

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202403245

Central Role of Hypothalamic Circuits for Acupuncture's Anti-Parkinsonian Effects

Ju-Young Oh, Hyowon Lee, Sun-Young Jang, Hyunjin Kim, Geunhong Park, Almas Serikov, Jae-Hwan Jang, Junyeop Kim, Seulkee Yang, Moonsun Sa, Sung Eun Lee, Young-Eun Han, Tae-Yeon Hwang, Sharon Jiyoon Jung, Hee Young Kim, Seung Eun Lee, Soo-Jin Oh, Jeongjin Kim, Jeongyeon Kim, Jongpil Kim, Thomas J. McHugh, C. Justin Lee, Min-Ho Nam* and Hi-Joon Park*

Supporting Information

Central role of hypothalamic circuits for acupuncture's anti-parkinsonian effects

Ju-Young Oh[†], Hyowon Lee[†], Sun-Young Jang, Hyunjin Kim, Geunhong Park, Almas Serikov, Jae-Hwan Jang, Junyeop Kim, Seulkee Yang, Moonsun Sa, Sung Eun Lee, Young-Eun Han, Tae-Yeon Hwang, Sharon Jiyoon Jung, Hee Young Kim, Seung Eun Lee, Soo-Jin Oh, Jeongjin Kim, Jeongyeon Kim, Jongpil Kim, Thomas J. McHugh, C. Justin Lee, Min-Ho Nam^{*}, Hi-Joon Park^{*}

Figure S1. Representative images of serially sectioned SNpc tissues stained with TH antibody and therapeutic effects of acupuncture starting after MPTP treatment. a) THpositive neurons from the rostral to the caudal portions of the SNpc. b) Timeline of experiments to investigate the therapeutic effect of acupuncture which started after MPTP administration (post-ACU). c-f) Assessment of motor and memory functions. Post-ACU treatment for one week after induction of the MPTP model has a therapeutic effect for motor dysfunction (Oneway ANOVA, n = 10 per group; for rotarod: $F_{2,27} = 66.2$, p < 0.001; for cylinder: $F_{2,27} = 29.6$, P < 0.001; post-hoc Tukey's test: ****p < 0.001, **p < 0.01, *p < 0.05) and memory impairment (Kruskal-Wallis ANOVA for Y-maze, n = 10 per group: $H_3 = 9.547$, P = 0.008; One-way ANOVA for NOR, n = 10 per group: $F_{2,27} = 14.1$, p < 0.001; post-hoc Tukey's test: ***p < 0.001, *p < 0.01, *p < 0.05, NS, not significant). g) Representative images of TH expression in SNpc and striatum in MPTP model with or without post-ACU. h,i) Quantification of the number of TH-positive neurons and optical density of striatal TH expression. Post-ACU treatment partially but significantly restored the expression of TH level in the SNpc and striatum (H, Kruskal-Wallis ANOVA for SNpc, n = 10 per group: $H_3 = 20.20$, p < 0.001; I, One-way ANOVA for striatum, n = 10 per group: $F_{2,27} = 69.7$, p < 0.001; post-hoc Tukey's test: ***p <0.001, **p < 0.01, *p < 0.05). Data are shown as mean \pm SEM.

Figure S2. The trans-synaptic retrograde labeling for visualization of neural pathways from hindlimb acupoint GB34 to the LH/ZI. a) Schematic diagram depicting the injection strategy with double retrograde PRVs. PRV-CMV-RFP and PRV-CMV-EGFP were injected into the GB34 and LH, respectively. b) Representative immunofluoresent image demonstrating the PRV-EGFP infection in the LH c) Representative confocal images of DRG (L3 to L5) demonstrating double labeled neurons with PRV-RFP and PRV-EGFP. d) Left, the representative confocal image of pMCH-immunoreactivity and EGFP which is expressed by AAV_{DJ}-pMCH-EGFP-cre virus injection into the mouse LH. Right, Quantification of coexpression of pMCH-EGFP-cre and pMCH (N = 4 mice, n = 416 cells) reveals that EGFP expression was specifically restricted to pMCH-immunolabeled neurons (91.8%, n = 335 cells). e) GRIN lens position and GCaMP6f expression in the LH. f) Top, a representative trace of Ca²⁺ signal of a pMCH neuron upon various acupuncture stimulations. Bottom, heatmaps displaying Ca²⁺ signal of each pMCH neuron and averaged traces of Ca²⁺ signal of pMCH neurons. g) Quantification of Ca²⁺ peak displayed by a scatter plot. The peak Ca²⁺ signals were significantly increased only by the acupuncture treatment at right GB34. (Kruskal-Wallis ANOVA, n = 11 per group; $H_5 = 16.23$, p = 0.003; post-hoc Dunnett's test: **p < 0.01, *p < 0.05, NS, not significant). Data are shown as mean \pm SEM.

Figure S3. Activation of MCH neurons alleviates parkinsonian motor and memory deficits in two different PD mouse models. a) Electrophysiological validation of hM4Di. Top, cell-attached patch clamp recording of spontaneous action potential before and after bath application of CNO (5 μM). Bottom, current clamp recording of action potential induced by current injection (+20 pA). b) Electrophysiological validation of hM3Dq. Top, current clamp recording of spontaneous firing. Bottom, current clamp recording of action potential induced by current injection (+20 pA). c) Schematic diagram depicting viral strategy for testing chemogenetic approach in A53T model. d) Experimental timeline of chemogenetic activation of MCH neurons in A53T model. e-h) Assessment of motor and memory function by rotarod test, adhesive removal test, Y-maze test, and novel object recognition test. Chemogenetic activation of pMCHLH/ZI neurons alleviated the motor dysfunction (e,f; Kruskal-Wallis ANOVA for rotarod: $H_4 = 17.92$, p < 0.001; One-way ANOVA for removal adhesive: $F_{3,36} =$ 10.4, P < 0.001; post-hoc Tukey's test: ***p < 0.001, **p < 0.05) and memory deficits (g,h; One-way ANOVA; for Y-maze: $F_{3,35} = 12.7$, p < 0.001; for NOR: $F_{3,35} = 8.10$, p < 0.001; post-hoc Tukey's test: ***p < 0.001, **p < 0.01, *p < 0.05) in A53T model. i, Representative images of TH staining in the SNpc and striatum. j,k) Quantification of the number of THpositive neurons and optical density of striatal TH expression. The number of TH-positive cells

in the SNpc and the optical density of TH-positive dopaminergic fibers in the striatum were restored by chemogenetic activation of pMCH^{LH/ZI} neurons in the A53T model (One-way ANOVA; for SNpc: $F_{3, 24} = 17.5$, p < 0.001; for striatum: $F_{3, 25} = 46.4$, p < 0.001; post-hoc Tukey's test: ***p < 0.001). 1) Timeline of experiments for MPTP model. m,n) Acupuncture and chemogenetic activation of MCH neurons reverses MPTP-induced body weight loss at day 5 (Kruskal-Wallis ANOVA; for day 5: $H_5 = 26.60$, p < 0.001; for day 12: $H_5 = 20.42$, p < 0.001; post-hoc Tukey's test: ***p < 0.001, **p < 0.01, **p < 0.05). Data are shown as mean \pm SEM.

Figure S4. Anatomical analysis of MCH neuronal projections and Intrinsic electrophysiological properties of MCH^{LH/ZI→SNpc} and MCH^{LH→HPC} neurons. a) Three-dimensional rendering of a cleared mouse brain showing brain-wide injection patterns of MCH neurons labeled by tdTomato and EGFP (SNpc neurons) in the Ai14 (Rosa26-Stop-tdTomato) mouse. b) SNpc neurons (EGFP) co-expressed with axons of MCH neurons projected from LH (tdTomato) in the SNpc. The merged image is displayed in Figure 4b (middle). c-e) Confocal images of striatum (ST), insular cortex (IC), anterior cingulate cortex (ACC), motor cortex (MC), hippocampus (HPC), substantia nigra pars compacta (SNpc), dorsal raphe nucleus (DRN) in the mice of tdTomato-labeling within MCH^{LH/ZI} neurons (c), MCH^{LH/ZI→SNpc} neurons (d), and MCH^{LH→HPC} neurons (e).

Figure S5. MCH neuronal projections are originated from discrete neuronal subpopulations. a) Lattice-SIM image of synaptophysin::mRuby near the TH-positive neurons in the SNpc. b) Membrane capacitance (two-tailed unpaired t-test, n = 10 per group; $t_{18} = 3.053$, p = 0.007). c) Resting membrane potential (two-tailed unpaired t-test, n = 10 per group; $t_{18} = 1.303$, p = 0.2088). d) AP amplitude (two-tailed unpaired t-test, n = 10 per group; $t_{18} = 1.819$, p = 0.0856). e) AP threshold AP half-width (two-tailed unpaired t-test, n = 10 per group; $t_{18} = 0.8436$, p = 0.4100). f) After-hyperpolarization peak (two-tailed unpaired t-test, n = 10 per group; $t_{18} = 1.960$, p = 0.0657). Data are shown as mean \pm SEM.

Figure S6. Functional connection of the discrete neural projections of MCH neurons from LH and ZI to SNpc and HPC. a,e) Schematic diagram of $ex\ vivo\ Ca^{2+}$ imaging of SNpc dopaminergic neurons (a) and CA1 hippocampal pyramidal neurons (e) upon hM3Dq-mediated chemogenetic activation of MCH^{LH/ZI} neurons. b,f) Representative images of GCaMP6f expression in SNpc (b) and CA1 HPC (f). c,g) Ca²⁺ signal traces of SNpc dopaminergic neurons (c) and CA1 hippocampal pyramidal neurons (g). d,h) Quantification of Ca²⁺ peak upon chemogenetic activation of MCH neurons in each region (two-tailed unpaired t-test; SNpc, n = 10 per group, $t_{18} = 4.593$, p < 0.001; CA1, n = 101 per group, $t_{200} = 21.52$, p < 0.001).

Figure S7. MCHR1 gene-silencing blocks the acupuncture effect. a) Representative images of TH expression in the SNpc and striatum. b) Numbers of TH-positive dopaminergic neurons in the SNpc (One-way ANOVA, n = 6 per group: $F_{5,30} = 78.9$, p = 0.855; post-hoc Tukey's test: ***p < 0.001, NS, not significant). c) Quantification of optical density of striatal TH (One-way ANOVA, n = 6 per group: $F_{5,30} = 32.4$, p = 0.962; post-hoc Tukey's test: ***p < 0.001, NS, not significant). d) Representative fluorescent images of HEK293T cells displaying the expression of shRNA candidates (mCherry) and the reduced expression of MCHR1 full clone (GFP) 24 h after co-transfection of MCHR1 full clone and the shRNA candidates. e) Top, in vitro knockdown efficiency of MCHR1-shRNA candidates. Relative levels of MCHR1 mRNA expression were quantified by normalizing with GAPDH mRNA. Knockdown efficacy was most pronounced by transfection with shRNA3, showing ~79% decrease compared to Scram non-knockdown control. Bottom, the target sequences of shRNA candidates. f-i) In vivo

knockdown efficiency of MCHR1-shRNA3 in SNpc and HPC, validated by immunohistochemistry. Compared with the Scrambled shRNA, shRNA significantly reduced the intensity of MCHR1 expression in the SNpc (h) and HPC (i) (two-tailed unpaired t-test, n=6 per group; for SNpc: $t_{10}=7.782$; p<0.0001; for HPC: $t_{10}=13.07$; p<0.0001). j) Schematic diagram of the location of the AAV_{DJ}-pSicoR-MCHR1sh-mCherry virus injection in the SNpc and HPC. k) Timeline of experiments for *in vivo* gene-silencing of MCHR1 in the MPTP model. l) Representative images of TH staining in the SNpc and striatum. m,n) Quantification of the number of TH-positive neurons and optical density of striatal TH expression. The number of TH-positive cells in SNpc and the optical density of TH-positive dopaminergic fibers in the striatum were significantly blocked by MCHR1 gene-silencing in the SNpc, but less by gene-silencing in the HPC (One-way ANOVA; for SNpc: $F_{5,47}=35.0$, p<0.001; for striatum: $F_{5,50}=89.5$, p<0.001; *post-hoc* Tukey's test: ****p<0.001, ***p<0.001. Data are shown as mean \pm SEM.

Figure S8. Transcriptomic change in the SNpc by acupuncture or chemogenetic activation of MCH neurons in MPTP model mice. A) Schematic diagram of SNpc tissue preparation for RNA-seq. B) Volcano plot displaying the transcriptomic differences in the SNpc between MPTP and Naïve (left), between MPTP and ACU (middle), and MPTP and hM3Dq groups (right). Upregulated DEGs are marked in red, while downregulated DEGs are marked in blue. DEGs were defined with the criteria of $p_{adj} < 0.05$ and |FC| > 1.5. c) Top 25 upregulated and downregulated SNpc DEGs by MPTP treatment with the highest statistical significance. DEGs were identified by three criteria: $p_{adj} < 0.05$, $|FC| \ge 1.5$, and FPKM (in any group) > 1.0. d) Top 25 downregulated and upregulated SNpc DEGs by acupuncture treatment in MPTP model with the highest statistical significance. E) Top 25 downregulated and upregulated SNpc DEGs by hM3Dq-mediated chemogenetic activation of MCH neurons in MPTP model with the highest statistical significance. F-h) Heatmap showing enriched genes in specific cell types such as DA neurons (f), reactive astrocytes (g), and microglia (h) in the SNpc.

Figure S9. GO analysis of SNpc DEGs. A) Venn diagrams depicting the intersection of upregulated DEGs by MPTP (MPTP-up) and downregulated DEGs by either acupuncture or hM3Dq-mediated activation (ACU-down or hM3Dq-down). B) Top 20 gene ontology (GO) terms analyzed from the intersection of MPTP-up, ACU-down, and hM3Dq-down (marked in orange in (a)) with the highest statistical significance. c) Venn diagrams depicting the intersection of downregulated DEGs by MPTP (MPTP-down) and upregulated DEGs by either acupuncture or hM3Dq-mediated activation (ACU-up or hM3Dq-up). Note that many of the terms are related to the cellular reaction upon neuroinflammation. d) Top 20 gene ontology (GO) terms analyzed from the intersection of MPTP-down, ACU-up, and hM3Dq-up (marked in violet in (c)) with the highest statistical significance. Note that many of the terms are related to the synthesis, transport, signaling, and secretion of amine neurotransmitter (especially, dopamine). e-g) mRNA expressions of MAP2 (e), TUJ-1 (f), and GAP43 (g) assessed by RT-qPCR at 5 days after treatment of MCH along with MPP⁺ (One-way ANOVA; for MAP2: $F_{3,8} = 51.49$, p < 0.001; for TUJ-1: $F_{3,8} = 26.63$, p = 0.321; for GAP43: $F_{3,8} = 14.55$, p = 0.8207; post-hoc Tukey's test: ***p < 0.001, **p < 0.01, **p < 0.05. Data are shown as mean \pm SEM.

Figure S10. Transcriptomic change in the HPC by acupuncture or chemogenetic activation of MCH neurons in MPTP model mice. a) Schematic diagram of HPC tissue preparation for RNA-seq. b) Volcano plot displaying the transcriptomic differences in the hippocampus between MPTP and Naïve (left), between MPTP 8 and ACU (middle), and MPTP and hM3Dq groups (right). DEGs were defined with the criteria of p < 0.05 and |FC| > 1.5. c) Top 25 upregulated and downregulated hippocampal DEGs by MPTP treatment with the highest statistical significance. DEGs were identified by three criteria: p < 0.05, $|FC| \ge 1.5$, and FPKM (in any group) > 1.0. d) Top 25 downregulated and upregulated hippocampal DEGs by acupuncture treatment in MPTP model with the highest statistical significance. e) Top 25 downregulated and upregulated hippocampal DEGs by hM3Dq-mediated chemogenetic activation of MCH neurons in MPTP model with the highest statistical significance. f-h) Heatmap showing enriched genes in specific cell types such as glutamatergic synapses (f), reactive astrocytes (g), and microglia (h).

Figure S11. GO analysis of HPC DEGs. a) Venn diagrams depicting the intersection of upregulated DEGs by MPTP (MPTP-up) and downregulated DEGs by either acupuncture or hM3Dq-mediated activation (ACU-down or hM3Dq-down). b) Venn diagrams depicting the intersection of downregulated DEGs by MPTP (MPTP-down) and upregulated DEGs by either acupuncture or hM3Dq-mediated activation (ACU-up or hM3Dq-up). c) Top 20 gene ontology (GO) terms analyzed from the intersection of MPTP-up, ACU-down, and hM3Dq-down (marked in orange in (a)) with the highest statistical significance. Due to the small number of genes in the intersection of MPTP-down, ACU-up, and hM3Dq-up (marked in violet in (b)), GO analysis was not available.

Figure S12. Schematic diagram of the mechanism underlying the acupuncture effect on motor and non-motor symptoms in the PD mouse model. Acupuncture stimulation at a hindlimb acupoint GB34 activates the sensory afferents which are connected to the LH/ZI, leading to activation of MCH neurons in the LH and ZI (MCH^{LH/ZI} neurons). Likewise, chemogenetic activation of the sensory afferents at GB34 activates the MCH^{LH/ZI} neurons. MCH^{LH/ZI} neurons project to HPC and SNpc which originate from distinct subpopulations. Activation of MCH^{LH→HPC} projections results in enhancement of hippocampal synaptic plasticity which causes memory improvement in the PD mouse model. On the other hand, activation of MCH^{LH/ZI→SNpc} projections exerts a strong anti-inflammatory effect through MCHR1-dependent manner, causing the protection of nigrostriatal DA neurons and improving the motor function in the PD mouse model. In summary, activations of MCH^{LH→HPC} and MCH^{LH/ZI→SNpc} projections are critical for alleviating the memory and motor dysfunction by acupuncture, respectively. Image was created with Biorender.com.

Table S1. The detailed information about statistical analyses.

Figure No.	Result from statistical analysis
Figure No.	Naïve (397.2 \pm 8.3, n = 16), MPTP (179.3 \pm 17.0, n = 16), MPTP+ACU (367.7 \pm 13.1, n = 16)
Figure 46	MPTP+Lido+ACU (222.8 ± 17.2, n = 12), SCNx+MPTP+ACU (39.2 ± 12.6, n = 5), MPTP+nonACU (164
	± 10.8, n = 10)
Figure 1f	The data were not normally distributed.
	Kruskal-Wallis ANOVA test with Dunn's multiple comparison test
	H (6) = 59.65, p < 0.001
Figure 1g	Naïve (24.8 ± 1.5, n = 18), MPTP (6.7 ± 0.7, n = 18), MPTP+ACU (21.7 ± 0.9, n = 18), MPTP+Lido+AC
	(8.3 \pm 0.9, n = 14), SCNx+MPTP+ACU (5.6 \pm 1.0, n = 8), MPTP+nonACU (5.9 \pm 1.0, n = 14) One-way ANOVA with Tukey's multiple comparisons test
	F (5, 84) = 70.56, p < 0.001
	Naïve (9.5 \pm 0.2, n = 14), MPTP (5.4 \pm 0.2, n = 14), MPTP+ACU (8.8 \pm 0.3, n = 14), MPTP+Lido+AC
Eiguro 1i	$(5.7 \pm 0.2, n = 10)$, SCNx+MPTP+ACU $(5.3 \pm 0.2, n = 10)$, MPTP+nonACU $(5.5 \pm 0.3, n = 11)$
Figure 1i	One-way ANOVA with Tukey's multiple comparisons test
	F (5, 67) = 54.91, p < 0.001
	Naïve (39.0 ± 1.6, n = 14), MPTP (19.5 ± 1.4, n = 14), MPTP+ACU (33.2 ± 1.3, n = 14), MPTP+Lido+AC
Figure 1j	(22.6 \pm 1.3, n = 10), SCNx+MPTP+ACU (21.3 \pm 1.3, n = 10), MPTP+nonACU (19.1 \pm 1.0, n = 16) One-way ANOVA with Tukey's multiple comparisons test
	F (5, 72) = 41.20, p < 0.001
	Naïve (72.5 ± 3.3, n = 11), MPTP (49.3 ± 3.0, n = 11), MPTP+ACU (69.5 ± 3.6, n = 11), MPTP+Lido+AC
Fig 414	(41.3 ± 2.7, n = 11), SCNx+MPTP+ACU (34.9 ± 3.7, n = 11), MPTP+nonACU (44.9 ± 3.3, n = 11)
Figure 1k	One-way ANOVA with Tukey's multiple comparisons test
	F (5, 60) = 25.49, p < 0.001
	Naïve (73.6 ± 2.8, n = 11), MPTP (46.7 ± 3.0, n = 11), MPTP+ACU (70.6 ± 3.1, n = 11), MPTP+Lido+AC
Figure 1I	$(43.8 \pm 2.8, n = 11)$, SCNx+MPTP+ACU $(37.4 \pm 3.6, n = 11)$, MPTP+nonACU $(44.8 \pm 2.8, n = 11)$ One-way ANOVA with Tukey's multiple comparisons test
	F (5, 48) = 18.93, p < 0.001
	Rt. ACU (5.0 ± 0.5, n = 11), Rt. nonACU (1.5 ± 0.4, n = 11), Lido + Rt. AU (1.7 ± 0.4, n = 11)
Figure 0.	Repeated-Measure one-way ANOVA with Dunnett's multiple comparisons test (compared with Rt. AC
Figure 2e	group)
	F (2, 20) = 18.92, p < 0.001
Figure 2i	CTL (14.45 ± 1.4, n = 3), CNO (26.90 ± 1.9, n=4)
9	Unpaired t test, p < 0.001
	Naïve (423.1 \pm 13.0, n = 19), MPTP (83.3 \pm 13.6, n = 15), MPTP+ACU (331.6 \pm 19.0, n = 9 MPTP+hM4Di+ACU (61.2 \pm 7.6, n = 13), MPTP+hM3Dq (355.2 \pm 18.4, n = 21)
Figure 3b	One-way ANOVA with Tukey's multiple comparisons test
	F (4, 72) = 112.8, p < 0.001
	Naïve (19.8 ± 1.2, n = 19), MPTP (3.8 ± 0.8, n = 15), MPTP+ACU (21.1 ± 1.4, n = 9), MPTP+hM4Di+AC
Figure 3c	(3.9 ± 0.4, n = 13), MPTP+hM3Dq (22.7 ± 1.8, n = 21)
rigure 30	One-way ANOVA with Tukey's multiple comparisons test
	F (4, 72) = 47.05, p < 0.001
	Naïve $(8.5 \pm 0.3, n = 11)$, MPTP $(5.2 \pm 0.3, n = 11)$, MPTP+ACU $(8.6 \pm 0.2, n = 11)$, MPTP+hM4Di+AC $(5.0 \pm 0.2, n = 11)$, MPTP+hM3Dq $(8.4 \pm 0.5, n = 11)$
Figure 3e	The data were not normally distributed.
i iguio co	Kruskal-Wallis ANOVA test with a Dunn's multiple comparison test, p < 0.001
	H (5) = 37.32, p < 0.001
	Naïve (32.7 \pm 0.5, n = 10), MPTP (13.4 \pm 0.5, n = 15), MPTP+ACU (26.9 \pm 0.8, n = 12
Figure 3f	MPTP+hM4Di+ACU (13.3 \pm 0.7, n = 12), MPTP+hM3Dq (28.7 \pm 0.9, n = 10)
ga	One-way ANOVA with Tukey's multiple comparisons test
	F $(4, 54) = 177, p < 0.001$ Naïve $(75.1 \pm 2.1, n = 19)$, MPTP $(42.7 \pm 3.0, n = 15)$, MPTP+ACU $(75.6 \pm 3.4, n = 9)$
	MPTP+hM4Di+ACU (34.3 ± 2.1, n = 13), MPTP+hM3Dq (74.0 ± 1.8, n = 21)
Figure 3g	One-way ANOVA with Tukey's multiple comparisons test
	F (4, 72) = 73.2, p < 0.001
	Naïve (74.7 ± 1.3, n = 19), MPTP (35.3 ± 3.3, n = 17), MPTP+ACU (72.3 ± 1.7, n = 9
Figure 3h	MPTP+hM4Di+ACU (33.9 \pm 3.3, n = 15), MPTP+hM3Dq (69.9 \pm 1.7, n = 23)
9	One-way ANOVA with Tukey's multiple comparisons test
	F (4, 78) = 72.45, p < 0.001 Naïve (168.7 ± 12.9, n = 10), MPTP (101.8 ± 9.2, n = 10), MPTP+ACU (183.7 ± 22.4, n = 10)
	MPTP+hM4Di+ACU (99.2 ± 16.2, n = 10), MPTP+hM3Dq (175.9 ± 25.6, n = 10)
Figure 3j	One-way ANOVA with Tukey's multiple comparisons test
	F (4, 45) = 5.213, p = 0.0015
	Multiple unpaired two-tailed t-test
	-2.6 mm: Ventromedial (16.2 \pm 0.8, n = 6), Dorsolateral (8.9 \pm 1.4, n = 6), p = 0.001088
Figure 4e	-2.8 mm: Ventromedial (16.0 ± 1.9, n = 6), Dorsolateral (12.1 ± 1.5, n = 6), p = 0.140115
	-3.0 mm: Ventromedial (13.9 ± 2.4, n = 6), Dorsolateral (11.2 ± 2.0, n = 6), p = 0.404874 -3.2 mm: Ventromedial (16.5 ± 2.6, n = 6), Dorsolateral (10.3 ± 1.3, n = 6), p = 0.060982
	-3.2 mm: Ventromedial (10.3 \pm 2.0, H = 0), Dorsolateral (10.3 \pm 1.3, H = 0), p = 0.000982 -3.4 mm: Ventromedial (17.0 \pm 0.8, n = 6), Dorsolateral (10.3 \pm 1.1, n = 6), p = 0.000603
	-3.6 mm: Ventromedial (10.2 \pm 1.5, n = 6), Dorsolateral (12.4 \pm 2.1, n = 6), p = 0.416505
	-3.8 mm: Ventromedial (13.6 ± 1.9, n = 6), Dorsolateral (9.9 ± 1.5 n = 6), p = 0.160308
Figure 4k	mCherry* (-33.4 ± 1.6, n = 10), GFP* (-28.9 ± 0.8, n = 10)
i iguie 4k	Unpaired two-tailed t-test, p = 0.023
Figure 4I	Multiple unpaired two-tailed t-test
J "	-120 pA: mCherry* $(0.0 \pm 0.0, n = 10)$, GFP* $(0.0 \pm 0.0, n = 10)$, p = 0.135

	-100 pA: mCherry ⁺ (0.0 \pm 0.0, n = 10), GFP ⁺ (0.0 \pm 0.0, n = 10), p = 0.135				
	-80 pA: mCherry ⁺ (0.0 \pm 0.0, n = 10), GFP ⁺ (0.0 \pm 0.0, n = 10), p = 0.135				
	-60 pA: mCherry ⁺ (0.0 \pm 0.0, n = 10), GFP ⁺ (0.0 \pm 0.0, n = 10), p = 0.135				
	-40 pA: mCherry ⁺ (0.0 ± 0.0, n = 10), GFP ⁺ (0.0 ± 0.0, n = 10), p = 0.135 -20 pA: mCherry ⁺ (0.0 ± 0.0, n = 10), GFP ⁺ (0.0 ± 0.0, n = 10), p = 0.135				
	0 pA: mCherry $(0.6 \pm 0.4, n = 10)$, GFP $(0.1 \pm 0.1, n = 10)$, p = 0.133				
	20 pA: mCherry ⁺ (6.2 ± 2.3, n = 10), GFP ⁺ (2.3 ± 1.1, n = 10), p = 0.141				
	40 pA: mCherry ⁺ (10.9 ± 3.9, n = 10), GFP ⁺ (5.6 ± 1.8, n = 10), p = 0.233				
	60 pA: mCherry* (15.2 ± 5.2, n = 10), GFP* (8.7 ± 2.9, n = 10), p = 0.294				
	80 pA: mCherry* (18.4 ± 5.6, n = 10), GFP* (10.7 ± 3.8, n = 10), p = 0.271				
	100 pA: mCherry ⁺ (21.7 ± 5.8, n = 10), GFP ⁺ (12.6 ± 4.5, n = 10), p = 0.230				
	120 pA: mCherry ⁺ (21.9 ± 5.4, n = 10), GFP ⁺ (13.8 ± 5.0, n = 10), p = 0.286				
	140 pA: mCherry ⁺ (24.5 ± 5.6, n = 10), GFP ⁺ (14.3 ± 5.0, n = 10), p = 0.190				
	160 pA: mCherry ⁺ (26.4 ± 5.8, n = 10), GFP ⁺ (11.7 ± 4.1, n = 10), p = 0.054				
	180 pA: mCherry $^+$ (27.3 ± 6.0, n = 10), GFP $^+$ (8.4 ± 2.9, n = 10), p = 0.010 200 pA: mCherry $^+$ (29.3 ± 6.5, n = 10), GFP $^+$ (6.7 ± 2.3, n = 10), p = 0.004				
	220 pA: mCherry ⁺ (30.4 \pm 7.0, n = 10), GFP ⁺ (5.6 \pm 1.7, n = 10), p = 0.003				
	mCherry ⁺ (-120, 3.1 \pm 0.8, n = 10; -100, 3.0 \pm 1.0, n = 10; -80, 2.9 \pm 1.0, n = 10; -60, 2.7 \pm 1.0, n = 10; -				
	$40, 2.0 \pm 1.1, n = 10; -20, 1.4 \pm 1.0, n = 10; 0, 0.1 \pm 0.1, n = 10; 20, 0.0 \pm 0.0, n = 10; 40, 0.0, n = $				
	10, 60, 0.0 ± 0.0 , $n = 10$, 80, 0.0 ± 0.0 , $n = 10$; 100, 0.0 ± 0.0 , $n = 10$; 120, 0.0 ± 0.0 , $n = 10$; 140, 0.0 ± 0.0				
	0.0, n = 10; 160, 0.0 \pm 0.0, n = 10; 180, 0.0 \pm 0.0, n = 10; 200, 0.0 \pm 0.0, n = 10; 220, 0.0 \pm 0.0, n = 10),				
	GFP ⁺ (-120, 1.1 \pm 0.4, n = 10; -100, 0.9 \pm 0.3, n = 10; -80, 0.8 \pm 0.3, n = 10; -60, 0.5 \pm 0.2, n = 10; -40,				
Figure 4m	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
	$60, 0.0 \pm 0.0, n = 10; 80, 0.0 \pm 0.0, n = 10; 100, 0.0 \pm 0.0, n = 10; 120, 0.0 \pm 0.0, n = 10; 140, 0.0, n $				
	n = 10; 160, 0.0 ± 0.0, $n = 10$; 180, 0.0 ± 0.0, $n = 10$; 200, 0.0 ± 0.0, $n = 10$; 220, 0.0 ± 0.0, $n = 10$)				
	Two-way ANOVA with Sidak's multiple comparisons test				
	Interaction, F (17, 306) = 3.604, p < 0.0001; Injected currents, F (1.235, 22.22) = 10.33, p = 0.0025;				
	Neuron subtype, F (1, 18) = 3.997, p = 0.0609 Naïve (398.7 ± 19.0, n = 13), MPTP (25.2 ± 3.9, n = 14), MPTP+ACU (370.2 ± 18.7, n = 11),				
	MPTP+hM4Di+ACU (48.4 ± 7.5, n = 9), MPTP+hM3Dq (215.9 ± 16.8, n = 8)				
Figure 5b	One-way ANOVA with Tukey's multiple comparisons test				
	F (4, 50) = 156, p < 0.001				
	Naïve (17.9 ± 1.5, n = 16), MPTP (4.8 ± 0.3, n = 14), MPTP+ACU (17.2 ± 0.5, n = 11),				
Figure 5c	MPTP+hM4Di+ACU (6.6 ± 0.6, n = 9), MPTP+hM3Dq (18.8 ± 0.9, n = 8)				
1 iguic oo	One-way ANOVA with Tukey's multiple comparisons test				
	F (4, 53) = 46.08, p < 0.001				
	Naïve (79.0 ± 1.9, n = 16), MPTP (35.1 ± 3.0, n = 13), MPTP+ACU (80.6 ± 2.1, n = 11),				
Figure 5d	MPTP+hM4Di+ACU (66.8 ± 2.9, n = 9), MPTP+hM3Dq (34.3 ± 3.7, n = 8)				
	One-way ANOVA with Tukey's multiple comparisons test F (4, 52) = 72.8, p < 0.001				
	Naïve (70.2 \pm 2.4, n = 16), MPTP (35.5 \pm 3.1, n = 19), MPTP+ACU (69.5 \pm 2.4, n = 11),				
F: F.	MPTP+hM4Di+ACU (57.5 ± 1.2, n = 9), MPTP+hM3Dq (38.1 ± 2.5, n = 8)				
Figure 5e	One-way ANOVA with Tukey's multiple comparisons test				
	F (4, 58) = 39.11, p < 0.001				
	Naïve $(9.2 \pm 0.4, n = 10)$, MPTP $(5.6 \pm 0.2, n = 10)$, MPTP+ACU $(9.2 \pm 0.4, n = 10)$, MPTP+hM4Di+ACU				
Figure 5g	$(5.9 \pm 0.4, n = 9), MPTP+hM3Dq (8.2 \pm 0.3, n = 7)$				
1.99	One-way ANOVA with Tukey's multiple comparisons test				
	F (4, 41) = 28.7 , p < 0.001 Naïve (32.2 ± 0.6, n = 10), MPTP (16.4 ± 0.8, n = 10), MPTP+ACU (28.0 ± 0.8, n = 10),				
	Naive (32.2 \pm 0.6, 11 - 10), MPTP (16.4 \pm 0.6, 11 - 10), MPTP+ACO (28.0 \pm 0.6, 11 - 10), MPTP+hM4Di+ACU (15.7 \pm 0.6, n = 9), MPTP+hM3Dq (24.7 \pm 0.9, n = 7)				
Figure 5h	One-way ANOVA with Tukey's multiple comparisons test				
	F (4, 41) = 99.9, p < 0.001				
	Naïve (384.3 \pm 19.0, n = 16), MPTP (61.6 \pm 12.5, n = 14), MPTP+ACU (336.0 \pm 24.9, n = 11),				
Figure 5	MPTP+hM4Di+ACU (199.4 ± 17.9, n = 10), MPTP+hM3Dq (45.4 ± 8.0, n = 10)				
Figure 5j	One-way ANOVA with Tukey's multiple comparisons test				
	F (4, 56) = 79.68, p < 0.001				
	Naïve (20.3 \pm 0.8, n = 16), MPTP (4.6 \pm 0.5, n = 14), MPTP+ACU (17.5 \pm 0.7, n = 11),				
Figure 5k	MPTP+hM4Di+ACU (14.2 ± 0.6, n = 10), MPTP+hM3Dq (8.5 ± 1.2, n = 10)				
	One-way ANOVA with Tukey's multiple comparisons test				
	F $(4, 56) = 82.8, p < 0.001$ Naïve $(76.3 \pm 2.6, n = 16), MPTP (34.1 \pm 1.8, n = 14), MPTP+ACU (77.6 \pm 2.0, n = 11),$				
	MPTP+hM4Di+ACU (44.8 \pm 2.4, n = 10), MPTP+hM3Dq (67.4 \pm 4.1, n = 10)				
Figure 5I	One-way ANOVA with Tukey's multiple comparisons test				
	F (4, 56) = 60.4, p < 0.001				
	Naïve (73.3 \pm 1.3, n = 16), MPTP (38.1 \pm 3.1, n = 15), MPTP+ACU (74.2 \pm 1.5, n = 11),				
Figure 5m	MPTP+hM4Di+ACU (39.8 ± 2.1, n = 10), MPTP+hM3Dq (70.0 ± 2.4, n = 10)				
i igui e Sili	One-way ANOVA with Tukey's multiple comparisons test				
	F (4, 57) = 67.9, p < 0.001				
	Naïve (8.5 ± 0.3, n = 11), MPTP (4.7 ± 0.2, n = 12), MPTP+ACU (7.3 ± 0.3, n = 8), MPTP+hM4Di+ACU				
Fig. 7 -	$(5.6 \pm 0.3, n = 10)$, MPTP+hM3Dq $(4.8 \pm 0.2, n = 10)$				
Figure 5o	The data were not normally distributed. Kruskal Wallis ANOVA test with a Dupp's multiple comparison test, p < 0.001				
	Kruskal-Wallis ANOVA test with a Dunn's multiple comparison test, p < 0.001 H (5) = 35.89, p < 0.001				
	Naïve (34.2 \pm 0.5, n = 11), MPTP (16.0 \pm 0.7, n = 12), MPTP+ACU (28.2 \pm 1.2, n = 8),				
Figure 5p	MPTP+hM4Di+ACU (20.0 \pm 1.2, n = 10), MPTP+hM3Dq (19.3 \pm 0.9, n = 10)				
, iguic op	One-way ANOVA with Tukey's multiple comparisons test				
	, , , , , , , , , , , , , , , , , , , ,				

	F (4, 46) = 74.4, p < 0.001
	Naïve (430.8 ± 18.2, n = 6), MPTP (142.7 ± 15.8, n = 6), MPTP+ACU (355.7 ± 25.2, n = 6), MPTP+MC
Figure 6b	(274.7 ± 52.2, n = 6), MPTP+7c+ACU (182.5 ± 26.2, n = 6), MPTP+7c (166.8 ± 29.5, n = 6)
	One-way ANOVA with Tukey's multiple comparisons test F (5, 30) = 14.6, p < 0.001
	Naïve (14.7 \pm 1.2, n = 6), MPTP (3.0 \pm 1.0, n = 6), MPTP+ACU (12.3 \pm 1.0, n = 6), MPTP+MCH (9.0
Figure 6c	1.4, $n = 6$), MPTP+7c+ACU (6.2 \pm 1.0, $n = 6$), MPTP+7c (3.0 \pm 0.7, $n = 6$)
rigure oc	One-way ANOVA with Tukey's multiple comparisons test
	F (5, 30) = 19.8, p < 0.001 Naïve (75.4 ± 3.8, n = 6), MPTP (50.5 ± 2.1, n = 6), MPTP+ACU (70.8 ± 1.7, n = 6), MPTP+MCH (62)
	± 2.5 , n = 6), MPTP+7c+ACU (52.5 ± 3.3 , n = 6), MPTP+7c (46.8 ± 6.9 , n = 6)
Figure 6d	The data were not normally distributed.
	Kruskal-Wallis ANOVA test with a Dunn's multiple comparison test, p < 0.001
	H (6) = 25.46, p < 0.001 Naïve (75.7 ± 3.4, n = 6), MPTP (42.3 ± 5.3, n = 6), MPTP+ACU (70.0 ± 2.5, n = 6), MPTP+MCH (65
	± 3.0, n = 6), MPTP+7c+ACU (51.6 ± 2.0, n = 6), MPTP+7c (45.9 ± 4.2, n = 6)
Figure 6e	The data were not normally distributed.
	Kruskal-Wallis ANOVA test with a Dunn's multiple comparison test, p < 0.001
	H (6) = 28.31, p < 0.001 Naïve (361.9 ± 11.5, n = 13), MPTP (96.3 ± 7.6, n = 16), MPTP+ACU+shScr (SNpc) (321.6 ± 18.9, n
	8), MPTP+ACU+shMCHR1 (SNpc) (189.4 ± 21.9, n = 8), MPTP+ACU+shScr (HPC) (350.4 ± 14.6, n
Figure 6g	8), MPTP+ACU+shMCHR1 (HPC) (339.0 ± 13.8, n = 8)
	One-way ANOVA with Tukey's multiple comparisons test
	F (5, 55) = 79.2, p < 0.001 Naïve (25.2 ± 1.1, n = 13), MPTP (11.4 ± 0.8, n = 15), MPTP+ACU+shScr (SNpc) (22.8 ± 1.0, n = 9)
	MPTP+ACU+shMCHR1 (SNpc) (16.4 ± 1.1, n = 9), MPTP+ACU+shScr (HPC) (26.1 ± 0.9, n = 8
Figure 6h	MPTP+ACU+shMCHR1 (HPC) (24.4 ± 1.4, n = 8)
	One-way ANOVA with Tukey's multiple comparisons test
	F (5, 56) = 38.2, p < 0.001 Naïve (78.5 ± 1.5, n = 13), MPTP (57.3 ± 1.8, n = 16), MPTP+ACU+shScr (SNpc) (71.5 ± 2.7, n = 8
	MPTP+ACU+shMCHR1 (SNpc) (62.4 ± 4.5, n = 9), MPTP+ACU+shScr (HPC) (75.2 ± 1.9, n = 8
Figure 6i	MPTP+ACU+shMCHR1 (HPC) (59.1 ± 3.8, n = 8)
rigule of	The data were not normally distributed.
	Kruskal-Wallis ANOVA test with a Dunn's multiple comparison test, p < 0.001 H (6) = 37.75, p < 0.001
	Naïve (79.6 ± 3.1%, n = 13), MPTP (49.5 ± 3.1, n = 16), MPTP+ACU+shScr (SNpc) (73.4 ± 5.8, n = 8
	MPTP+ACU+shMCHR1 (SNpc) (60.7 ± 4.3, n = 9), MPTP+ACU+shScr (HPC) (77.3 ± 2.8, n = 8
Figure 6j	MPTP+ACU+shMCHR1 (HPC) (56.5 ± 2.4, n = 8)
	One-way ANOVA with Tukey's multiple comparisons test F (5, 56) = 14.2, p < 0.001
	Control (90.3 \pm 4.4, n = 6), MPP ⁺ (23.8 \pm 3.9, n = 6), Control+MCH (91.8 \pm 5.4%, n = 6), MPP ⁺ +MC
Figure 7e	$(54.8 \pm 4.2, n = 6)$
riguic re	One-way ANOVA with Tukey's multiple comparisons test
	F (3, 20) = 51.42 , p < 0.001 Control (98.0 ± 3.8, n = 6), MPP ⁺ (23.0 ± 3.4, n = 6), Control+MCH (95.3 ± 6.2, n = 6), MPP ⁺ +MCH (55.4)
F: 76	± 3.8, n = 6)
Figure 7f	One-way ANOVA with Tukey's multiple comparisons test
	F (3, 20) = 65.05, p < 0.001
	Control $(0.9 \pm 0.0, n = 3)$, MPP+ $(0.7 \pm 0.0\%, n = 3)$, Control+MCH $(1.1 \pm 0.0, n = 3)$, MPP++MCH $(1.0 \pm 0.0, n = 3)$
Figure 7g	One-way ANOVA with Tukey's multiple comparisons test
	F (3, 8) = 39.27, p < 0.001
	Naïve (760.5 \pm 43.3, n = 85), MPTP (1457.6 \pm 209.4, n = 23), MPTP+ACU (467.2 \pm 23.4, n = 85)
Figure 7i	MPTP+hM3Dq (582.7 ± 41.8, n = 44) One-way ANOVA with Tukey's multiple comparisons test
	F (3, 237) = 34.6, p < 0.001
	Naïve (125.0 \pm 12.3, n = 79), MPTP (550.1 \pm 91.7, n = 23), MPTP+ACU (121.9 \pm 10.6, n = 89
Figure 7j	MPTP+hM3Dq (223.6 \pm 25.3, n = 44)
i igaio i j	One-way ANOVA with Tukey's multiple comparisons test F (3, 231) = 39.82, p < 0.001
	Naïve (474.7 \pm 30.9, n = 42), MPTP (885.4 \pm 54.2, n = 39), MPTP+ACU (631.5 \pm 35.7, n = 46
	MPTP+hM3Dq (622.9 ± 34.1, n = 42)
Figure 7k	The data were not normally distributed.
	Kruskal-Wallis ANOVA test with Dunn's multiple comparison test
	H(4) = 40.60, p < 0.001 Naïve (82.8 ± 8.1, n = 42), MPTP (320.2 ± 18.8, n = 39), MPTP+ACU (125.2 ± 9.7, n = 100)
	MPTP+hM3Dq (206.6 ± 17.9, n = 42)
Figure7I	The data were not normally distributed.
	Kruskal-Wallis ANOVA test with Dunn's multiple comparison test
	H (4) = 83.21, p < 0.001 Two-way ANOVA with Tukey's multiple comparisons test
Figure 7n	Interaction, F (42,1935) = 7.716, p < 0.001; Radius, F (14, 1935) = 328.4, p < 0.001; Group, F (3, 193
	= 110.6, p < 0.001
Figure 7o	Naïve (19.7 ± 1.3, n = 26), MPTP (40.3 ± 2.8, n = 34), MPTP+ACU (23.0 ± 1.3, n = 36), MPTP+hM3E
J · •	(20.1 ± 1.1, n = 40)

	The data were not normally distributed. Kruskal-Wallis ANOVA test with Dunn's multiple comparison test H (4) = 52.46, p < 0.001
Figure 7p	Naïve $(2.4 \pm 0.8, n = 28)$, MPTP $(5.8 \pm 2.9, n = 36)$, MPTP+ACU $(2.6 \pm 0.9, n = 38)$, MPTP+hM3Dq $(2.9 \pm 1.2, n = 42)$ The data were not normally distributed. Kruskal-Wallis ANOVA test with Dunn's multiple comparison test H $(4) = 20.82, p < 0.001$
Figure 7t	Naïve (138.8 \pm 12.2, n = 5), MPP+ (95.1 \pm 7.4, n = 5), MPTP+MCH100 (127.2 \pm 19.7, n = 5), MPTP+MCH200 (158.1 \pm 18.3, n = 5) One-way ANOVA with Tukey's multiple comparisons test F (3, 16) = 3.016, p = 0.0607

Table S2. The detailed information about virus titers, volumes, and total amount for each experiment.

Virus	Figure	Titer (GC/ml)	Volume (µI)	Total amount (GC)
AAV _{DJ} -pMCH-cre	2 c, g / 3 a / 4 a, f / 7 h / S2 a, b, d, e / S3 a, b, I / S8 a / S9 a /S1 a / S2 a	5.7x10^13	1.5	8.55x10^10
PRV-CAG-EGFP	2 a / S2 a, b	3.0x10^9	1.5	4.5x10^6
PRV-CAG-RFP	S2 a	3.0x10^9	1.5	4.5x10^6
AAV _{DJ} -hSyn-EGFP	4 a	9.17x10^12	1.5	1.38x10^10
AAV _{retro} -hSyn-DIO- mCherry	4 f	2.23x10^13	1.5	3.35x10^10
AAV _{retro} -hSyn-DIO-EGFP	4 f	1.8x10^13	1.5	2.7x10^10
AAV-pMCH-EGFP-cre	S2 b / S3 c / S4 c / S6 a, e / S2 d	5.96x10^13	1.5	8.94x10^10
AAV _{DJ} -hSyn-DIO-hM3Dq- mCherry	3 a / 5 a, f, k, o / 7 h / S3 b, c, l / S4 d / S4 e / S5 b / S6 a, e / S8 a / S9 a /S1 a	8.77x10^12	1.5	1.32x10^10
AAV-DDC-cre	S6 a	8.9x10^13	1.5	1.34x10^11
AAV _{DJ} -hSyn-DIO-hM4Di- mCherry	3 a / 5 a, f, k, o / S3 a, I / S5 b /S1 a	1.66x10^13	1.5	2.49x10^10
AAV _{retro} -pMCH-EGFP-cre	5 a, f, k, o / S4 d, e / S5 b	8.71x10^13	1.5	1.31x10^11
AAV _{DJ} -pSicoR- MCHR1sh-mCherry	6 f / S7 f, j	2.31x10^13	1.5	3.47x10^10
AAV _{DJ} -pSicoR-scr- shRNA-mCherry	6 f / S7 f, j	4.8x10^13	1.5	7.2x10^10
AAV _{retro} -hSyn-hM3Dq- mCherry	2 g	3.53x10^13	1.5	5.3x10^10
AAV _{DJ} -CMV-A53T-SNCA	S3 c	2.42x10^13	1.5	3.63x10^10
AAV ₅ -hSYn-DIO- synpatophysin-mRuby	4 c / S5 a	7.88x10^12	1.5	1.18x10^13

Table S3. Sequences of oligonucleotides.

5'-GCA CAA GGA GTG TCT CCT ACA-3'
5'-GCA ACG TCC CTG ACA TCT TCA-3'
5'-GCC TCA ATC CCT TTG TGT ACA-3'
AGG TCT ACA CCA CGC TGA AG
TAC TGG GTG CAC TGG AAC AC
CTG GCA CCC CAC CAA GTT AT
CTT CAG GTC TGG CAG TGG TT
CCG ATG GGG TGG AGA AGA AG
GGA GGA CGG CGA GTT ATC AG
CAA CGA GGC CTC TTC TCA CA
CAG GCA GTC GCA GTT TTC AC