectrum of compound 11 (500 MHz, D₂O)

¹³C NMR spectrum of compound 11 (126 MHz, D₂O)

¹H NMR spectrum of compound 14 (500 MHz, CDCl₃)

¹³C NMR spectrum of compound 14 (126 MHz, CDCl₃)

¹³C DEPT-135 NMR spectrum of compound 14 (126 MHz, CDCl₃)

¹H NMR spectrum of compound 15 (500 MHz, CDCl₃)

¹³C NMR spectrum of compound 15 (126 MHz, CDCl₃)

¹H NMR spectrum of compound 16 (500 MHz, D₂O)

¹H NMR spectrum of compound 16 (500 MHz, DMSO-*d*₆)

¹³C NMR spectrum of compound 16 (126 MHz, D₂O)

¹³C DEPT-135 NMR spectrum of compound 16 (126 MHz, D₂O)

¹H NMR spectrum of compound 17 (500 MHz, CDCl₃)

¹³C NMR spectrum of compound 17 (126 MHz, CDCl₃)

¹³C DEPT-135 NMR spectrum of compound 17 (126 MHz, CDCl₃)

¹H NMR spectrum of compound 18 (500 MHz, D₂O)

¹H NMR spectrum of compound 18 (500 MHz, DMSO-*d*₆)

¹³C NMR spectrum of compound 18 (126 MHz, D₂O)

¹³C DEPT-135 NMR spectrum of compound 18 (126 MHz, D₂O)

¹H NMR spectrum of compound 20 (500 MHz, CDCl₃)

¹³C NMR spectrum of compound 20 (126 MHz, CDCl₃)

¹³C DEPT-135 NMR spectrum of compound 20 (126 MHz, CDCl₃)

¹⁹F NMR spectrum of compound 20 (470 MHz, CDCl₃)

¹H NMR spectrum of compound 21 (500 MHz, D₂O)

¹³C NMR spectrum of compound 21 (126 MHz, D₂O)

¹³C DEPT-135 NMR spectrum of compound 21 (126 MHz, D₂O)

¹⁹F NMR spectrum of compound 21 (470 MHz, D₂O)

¹H NMR spectrum of compound 21 (500 MHz, DMSO-*d*₆)

¹³C NMR spectrum of compound 21 (126 MHz, DMSO-*d*₆)

¹³C DEPT-135 NMR spectrum of compound 21 (126 MHz, DMSO-*d*₆)

¹H NMR spectrum of compound 23 (500 MHz, CDCl₃)

¹³C NMR spectrum of compound 23 (126 MHz, CDCl₃)

¹³C DEPT-135 NMR spectrum of compound 23 (126 MHz, CDCl₃)

¹⁹F NMR spectrum of compound 23 (470 MHz, CDCl₃)

¹³C NMR spectrum of compound 25 (126 MHz, D₂O)

¹³C DEPT-135 NMR spectrum of compound 25 (126 MHz, D₂O)

¹H NMR spectrum of compound 25 (500 MHz, DMSO-*d*₆)

¹³C NMR spectrum of compound 25 (126 MHz, DMSO-*d*₆)

¹³C DEPT-135 NMR spectrum of compound 25 (126 MHz, DMSO-*d*₆)

¹⁹F NMR spectrum of compound 25 (470 MHz, DMSO-*d*₆)