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I. PAULI TWIRLING

Within the theory of the paper we made the simplify-
ing assumption of Pauli noise. This assumption is not
given in general. Suppose a Clifford quantum circuit
layer U(·) = U · U† on n qubits and its noisy version

Ũ = U ◦ Λ. A more realistic description of the noise is
given by

Λ(ρ) =
∑
i

AiρA
†
i , (1)

where the Ai are Kraus operators [1], which leads to

Ũ(ρ) =
∑
i

AiUρU†A†
i . (2)

Applying Pauli twirling [2–4], i.e., averaging over U con-
jugated by each element of the Pauli group on n qubits
yields

Ũtwirled(ρ) =
1

4n

∑
i,j

QjAiUPjρPjU
†A†

iQj , (3)

for Paulis Pj , Qj with QjUPj = U for all j = 1, . . . , 4n.
This is known to translate the more general noise given
in (2) on average to a Pauli noise model as given in Main-
Eq. 1. In practice, we do not enumerate all 4n Paulis, but
uniformly sample from them and apply a certain number
of random Paulis to approximate the average.

Suppose now we have a noise model that-on average-
looks like Pauli noise. Then, expectation values tr(ρH)
will have the same value in case of a true Pauli noise
model as well as in case of a twirled general model. That
also holds if we set H = |x⟩⟨x|, i.e., we evaluate the prob-
ability of sampling |x⟩. If we estimate the same sam-
pling probability for the actual Pauli noise model and
the twirled noise model, then the sampling probabilities
also must be the same.

II. PROBABILISTIC ERROR CANCELLATION
& SAMPLING

In this section, we discuss how applying PEC [5] to
quantum circuits affects the resulting sampling probabil-
ities. PEC consists of two steps: learning the noise when
running a quantum circuit on a particular quantum de-
vice, and then, mitigating the noise to get an unbiased
estimator of an expectation value. Here, we assume we
have learned the noise already and focus on the error
mitigation. Given a noise model Λ, PEC constructs a
Quasiprobability Decomposition (QPD) to implement the
inverse noise by combining multiple weighted quantum
circuits.

In a QPD, a quantum operation U is implemented as
a linear combination of other (possibly noisy) operations
Ei, i = 1, . . . ,M ,

U(·) =

M∑
i=1

aiEi(·) , (4)

where ai ∈ R, U(X) = UXU†, Ei denote (noisy) op-

erations, and
∑M

i=1 ai = 1. This has been proposed in
the context of error mitigation [6], where U is assumed
to be a noise-free operation and Ei are noisy operations
that can be implemented on a noisy device. If this is
being applied to multiple gates and qubits, the number
of necessary operations M explodes exponentially. Thus,
instead of enumerating all of them, one rewrites (4) as

U(·) = γ

M∑
i=1

pisiEi(·) , (5)

where γ = ∥a∥1 ≥ 1, pi = |ai|/γ, and si = sign(ai),
and samples from the probability distribution defined
through pi. Suppose we are interested in estimating
⟨H⟩ = tr(U(ρ)H) for some initial state ρ and observable
H. Then, we can use the QPD to write

tr(U(ρ)H) = γ

M∑
i=1

pisi tr(Ei(ρ)H). (6)

Thus, instead of enumerating all M circuits, we can sam-
ple from pi, and only evaluate the sampled circuits cor-
responding to i, to get an unbiased estimator for ⟨H⟩.
However, the variance of this estimation is amplified by
γ2, i.e., γ2-times more samples are needed than for the
original noise-free circuit to achieve an estimate of the
same accuracy. The sampling overhead γ2 grows expo-
nentially in the number of qubits and depth of the circuit,
and thus, can be prohibitively large for circuits beyond a
certain circuit size and noise levels.
While PEC has only been considered for the estima-

tion of expectation values, it also generates samples from
every random circuit that is measured. However, we
will show that this essentially amplifies the noise and
increases the sampling overhead compared to the results
presented within this paper. To this extent, we introduce
the following mixed state introduced by PEC:

ρPEC =

M∑
i=1

piEi(ρ), (7)

for some initial state ρ. The state ρPEC is achieved by
dropping the factor γ as well as the signs si from (5).
This allows us to state the following lemma.

Lemma 1. Suppose a n-qubit state ρ = U |0⟩⟨0|U†, where
U is some unitary, with

tr(ρ|x⟩⟨x|) = px ≥ 0, (8)

for a computational basis state |x⟩, x ∈ {0, 1}n.
Further, suppose that U can be error-mitigated on a

noisy device by using PEC with corresponding γ ≥ 1
and denote the resulting mixed state introduced in (7)
by ρPEC. Then, the probability of measuring |x⟩ on the
noisy devices using PEC is lower bounded by

tr(ρPEC|x⟩⟨x|) = pPEC
x ≥ px/γ. (9)
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Proof. Consider the QPD resulting from PEC

U(·) =
M∑
i=1

aiEi(·) . (10)

Using (10) we can write

px = tr(ρ|x⟩⟨x|) =
M∑
i=1

ai tr(Ei(|0⟩⟨0|)|x⟩⟨x|) . (11)

By defining γ = ∥a∥1, pi = |ai|/γ, and si = sign(ai), we
can rewrite (11) as

px = γ

M∑
i=1

pisi tr(Ei(|0⟩⟨0|)|x⟩⟨x|) . (12)

Further, si tr(Ei(|0⟩⟨0|)|x⟩⟨x|) allows us to define a ran-
dom variable Yi ∈ {−1, 0,+1} that equals ±1 if we
measure Ei(|0⟩⟨0|) and obtain |x⟩, where the sign is de-
termined by si, and 0 otherwise. The random vari-
able Yi satisfies E[Yi] = si tr(Ei(|0⟩⟨0|)|x⟩⟨x|). We de-
note the probabilities of Yi taking the values −1, 0,+1
by q−1

i , q0i , q
+1
i ≥ 0, respectively. Note that by construc-

tion, for each i only one of q−1
i , q+1

i can be larger than
zero.

In addition, let the probabilities pi define a random
variable I ∈ {1, . . . ,M}. Then, by the law of total ex-
pectation, we get

γE[YI ] = γ

M∑
i=1

E[Yi|i]P[i] (13)

= γ

M∑
i=1

pisi tr(Ei(|0⟩⟨0|)|x⟩⟨x|) (14)

= px . (15)

This can be rewritten as

M∑
i=1

pi
(
q+1
i − q−1

i

)
=

px
γ

. (16)

The total probability to measure |x⟩ when applying
PEC, independent of the sign of YI , is then given by

M∑
i=1

pi
(
q+1
i + q−1

i

)
≥ px

γ
, (17)

where the lower bound follows immediately from (16),
and the right-hand-side is exactly the probability of mea-
suring |x⟩ for state ρPEC.

If we compare the result from Lemma 1 with the lower
bound presented in Main-Eq. 2, we see that PEC im-
plies the squared overhead compared to direct sampling.
Further, this implies that CVaR-based approaches may
substantially reduce the overhead to achieve insightful
results, particularly when combined with problem struc-
ture to filter noisy samples.

III. VARIANCE OF ESTIMATING THE CVAR

In this section, we present a short exposition on how to
estimate CVaR. We will first state the following lemma.

Lemma 2. Let X1, . . . , Xn be i.i.d. copies of X (with X
integrable) and let X(1), . . . , X(n) be their order statistic.
For α ∈ (0, 1] let En = (X(1)+· · ·+X(⌊αn⌋))/⌊αn⌋. Then

E[En] → CVaRα(X) as n → ∞ .

If X is square integrable and FX(xα) = α,
√
n(En − CVaRα(X)) → N(0,CVaRvα(X))

in distribution as n → ∞ where here CVaRvα(X) :=
α−1 Var[X | X ≤ xα] is the limiting variance.

To estimate CVaRα(X), we use the estimator En =
(X(n−⌊αn⌋+1) + · · · + X(n))/⌊αn⌋ and obtain analogous
results.

Proof. Recall FX(x) = P[X ≤ x] and define FX(x−) =
P[X < x]. We make the following definitions for (left
limits) of empirical cumulative distribution functions:

F̂n(x) = #{i ≤ n : Xi ≤ x}/n ,

F̂n(x−) = #{i ≤ n : Xi < x}/n .

Also let ∆FX(x) = FX(x) − FX(x−) and ∆F̂n(x) =

F̂n(x)− F̂n(x−). The key observation is that

En =
1

⌊αn⌋

n∑
i=1

Xi min

{
(⌊αn⌋ − nF̂n(Xi−))+

n∆F̂n(Xi)
, 1

}
.

Indeed, any x ∈ R will appear in the sum defining
⌊αn⌋En precisely min{(⌊αn⌋ − nF̂n(x−))+, n∆F̂n(x)}
times; the n∆F̂n(Xi) in the denominator above takes
care of overcounting. Now

E[En] =
n

⌊αn⌋
E

[
X1 min

{
(⌊αn⌋ − nF̂n(X1−))+

n∆F̂n(X1)
, 1

}]
=

n

⌊αn⌋
E [An(X1)]

where

An(x) := xE

[
min

{
(⌊αn⌋ − nF̂n−1(x−))+

1 + n∆F̂n−1(x)
, 1

}]
.

The first equality above follows from the linearity of
the expectation and the i.i.d. property of X1, . . . , Xn

and the second equality follows from conditioning on
X1. Using the strong law of large numbers we have
(F̂n(x), F̂n(x−),∆F̂n(x)) → (FX(x), FX(x−),∆FX(x))
a.s. as n → ∞. By separately considering the ∆FX(x) =
0 and ∆FX(x) > 0 cases we get

An(x) → x · 1(FX(x) < α)

+ x
α− FX(x−)

∆FX(x)
1(α ∈ (FX(x−), FX(x)))
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as n → ∞ unless α = FX(x) = FX(x−); however we have
P[α = FX(X1) = FX(X1−)] = 0 so this case does not
matter to evaluate the limit of E[En]. Thus by dominated
convergence

E[En] → α−1E[X1 | FX(X1) < α]

+
∑

x : α∈(FX(x−),FX(x))

x(1− α−1FX(x−))

= CVaRα(X)

as n → ∞. The second claim on the central limit theorem
is a special case of [7].

Let us make the following remark on monotonicity: If
ϕ : R → R is non-decreasing and ϕ(X) is integrable, then

0 ≥ E[(ϕ(X)− ϕ(X ′))(1(X ≤ x)− 1(X ′ ≤ x))]

= 2 · E[ϕ(X) | X ≤ x]− 2 · E[ϕ(X)]P[X ≤ x] .

By applying this to ϕ(x) = x and x = xα we see that
CVaRα(X) ≤ E[X]. Furthermore, by replacing X by a
random variable sampled from the law of X conditioned
on X ≤ xα′ for α′ > α we can deduce that CVaRα(X) is
non-decreasing in α. Much more crudely, we can bound
CVaRvα(X) ≤ α−1E[X2]/P[X ≤ xα] ≤ E[X2]/α2.

In the following, we analyze behavior of the limiting
distribution of the estimator En in some concrete cases.

In the case where X has a Bernoulli distribution with
success probability p, we observe that En has the same
distribution as min{Bn/⌊αn⌋, 1} where Bn is Binomial
distributed with parameter (n, p). An application of the
central limit theorem thus yields

√
n(En −min{p/α, 1})

→


α−1

√
p(1− p)N : α > p√

(1− p)p−1 N · 1(N ≥ 0) : α = p,

0 : α < p .

in distribution as n → ∞ where N is a standard normal
random variable.

To analyze the case whereN ∼ N(0, 1), it will be useful
to recall the following asymptotic expansion [8, (8.11(i))]
of incomplete Gamma functions:

Γ(a, y) :=

∫ ∞

y

sa−1e−s ds

= ya−1e−y

(
n−1∑
k=0

(a− 1) · · · (a− k)

yk
+O(y−n)

)

as y → ∞ for any fixed n ≥ 1 and a > 0. In particular
as x → ∞,

Γ(1/2, x2/2)√
2

=
e−x2/2

x

(
1− 1

x2
+

3

x4
+O(x−6)

)
,

√
2

Γ(1/2, x2/2)
= xex

2/2

(
1 +

1

x2
− 2

x4
+O(x−6)

)
.

Let xα = F−1
N (α) and write fN = F ′

N for the density of
N . By [8, (7.17(iii))] we get the asymptotic relationship

xα ∼ −
√
− log(4πα2 log(1/(2α)))

as α → 0. We will compute CVaRα(N) and CVaRvα(N)
via the cumulant generating function ϕ of a truncated
Gaussian

ϕ(θ) = logE[eθN | N ≤ xα]

= − logFN (xα) + log

∫ xα

−∞

e−t2/2+θt

√
2π

dt

= − logFN (xα) + log

∫ xα

−∞

e−(t−θ)2/2+θ2/2

√
2π

dt

= − logFN (xα) + θ2/2 + logFN (xα − θ).

Differentiating at θ = 0 yields the expressions

CVaRα(N) = ϕ′(0) = − 1

α
fN (xα),

αCVaRvα(N) = ϕ′′(0) = 1 +
1

α
f ′
N (xα)−

1

α2
fN (xα)

2

= 1− 1

α
xαfN (xα)−

1

α2
fN (xα)

2.

Since α = FN (xα) = Γ(1/2, x2
α/2)/(2

√
π), it follows that

as α → 0,

CVaRα(N) = xα

(
1 +

1

x2
α

− 2

x2
α

+O(x−6
α )

)
,

CVaRvα(N) =
1

α
+

x2
α

α

(
1 +

1

x2
α

− 2

x2
α

+O(x−6
α )

)
− x2

α

α

(
1 +

1

x2
α

− 2

x2
α

+O(x−6
α )

)2

=
1

αx2
α

+O(x−4
α ).

As a final example, we can consider the case where X has
density fX(x) = βx−1−β1(x ≥ 1) where β > 0 (i.e., we
consider a power law tail). Here, one can compute that
for β > 2, CVaRvα(X) = β(β − 1)−2(β − 2)−1α−2/β

which is worse than the decay in the standard normal
case and achieves the worst case upper bound on the
variance in the β → 2 limit.

IV. RELATION TO BRUTE-FORCE SEARCH

A brute-force search enumerates all 2n candidate so-
lutions and checks which one is optimal. The sampling
overhead of

√
γ on noisy devices can thus be related to

brute-force search thereby allowing us to derive a hard-
ware requirements for QAOA. Assuming, for simplicity,
that the probability px to sample the optimal solution is
close to 1 we require hardware with

√
γ < 2n. We can

relate this to the layer fidelity to obtain a requirement
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SUPPLEMENTARY FIG. 1: Fidelity estimates on 100
qubits: (top) Ideal results from noise-free simulation,
raw fidelity estimates using only M3 readout error

mitigation, and the CVaR upper bounds and
corresponding 95% confidence intervals (shaded area).
(bottom) Difference between CVaR upper bounds and

ideal noise-free results and corresponding 95%
confidence intervals (shaded area).

on hardware quality necessary for potential quantum ad-
vantage. First, we assume that each layer i in a QAOA
circuit has the same layer fidelity LF = 1/

√
γi. As a

result the γ of the circuit is γ =
∏d(n)

i=1 γi = 1/LF2d(n)

where d(n) is the depth defined as the number of non-
overlapping two-qubit gate layers. This assumption is
reasonable when transpiling QAOA circuits to a line of
qubits which requires layers of CNOT gates applied on
every other edge [9]. Therefore, the sampling cost to com-

pensate for noise is 1/LFd(n). For a line of qubits we may
assume that to leading order d(n) ∼ 3np. The factor 3n
comes from the fact that n− 2 layers of SWAP gates are
needed to implement full connectivity and each SWAP
merged with an RZZ is implemented with three CNOT
gates. Here, p is the number of QAOA layers which is
sometimes assumed to grow with the logarithm of prob-
lem size, i.e., p ∝ log(n) [9, 10]. If the sampling overhead
should stay below brute-force search we therefore require
LF−3np < 2n which implies that the layer fidelity must
satisfy

LF >
1

21/3p
. (18)

This requirement is only dependent on problem size
through the relation between p and n. However, the
layer fidelity decreases with the number of qubits in the
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SUPPLEMENTARY FIG. 2: Fidelity fit on 100 qubits:
(top) Ideal results from noise-free simulation, raw
fidelity estimates using only M3 readout error
mitigation, and the fitted CVaR values and

corresponding 95% confidence intervals (shaded area).
(bottom) Difference between fitted CVaR values and

ideal noise-free results and corresponding 95%
confidence intervals (shaded area).

layer [11]. If we further assume that layers are dense,
i.e., every layer on n qubits consists of approximately n/2
CNOT gates, we can compute a corresponding CNOT fi-

delity as LF2/n, as well as the corresponding lower bound

LF2/n >
1

22/3pn
. (19)

V. 100-QUBIT FIDELITY ESTIMATION

In this section, we report the results of the 100-qubit
fidelity estimation experiments. The setup is almost the
same as in Main-Sec. ‘Experiments - Fidelity Estima-
tion’ except for the number of shots used and the dis-
cretization of δ. Instead of 20,000 shots per data point,
we use 100,000 shots per data point. We discretize δ be-
tween -0.1 and +0.1 with steps of 0.01. Since the circuits
are larger, the resulting layer fidelities are smaller and
have been estimated as 0.4620 (even) and 0.4220 (odd),
respectively. This implies α = 0.00144 and an EPLG of
0.01638. Thus, the sampling overhead for CVaR is given
by

√
γ = 692.4 while the sampling overhead for PEC

would be given by γ2 = 2.30 × 1011. This implies that
running PEC would require more than 108 times more
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samples, which is clearly impractical. The hardware re-
sults are shown in Supplementary Fig. 1. The results
show again a nice agreement between theory and exper-
iment, although the confidence intervals get larger due
to the increased sampling overhead. To further reduce
the width of the confidence intervals, we would have to
further increase the number of samples.

Fitting the CVaR to the data by adjusting α leads to
α = 0.00295 and an effective EPLG of 0.01461. The re-
sults are shown in Supplementary Fig. 2. This provides
a very close approximation of the fidelity with substan-
tially smaller overhead than PEC and may be used as a
building block in the aforementioned algorithms.

VI. 40-QUBIT QAOA CIRCUITS

The 40-qubit circuits in the main texts are based on
those by Sack and Egger [12]. In this work, the authors
consider random three-regular graphs transpiled to a line
of qubits using a swap network [9]. This results in cir-
cuits that alternate only two types of layers of CNOT
gates as described in the main text. Furthermore, the
authors carefully chose the decision variable to physical

qubit mapping to minimize the number of layers of the
swap network as described by Matsuo et al. [13]. The op-
timal parameters resulting from the light-cone optimiza-
tion are given by (γ1, β1) = (2.8405, 0.3982) for p = 1
and (γ1, β1, γ2, β2) = (1.1506, 0.3288, 0.1941, 0.6582) for
p = 2, respectively.

VII. 127-QUBIT QAOA CIRCUITS

Supplementary Fig. 3 shows an example of the consid-
ered random higher-order Ising model. In Supplemen-
tary Fig. 4, taken from Refs. [14, 15], we briefly discuss
the optimized circuits for the 127-qubit higher-order in-
stances to have a self-contained description. This illus-
trates that all 2-qubit gates needed for the implementa-
tion of e−iγH can be scheduled in just 3 different layers
of non-overlapping CNOT gates. In each QAOA round
p, each layer is used once to compute and once to uncom-
pute ZZ and ZZZ parity values, for an overall CNOT
depth of 6p. The exact values of the heuristically com-
puted, using parameter transfer, QAOA angles that give
a strictly increasing expectation value as p increases up
to 5 are given by Pelofske et al. [16].
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SUPPLEMENTARY FIG. 4: From Refs. [14, 15]: Diagram of a heavy-hex graph compatible p = 1 QAOA circuit
for sampling heavy-hex compatible higher-order Ising models (specifically cubic terms centered on degree 2 nodes).
Left hand side of the figure shows the 3-edge-coloring and the bipartition of the graph, and the cubic terms are
denoted by the adjacent purple lines next to the hardware graph. The right hand side of the figure shows the

corresponding QAOA circuit for this sub-component of the heavy-hex graph (which can be extended arbitrarily to a
large heavy-hex graph, and to higher p). The cubic terms are addressed by a single layer of Rx rotation gates

(shown in purple), and the total CNOT depth per p is always 6. Following the phase separator, the transverse field
mixer is applied and then the state of all qubits are measured after p rounds have been applied.
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[16] E. Pelofske, A. Bärtschi, L. Cincio, J. Golden, and S. Ei-
denbenz. Scaling Whole-Chip QAOA for Higher-Order
Ising Spin Glass Models on Heavy-Hex Graphs, 2023.
DOI: 10.48550/arXiv.2312.00997.

https://dlmf.nist.gov/
https://dlmf.nist.gov/
https://dlmf.nist.gov/
http://dx.doi.org/10.22331/q-2022-12-07-870
http://dx.doi.org/10.1103/PhysRevLett.125.260505
http://dx.doi.org/10.48550/arXiv.2311.05933
http://dx.doi.org/10.1103/physrevresearch.6.013223
http://dx.doi.org/10.1587/transfun.2022eap1159
http://dx.doi.org/10.1007/978-3-031-32041-5_13
http://dx.doi.org/10.1038/s41534-024-00825-w
http://dx.doi.org/10.48550/arXiv.2312.00997

	Pauli Twirling
	Probabilistic Error Cancellation & Sampling
	Variance of Estimating the CVaR
	Relation to brute-force search
	100-qubit Fidelity Estimation
	40-qubit QAOA Circuits
	127-qubit QAOA Circuits
	References

