
Supplementary data 1. Derivation of objective
functions

1.1 Laplace approximation

Given a complex integral of the form
∫
f(x)dx, where f(·) is a twice-differentiable

function, f(x) can be re-expressed as g(x) = log f(x), such that
∫
f(x)dx =∫

exp g(x)dx. Consider the second-order Taylor series expansion of g(x) around
a point xz0:

g(x) ≈ g(x0) + g′(x0)(x− x0) +
1

2
g′′(x0)(x− x0)

2 (s1)

If we set x0 to be the mode of g(x) the second term becomes zero (since
g′(x0) = 0). We thus obtain the following approximation of the integral:∫

f(x)dx ≈
∫

exp(g(x0) +
1

2
g′′(x0)(x− x0)

2)dx (s2)

Since exp g(x0) = f(x0) is a constant, we can move it out of the integral to
obtain:

∫
exp(g(x0) +

1

2
g′′(x0)(x− x0)

2)dx = f(x0) ·
∫

exp(
1

2
g′′(x0)(x− x0)

2)dx

= f(x0) ·

√
2π

−g′′(x0)
(s3)

The second term in the last equation originates from integration of the prob-
ability density function of a normal distribution:∫

p(X)dx =
1

σ
√
2π

·
∫

exp

(
− 1

2σ
(x− µ)2

)
dx = 1 (s4)

From Eq. s4 we can see that σ ·
√
2π =

∫
exp

(
− 1

2σ (x− µ)2
)
. If we set

σ = −g′′(x0)
−1 we recover the second term in Eq. s3. The Laplace approxima-

tion thus results in a Gaussian approximation around the model of the random
effects: ∫

f(x)dx ≈ f(x0) ·

√
2π

−g′′(x0)
(s5)

In the context of non-linear mixed effects models this results in the following
objective function after simplification:

L(Θ, η̂) = p(y | η̂; Θ) + log |Ω|+ η̂ · Ω−1 · η̂T +
∣∣∣Ω−1 +

H(η̂)

2

∣∣∣ (s6)

Where H is the hessian of the likelihood with respect to η: H(η) = ∂2p(y|η)
∂η .

1

1.2 First-order conditional estimation (FOCE)

To avoid the computation of the second order derivatives, the Hessian matrix
can be approximated as a function of the Jacobian vector of η̂:

E [H(η)] ≈ 1

2
E
[
J(η) · J(η)T

]
(s7)

This additional approximation results in the first-order conditional estima-
tion objective function (also see [1]):

L(Θ, η̂) = p(y | η̂; Θ) + log |Ω|+ η̂ · Ω−1 · η̂T +
∣∣∣Ω−1 +

E
[
J(η) · J(η)T

]
4

∣∣∣ (s8)

We can further simplify this equation to obtain the FOCE objective function
that is used in NONMEM:

−2L(Θ, η̂) = log |C|+ (y −A(t; ẑ, I) + J(η̂) · η̂)2

C
(s9)

Where C = J(η̂) ·Ω · J(η̂)T +Σ and ẑ is the individual estimate of the ODE
parameters based on η̂. The jacobian is calculated with respect to the output
of the ODE. AN equivalent expression exists:

−2L(Θ, η̂) = log |C|+ (y −A(t; ẑ, I))2

Σ
+ η̂ · Ω−1 · η̂T (s10)

We use this objective function (Eq. s10) in the manuscript.

1.3 The FO objective

In the FO objective, the mode of η is assumed to be located at the population
mean (i.e. zero). This results in the following objective function following from
Eq. s9:

−2L(Θ, η̂) = log |C0|+
(y −A(t; z0, I))

2

C0
(s11)

where C0 = J(0) · Ω · J(0)T +Σ.

1.4 Derivation of the ELBO

In Bayesian inference, given a set of observations X = {x1, . . . ,xn} we are often
interested in obtaining the posterior distribution over a set of latent variables
Z = {z1, . . . , zn}. We are however often unable to compute the model evidence
p(X) as this requires integration over all possible values of Z. The goal of
Variational Inference (VI) is to instead minimize the differences between the
true posterior and a (simpler) variational approximation q(Z). One way to
represent the differences between two distributions is via their KL-divergence:

2

KL(q(Z)∥p(Z | X)) =

∫
q(Z) log

q(Z)

p(Z | X)
dz

= Eq(Z)

[
log

q(Z)

p(Z | X)

]
= Eq(Z) [log q(Z)]− Eq(Z) [log p(X,Z)] + log p(X) (s12)

We can rewrite this expression to obtain:

log p(X) = Eq(Z) [log p(X,Z)− log q(Z)]︸ ︷︷ ︸
ELBO

+KL(q(Z)∥p(Z | X))︸ ︷︷ ︸
divergence

(s13)

Note that the KL divergence is an asymmetric measure, i.e. KL(q(Z)∥p(Z |
X)) ̸= KL(p(Z | X)∥q(Z)). Swapping terms in the KL divergence results in a
different objective function with different behaviour.

3

Supplementary data 2. Model architecture

2.1 Multi-branch network

In a multi-branch neural network architecture, the covariates are connected to
independent sub-networks, such that the model learns the effect of each co-
variate in isolation. The independent covariates are combined using a product,
similar to the common implementation of covariates in non-linear mixed effects
models. In this sense, the architecture is similar to a generalized additive model,
using product accumulation rather than the sum of covariate effects. Typical
fully-connected neural networks can learn complex interactions between the co-
variates. By removing the possibility of learning such potentially spurious cor-
relations, model performance and generalizability can potentially be improved.
Similarly, we can specifically link covariates with known causal effects on one of
the parameters, preventing the model from learning any spurious effects with
respect to the other parameters. An additional benefit of the approach is that
the output of each sub-model can be visualized, allowing for the interpretation
of the learned covariate effects. A schematic representation of fully-connected
and multi-branch networks is provided below.

2.2 Model architecture

A multi-branch architecture was used to learn the effect of weight (or fat-free
mass in the real-world experiment) on clearance and volume of distribution,
and the effect of von Willebrand factor antigen (VWF:Ag) levels on clearance.
The first model consisted of a single hidden layer containing 12 neurons feeding
into a transformed softplus activation function: π(x) = 1

10 · log(exp(10 · x) + 1).
Inputs were normalized between roughly 0 and 1 by dividing model input by
150 kg. Output from this hidden layer was fed into two independent hidden
layers, each again consisting of 12 neurons connected to a single output neuron.
The two independent output neurons represent the effect of the covariate on
clearance or volume of distribution. This way, the two effects share a similar

4

base relationship based on the first hidden layer which and individual differences
between their effects on the different PK parameters can be learned based on
the second set of hidden layers.

The second model (VWF:Ag on clearance) consisted of a single hidden layer
of 12 neurons feeding into a single output neuron. Again the transformed soft-
plus activation function was used. Inputs were normalized between roughly 0
and 1 by dividing model input by 350%. Global parameters were estimated
for Q and V2. All parameters were constrained to be positive using a softplus
activation function. We chose 12 neurons in all hidden layers as this allowed a
sufficient level of complexity of the learned functions, while not being so large as
to result in excessive overfitting (which could be likely when using 128 neurons
for example). The number of neurons can potentially be optimized (by means
of hyperparameter tuning), but we found the risks of overfitting to be already
sufficiently managed when using 12 neurons. Bias parameters in the output
layers were initialized to ones to initialize the model at reasonable estimates at
the start of training.

2.3 Visualization of learned effects

Visualizations of learned functions were obtained by entering dummy input to
each of the sub-networks. First, typical estimates for each of the PK parameters
were obtained by dividing the prediction of each neural network to its prediction
for the median covariate value (using typical clearance, CLTV , as an example):

CLTV =
f1(x1)

f1(Med[x1])
· f2(x2)

f2(Med[x2])
(s14)

Here f1 represents the subnetwork for the effect of weight (or fat-free mass),
while f2 represents the effect of VWF:Ag. We chose to use a value of 60 kg
for fat-free mass, and 100% for VWF:Ag. Each model in the deep ensemble
produces estimates of the typical value for the PK parameters. This way the
prediction from each neural network are anchored to 1 at the median values of
the covariates, similar to how covariates are implemented in non-linear mixed
effects models. After calculation of the typical PK parameter estimates we can
investigate the variance of these values over replicates to determine their uncer-
tainty.

Predictions from each subnetwork divided by their prediction at the median
covariate value can then be evaluated at any value of the covariate. We can thus
visualize model predictions along the entire covariate space in order to obtain
the visualizations.

2.4 Parameter initialization

Model parameters were randomly drawn from initial guess distributions at the
start of optimization for each training replicate. Since the three optimization

5

algorithms share the same parameters (Θ = {w,Ω,Σ}), the same initial guess
distributions were used.

• Neural network parameters w were initialized using Xavier initialization:
w ∼ Uniform(−x, x) where x =

√
(6/(in+ out)) where in and out ref-

erence the number of input neurons and output neurons for that layer,
respectively.

• Covariance matrix Ω is used in the prior distribution over the random
effects η ∼ N (0,Ω), and was decomposed into marginal standard devi-
ations ω and correlation coefficient ρ. The following distributions were
used for these parameters: ω ∼ Normal(0.1, 0.025) truncated at [0, Inf]
and ρ ∼ Normal(0, 0.1).

• Covariance matrix Σ represents the estimates of residual error. The initial
distribution for additive error was sampled from σ ∼ Normal(0.1, 0.025)
truncated at [0, Inf]. The same distribution was used to sample the initial
proportional error estimate whenever applicable.

The same initial guess distributions were used for the simulation and real-
world experiments. Only additive error was used in the simulation experiment.

2.5 MCMC model

We first compared the accuracy of posterior distributions over the random effects
η obtained through MCMC and VI. We evaluated the different approaches in two
setings: (1) the ground truth parameters used in the simulation were known (i.e.
we only estimate posterior distributions over the random effects) and (2) only
the typical PK parameters were known (i.e. also estimate posterior distributions
over the population parameters Ω and Σ). For the MCMC model, we fit a
single chain to the data. Since this problem was relatively simple, the model
converged well and multiple chains were not required. Pseudo-code representing
the probabilistic models are shown in listing 1.

The following hyper-priors were used in setting 2:
S ∼ LogNormal(−1.5, 1): marginal standard deviations of Ω.
ρ ∼ Beta(2, 2): correlation coefficient in Ω.
σ ∼ LogNormal(−3, 1): additive error.

6

using Turing

@model function model(zeta, omega, sigma, y) # setting (1).

eta ~ MultivariateNormal(zeros(2), omega)

z = zeta .* exp(eta) # individual estimates of PK parameters

yhat = solve_ode(z)

y ~ MultivariateNormal(yhat, sigma)

end

@model function model(zeta, y) # setting (2).

sigma ~ LogNormal(-3, 1)

S ~ LogNormal(-1.5, 1)

rho ~ Beta(2, 2)

C = [1 rho; rho 1]

omega = S * C * S'

eta ~ MultivariateNormal(zeros(2), omega)

z = zeta .* exp(eta)

yhat = solve_ode(z)

y ~ MultivariateNormal(yhat, sigma)

end

Listing 1: Pseudo-code for MCMC models.

7

Supplementary tables and figures

Wasserstein distance with respect to MCMC posterior ×10−3

VI algorithm
Random effect, η

(W2 ± SD)
Additive error, σ

(W1 ± SD)
ω1

(W1 ± SD)
ω2

(W1 ± SD)
Correlation coefficient, ρ

(W1 ± SD)

Typical PK and population parameters known

Standard estimator 9.0 ± 3.5 - - - -
Path derivative estimator 5.5 ± 2.9 - - - -

Typical PK parameters known

Standard estimator 8.8 ± 3.3 5.0 ± 0.6 7.2 ± 3.1 10.9 ± 3.2 46.9 ± 23.9
Path derivative estimator 4.5 ± 2.3 0.6 ± 0.3 6.7 ± 3.5 7.2 ± 4.0 43.4 ± 14.3

Abbreviations: VI = Variational Inference, W2 = 2-Wasserstein distance, W1 = 1-Wasserstein distance, SD = standard deviation

Supplementary Table 1: Accuracy of the variational posteriors compared to
MCMC.
Wasserstein distances were calculated with respect to multivariate normal distributions
fit to the samples obtained through MCMC. For σ, ω1, and ω2, MCMC posteriors were
represented by fitting a LogNormal distributions to the samples, while a SkewNormal
distribution was fit to represent the posterior for ρ. Bold text represents the lowest
Wasserstein distances.

8

Method
Run time
(minutes;

median ± SD)

Final objective
function value
(median ± SD)

RMSE
(IU/dL;

median ± SD)

KL divergence
of Ω

(median ± SD)

MAE of
ω1 ± SD

MAE of
ω2 ± SD

MAE of
σ ± SD
(IU/dL)

One sample 5.20 ± 0.41 298 ± 3.6a 5.83 ± 0.68 0.0089 ± 0.022 0.014 ± 0.001 0.0029 ± 0.003 0.050 ± 0.042
Three samples 14.7 ± 2.6 309 ± 2.4a 5.80 ± 0.59 0.011 ± 0.005 0.013 ± 0.008 0.0086 ± 0.002 0.23 ± 0.03

SD = standard deviation, RMSE = root mean squared error, KL = Kullback-Leibler, MAE = mean absolute error.
a = Based on stochastic estimates of the ELBO. Higher is better.

Supplementary Table 2: Comparison of parameter estimates of VI objective
based on the number of Monte Carlo samples.
Results are shown for the VI models fit to the synthetic data experiment. Decreasing
the number of Monte Carlo samples from three to one did not seem to affect parameter
accuracy.

9

A. Variational Approximations of the population parameters

B. Variational Approximations of the individual random effect posteriors

Supplementary Figure 1: Posterior approximations using variational infer-
ence.
Variational posteriors for the population parameters (A) as well as the individual ran-
dom effect parameters (B) are shown. Black dashed lines represent posteriors obtained
through MCMC. Results are shown for 20 replicates of the model fit using the path
derivative gradient estimator.

10

Supplementary Figure 2: Objective function value and parameter accuracy
for the FOCE objectives during training.
The objective function value (left column), log KL divergence of the estimated random
effect prior (centre column), and residual error estimate (right column) during training
are shown for the FOCE based objectives. Results are shown for the FOCE objective
according to equation s9 (a), equation s10 (b) using the reduced learning rate. Each
line represents a single replicate fit to one of the data folds. Dashed line indicates the
true value for sigma. Crosses indicate models that failed convergence. The formulation
of the FOCE objective based on equation s9 (a) depicts lower stability during training
and a higher fraction of models failing optimization.

11

Supplementary Figure 3: Population parameter estimates during optimiza-
tion using the FOCE objective.
The log KL divergence of the estimated random effect prior (a), marginal standard
deviation of ω1 (b) and ω2 (c), and their correlation coefficient (d) during training
are shown. Results are shown for the FOCE objective according to equation s10 with
reduced learning rate. Each line represents a single replicate along the data folds.
Dashed lines indicate the true parameter value. Crosses represent early end of op-
timization due to errors. The model generally seems to underestimate the marginal
variances of the true prior distribution.

12

Supplementary Figure 4: Learned covariate effects after training on the
synthetic data set.
Covariate effects for models fit using the FO (left column), FOCE (Eq. s10; center
left column), VI (center right column), and mean squared error (right column) are
shown. Learned functions are shown for the effect of weight on clearance (a), weight
on volume of distribution (b) and von Willebrand factor on clearance (c). Median
covariate effect (solid line) along with 95% confidence intervals are shown. Dashed
black lines indicates the ground truth functions used in the simulation.

13

Supplementary Figure 5: Parameter estimates during training on the real-
world data sets.
Parameter estimates during training are shown for the FO (a & d), FOCE (b & e),
and VI (c & f) based objectives. Results are shown for data set one (a-c) and data
set two (d-f). Median estimate (solid line) along with 95% confidence interval across
replicates are shown.

14

Supplementary Figure 6: Learned functions after training on real-world data
set two.
Covariate effects for models fit using the MSE (left column), FO (centre left column),
FOCE (centre right column), and VI (right column) are shown. Learned functions
are shown for the effect of fat-free mass on clearance (a), fat-free mass on volume
of distribution (b) and von Willebrand factor antigen (VWF:Ag) levels on clearance
(c) at the end of training for data set two. Median covariate effect (solid line) along
with 95% confidence intervals are shown. Grey histograms represent the corresponding
covariate distributions.

15

Supplementary Figure 7: Decreasing the learning rate lowers uncertainty
over learned effects for VI.
Results are shown for the VI models trained using the regular learning rate (left
column) and reduced learning rate (right column). Learned functions are shown for
the effect of fat-free mass on clearance (a), fat-free mass on volume of distribution (b)
and von Willebrand factor antigen levels on clearance (c) at the end of training for
data set one. Median covariate effect (solid line) along with 95% confidence intervals
are shown. Grey histograms represent the corresponding covariate distributions. lr =
learning rate, VWF:Ag = von Willebrand factor antigen.

16

