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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

Burrows et al., describe in this manuscript a framework to assess the relationship to non-linear 
longitudinal parameters of any trait with genome-wide data. The manuscript is clearly written and 
the GitHub created by the authors provides a useful resource for researchers investigating growth 
curves or age-related decline which in most cases do not follow a linear pattern. The analyses of 
these trajectories at present are difficult and current methodologies do not address the non-
linearity of trajectories. Although I praise the authors for this effort and contributions to the field, I 
think the wording of some sections could be clearer, and adding some extra information or being 
more specific will increase the readability of the article. 

 

MAIN REVISION 

 

Title 

1. I think the authors need to choose a title that better reflects the work presented in the paper. The 
title reads “six multiethnic cohorts”. Nevertheless, to my understanding, the only multiethnic 
cohort is CHOP, and it was analyzed as 2 different cohorts (adding up individually to the six cohorts 
named in the title). Although the description of the OBE cohort in the supplementary material does 
not clearly state the ancestral background of the study population, the ethnicity variable reads 
“European”. Nonetheless, no exclusions based on ethnicity are stated. I would then advise the 
authors against using multiethnic cohorts to describe the participant studies. 

2. I also consider the adjective “time-varying” could be misleading as even if the trait modeling 
follows trajectories, the framework, by the way pretty original, obtains static parameters derived 
from these trajectories to follow in the GWAS approach. 

 

Description of the population-specific analyses 

 

3. Through the methods I found it difficult to discern the specificities of the two-step algorithm. 
Meaning which adjustments were used in the determination of the phenotypes and which were part 
of the GWAS linear regression. I will provide specific examples. 

3.1. In lines 730 to 733, the authors describe the final steps of the quantification of the phenotypes, 
it reads “We converted each of the estimated phenotypes and BMI at the end of the trajectory to z-
scores by subtracting the mean and dividing by the standard deviation within each cohort so that 
we could compare across phenotypes. Analyses were adjusted for sex, and adjusted R2 were 



reported”. Does this mean that the z-scores were sex-specific? Later in lines 745-753, the authors 
describe the GWAS model, in which each of the generated phenotypes was adjusted for sex and 
genomic principal components. Does this mean the phenotypes were adjusted by sex and later the 
GWAS was also adjusted by sex? 

3.2. In the description of the cohorts (Supplementary Note), for all cohorts but CHOP exclusion of 
one participant in case of siblingship is stated. I assume this refers both to the phenotype modeling 
and GWAS linear regression. Nevertheless, this seems not to have taken place in CHOP, where 
REGENIE was used for the GWAS step given the complex family structure. How was this structure 
handled at the phenotype modeling level? 

3.3. Also, in the case of the ethnicity definition for CHOP, it is stated in the Supplementary Note that 
“Self-reported ancestry was used to define African Americans and Europeans Americans”. I 
assume (but this should be more clearly defined) that this is the definition used to define children 
taking part of the phenotype modeling. Yet, when the GWAS step takes place, in the sample QC it is 
stated “Non-African (Non-European) samples were excluded”. As the European part has been 
dropped off, I assume this is based on an external reference panel (e.g., 1KG or HapMap; This 
information should be specified). Is this a correct understanding of how ethnicity definition varies in 
the two steps of the analysis? 

4. There are no plots allowing visual assessment of the sparsity of the data across the genomic 
principal components. Yet, correcting for only 1 PC in the case of CHOP seems low, especially 
considering the usual diversity in the definition of the “African component”. 

5. Although the authors clearly state that the phenotype modeling was based on the entire 
population and not only on individuals with genotype data, I had trouble finding information about 
the sample size of each cohort in the GWAS analysis and as such the total sample size of the meta-
analysis (maybe I am wrong but I do not think I saw this number stated in any place in the main 
manuscript, and only in sup table one, per cohort can be found reported). 

 

MINOR REVISION 

 

6. Based on the LDSC paper, it is recommended to report genetic correlations of traits with z-scores 
of heritability estimates >4, so that the genetic correlations are interpretable. I guess that’s the 
threshold used by the authors and which defines the note in Figure 3. I would recommend adding 
the z-score for heritability to Supplementary table 5. 

7. As the authors mention the EGG consortium in the co-author lists, I was expecting to find 
information on the consortium and affiliated individuals somewhere in the manuscript, but I could 
not find this information. 

  

 

Reviewer #1 (Remarks on code availability): 



 

I did not run the code but scan through the structure and help for the user provided 

 

 

Reviewer #2 (Remarks to the Author): 

 

The manuscript is exceptionally well written, and the Supplementary Information is meticulously 
organized, demonstrating a commendable level of detail and clarity in the methodological 
descriptions. However, I do have some concerns regarding the interpretation of the findings and the 
potential precedent this framework may establish for future research in the field, particularly given 
its development by distinguished experts. 

 

1. Algorithm convergence issues. While it is understandable that the lme() function might 
encounter convergence issues, relying on software errors as a criterion for model selection may not 
be advisable. It is evident from the goodness-of-fit measures in Supp Table 3 that models with 
CAR(1) residuals fit the data best (when lme() does not experience convergence problems). 
Considering the paper's goal to establish a framework within the GWAS field for time-varying traits, 
it would be advantageous to either propose and implement alternative methods that scale to GWAS 
without such errors, or to clearly discuss this as an unresolved issue, providing insights into why 
these convergence issues occur and highlighting the remaining challenges. 

 

2. Opaque temporal correlation structure. The framework utilizes the linear mixed model approach 
detailed by Pinheiro and Bates (PB; ISBN 1441903178), employing the nlme package. PB's model 
incorporates three components: (i) fixed effects, (ii) random effects, and (iii) autocorrelated or 
independent residuals within groups. The authors’ chosen model incorporates random cubic slope 
coefficients alongside independent residuals, necessitating that all within-individual residual 
temporal correlation, conditional on the fixed effects, be modeled by the random coefficients in a 
polynomial/spline model. However, this approach to modeling temporal autocorrelation may lack 
transparency and could potentially introduce unintended biases, in particular by introducing 
artefactual correlations between derived phenotypes (more on this in comment 3 below). These 
issues might be exacerbated when the origin of the polynomial is set at age zero (relative to, say, 
average age), and where there is a disparity between the forms of fixed and random effects (spline 
vs. polynomial). A more transparent, robust and accurate model for within-individual residual 
variation around fixed effects might involve a smooth stationary time series, such as a stationary 
CAR(1) or Gaussian process, complemented by white noise. 

 

3. Are derived phenotype results artificially mediated by adolescent/adult BMI? There is a need for a 
more robust demonstration that the GWAS hits for derived phenotypes are not predominantly 



mediated by adolescent or adult BMI, which could merely reflect the residual autocorrelation 
structure issue described in comment 2, rather than a biological connection. Adjusting the GWAS 
analyses for a measure of BMI that best represents adolescent/adult BMI in the cohorts would help 
clarify this. Options include: adjusting for adolescent AUC in other derived phenotypes’ GWASs; or 
adjusting for final BMI, in which case an interaction with age to model systematic trends across 
different final measurement time points within the 16-18 range might also be beneficially included. 

 

4. Assessment of model fit. The authors provide a wide range of measures of model goodness of fit. 
BIC and AIC are probably more appropriate than the other measures, as they should hopefully be 
less likely to overfit the data by penalizing model complexity. Preferable to AIC/BIC, but more 
computationally intensive, would be cross-validated performance (e.g. cross-validated likelihood). 
Since they are developing a framework, the authors should carefully discuss the best approaches 
to model choice, particularly in their current context, where interest is on accurate estimation of 
within-individual slopes via the predicted random effects. 

 

5. Run times and complexity. A discussion on the computational complexity of the model fitting 
process, including details on run times and the scalability of the methods for larger datasets, is 
essential. The datasets used in this study are relatively modest by contemporary biobank 
standards; thus, demonstrating scalability or acknowledging limitations would be crucial for the 
framework's application to broader contexts. 

 

 

Minor comments 

 

6. BMI vs log(BMI). With reference e.g. to Sovis et al 2011 and Warrington 2015, who use log(BMI), 
the authors should discuss and compare the relative merits of BMI (additive errors) versus log(BMI) 
(multiplicative errors) in this context. 

 

7. Fixed effects meta analysis. Expanding the main text to include more detail from Supp Table 7 
about the tests performed for heterogeneity and the observed minimal evidence of heterogeneity 
across the European cohorts would be informative. 

 

8. Please clarify the meaning of color used on the diagonal in Figure 3. 

 

 



 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors present a new framework/worflow based on non-linear mixed models to fit longitudinal 
trajectories of traits and to identify variants associated with changes in these trajectories. Using 
cubic splines, they modeled childhood body mass index (BMI) trajectories from 2 weeks of age to 
18 years old. They then computed some summary measures (slope, area under the curve (AUC)) 
and estimated age at peak adiposity and peak rebound predicted by those models. After running 
genome-wide association scans (GWAS) on these summary measures, they identified only one 
novel locus mostly associated with AUC in early childhood, albeit replicating many other loci 
previously found in adult BMI GWAS. 

 

Fitting the right model and identifying variants related with changes in longitudinal studies is a 
particularly challenging problem. This novel method is welcomed since most GWAS are using 
cross-sectional, not longitudinal or time-varying measures. The Methods section gives enough 
detail to reproduce similar results in other cohorts and an R package has been developed for 
implementing all the necessary steps before running the GWAS. 

 

Main comments: 

 

1) The authors did a great job in fitting the (highly) non-linear childhood BMI trajectory. 
Unfortunately, when it comes to association testing, one cannot state that this a true longitudinal or 
time-varying GWAS, because only summary measures like slope or AUC, i.e. a single measure, is 
tested for genetic association: the multivariate aspect of it is lost in a sense. Unless some 
simulations are designed with a variant changing the longitudinal trajectory, it is very difficult to 
assess if these types of approaches as proposed in this manuscript really increase statistical 
power. I am not asking authors to compute power estimates, but this would have been a nice 
addition to the paper. 

 

2) In these types of data, we often observe missing values, e.g. due to attrition or missed visits. Do 
the authors have some kind of rule of thumb with respect to percentages of missing values per 
individual these types of modeling approaches can tolerate? 

 



3) The cohorts presented in this paper have many observation over time, and most importantly, the 
measures are somehow observed in the same time window (from birth to 18 years old, except for 
OBE). However, many electronic health records (EHRs) are now routinely linked to genotype data. In 
these EHRs, the observations vary a lot with respect to the number of measures, the timing and 
frequency, even though they are usually restricted to a fixed time window (e.g. up to 10 years before 
recruitment in a genetic study). As an example, a genetic study could include 80% of participants 
having 1 or 2 measures for blood pressure, while the remaining 20% have measures every 6 months 
or every year for 10 years. Could the proposed approach be amenable to this type of scattered 
observations? 

 

4) Will the authors submit in a near future the eggla R package to CRAN? 

 

Ghislain Rocheleau 

 

 

Reviewer #3 (Remarks on code availability): 

 

I broadly reviewed the website where one could find all the required steps to reproduce the analysis 
found in the paper. The eggla R package contains a small dataset in which the cubic splines can be 
fitted, along with the model selection criteria and diagnostics tools. The package relies on other 
well-known robust R packages, and on bcftools and plink2. 

 



Reviewer #1 (Remarks to the Author): 

Burrows et al., describe in this manuscript a framework to assess the relationship to 

non-linear longitudinal parameters of any trait with genome-wide data. The 

manuscript is clearly written and the GitHub created by the authors provides a useful 

resource for researchers investigating growth curves or age-related decline which in 

most cases do not follow a linear pattern. The analyses of these trajectories at 

present are difficult and current methodologies do not address the non-linearity of 

trajectories. Although I praise the authors for this effort and contributions to the field, 

I think the wording of some sections could be clearer, and adding some extra 

information or being more specific will increase the readability of the article.  

 

1. I think the authors need to choose a title that better reflects the work presented in 

the paper. The title reads “six multiethnic cohorts”. Nevertheless, to my 

understanding, the only multiethnic cohort is CHOP, and it was analyzed as 2 different 

cohorts (adding up individually to the six cohorts named in the title). Although the 

description of the OBE cohort in the supplementary material does not clearly state the 

ancestral background of the study population, the ethnicity variable reads 

“European”. Nonetheless, no exclusions based on ethnicity are stated. I would then 

advise the authors against using multiethnic cohorts to describe the participant 

studies.  

We agree with the reviewer that this may have been misleading, so we have updated the 

title to “A framework for conducting genome-wide association studies using repeated 

measures data: An application to body mass index across childhood” 

 

2. I also consider the adjective “time-varying” could be misleading as even if the trait 

modeling follows trajectories, the framework, by the way pretty original, obtains static 

parameters derived from these trajectories to follow in the GWAS approach. 

We are hesitant to remove all reference to the nature of the trajectory data that we are 

modelling from our title as this will limit the searchability of the article. However, we have 

removed ‘time-varying’ from our title and updated it to include 'using repeated measures 

data’ to articulate clearer that we are deriving phenotypes from the repeated measures.  

 

3. Through the methods I found it difficult to discern the specificities of the two-step 

algorithm. Meaning which adjustments were used in the determination of the 

phenotypes and which were part of the GWAS linear regression. I will provide specific 

examples.  

3.1. In lines 730 to 733, the authors describe the final steps of the quantification of the 



phenotypes, it reads “We converted each of the estimated phenotypes and BMI at the 

end of the trajectory to z-scores by subtracting the mean and dividing by the standard 

deviation within each cohort so that we could compare across phenotypes. Analyses 

were adjusted for sex, and adjusted R2 were reported”. Does this mean that the z-

scores were sex-specific? Later in lines 745-753, the authors describe the GWAS 

model, in which each of the generated phenotypes was adjusted for sex and genomic 

principal components. Does this mean the phenotypes were adjusted by sex and later 

the GWAS was also adjusted by sex? 

We apologise for the confusion. Modelling the BMI trajectories was conducted separately in 

males and females, because we know BMI growth over early life differs by sex. However, 

this does not account for mean differences in the phenotypes between males and females, 

so we adjusted for sex in subsequent analyses once we combined the estimated phenotypes 

from males and females. For the association analysis between final BMI and each of the 

estimated phenotypes we converted the estimated phenotypes to z-scores – the z-scores 

were not sex specific which is why we adjusted for sex in the association analyses. In 

contrast, the GWAS analysis was conducted on the raw estimated phenotypes (i.e., not z-

scores) and hence were adjusted for sex and the principal components. The text in the 

methods section was updated to the following:  

“To account for mean differences between males and females, analyses were adjusted for 

sex, and adjusted R2 were reported.” 

“Ancestry principal components were included in the models as covariates, along with sex 

(to adjust for mean differences in the estimated phenotypes between males and females) 

and cohort-specific covariates where appropriate.” 

 

We also added the following to the results section: 

“To select our preferred model, we compared the model fit of sex-specific analyses in each 

cohort based on any convergence issues, performance metrics and visual inspection of the 

predicted curves.” 

“We calculated a BMI trajectory for each individual within each cohort by combining the 

estimated fixed effects, which are shared by all subjects within each sex within a cohort, with 

the predicted random effects, which are specific to each individual.” 

 

3.2. In the description of the cohorts (Supplementary Note), for all cohorts but CHOP 

exclusion of one participant in case of siblingship is stated. I assume this refers both 

to the phenotype modeling and GWAS linear regression. Nevertheless, this seems not 

to have taken place in CHOP, where REGENIE was used for the GWAS step given the 

complex family structure. How was this structure handled at the phenotype modeling 



level? 

The reviewer is correct that we did not remove related individuals from the CHOP cohort; 

however, we do not believe this will impact our ability to estimate unbiased genetic effects in 

the GWAS. Firstly, there is relatively little cryptic relatedness in the cohort when looking at 

IBD estimates within the genotyped sample. When the GWAS analyses were repeated in the 

subset of unrelated individuals (determined from the genotype data) using PLINK2 the 

results were highly concordant with the results on the full genotyped subset using REGENIE. 

Secondly, the phenotype modelling would ideally include clustering on family structure (i.e., 

inclusion of a random effect for family membership). However, family information was 

unavailable and could not be derived on everyone as genotype data was not available on 

the full cohort. Including relatives in the phenotype modelling and not clustering on family 

structure would influence estimates of the variances (for example, the standard errors of the 

fixed effect estimates) but not the means. Therefore, we don’t anticipate the estimated 

phenotypes in CHOP to be substantially affected by the family structure as they are derived 

from the means.  

 

3.3. Also, in the case of the ethnicity definition for CHOP, it is stated in the 

Supplementary Note that “Self-reported ancestry was used to define African 

Americans and Europeans Americans”. I assume (but this should be more clearly 

defined) that this is the definition used to define children taking part of the phenotype 

modeling. Yet, when the GWAS step takes place, in the sample QC it is stated “Non-

African (Non-European) samples were excluded”. As the European part has been 

dropped off, I assume this is based on an external reference panel (e.g., 1KG or 

HapMap; This information should be specified). Is this a correct understanding of how 

ethnicity definition varies in the two steps of the analysis? 

The two subsets in CHOP were defined from the self-report ancestry throughout all analyses 

presented. However, principal component analysis (PCA) was conducted using the genotype 

data and any outliers were removed (i.e., those whose PCA results do not align with their 

self-reported ancestry). The outliers represent a minor fraction of the samples, so an 

external reference panel, such as 1KG or HapMap, was not used. This is standard 

procedure for the CHOP cohort and has been previously used in other GWAS publications 

(for example, https://pubmed.ncbi.nlm.nih.gov/22484627/ ). We have clarified this in the 

supplementary note: 

“Self-reported ancestry was used to define the African American and European American 

subsets used in all analyses. Self-reported ethnicity was confirmed by principal components 

analysis.” 

And also in Supplementary Table 1: 

https://pubmed.ncbi.nlm.nih.gov/22484627/


“Non-European ancestry samples, based on self-reported ancestry, were excluded.” 

“Non-African ancestry samples, based on self-reported ancestry, were excluded.” 

 

4. There are no plots allowing visual assessment of the sparsity of the data across the 

genomic principal components. Yet, correcting for only 1 PC in the case of CHOP 

seems low, especially considering the usual diversity in the definition of the “African 

component”. 

We have not provided visual assessment of the genomic principal components as these are 

standard adjustments for GWAS analyses and we have used what is commonly used within 

each of the cohorts. If the reviewer would like to see a visual assessment, then they can 

refer to previous publications within each cohort (for example, 

https://pubmed.ncbi.nlm.nih.gov/19060910/, 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689282/). In addition, there was an error in 

the number of genetic principal components that were used in the GWAS analyses in 

CHOP– we adjusted for 10 principal components to account for minor stratification within the 

European and African American subsets of CHOP. We have updated this in Supplementary 

Table 1: 

“Sex, first 10 principal components for population stratification” 

 

5. Although the authors clearly state that the phenotype modeling was based on the 

entire population and not only on individuals with genotype data, I had trouble finding 

information about the sample size of each cohort in the GWAS analysis and as such 

the total sample size of the meta-analysis (maybe I am wrong but I do not think I saw 

this number stated in any place in the main manuscript, and only in sup table one, per 

cohort can be found reported).  

We apologise for not including this in the main text. We have now added this to the Methods 

Results and Discussion sections. 

Methods section: 

“The sample size for GWAS analysis within each cohort was 6,907 for ALSPAC, 5,445 for 

the CHOP European subset, 6,332 for the CHOP African American subset, 3,579 for 

NFBC1966, 2,887 for NFBC1986 and 490 for OBE (further details in Supplementary Table 

1).” 

 

Results section: 

“We conducted GWAS for each of the estimated phenotypes within each cohort, then 

combined the results from the GWAS in cohorts with individuals of European ancestry using 

fixed effects inverse-variance meta-analysis (combined sample size N=19,308; OBE was 

https://pubmed.ncbi.nlm.nih.gov/19060910/


excluded from the meta-analysis of the adolescent phenotypes as they did not have data 

beyond age 16 years).” 

“Twelve of the 28 the genome-wide significant variants identified in the European meta-

analysis showed the same direction of effect in the CHOP African American subset 

(N=6,332) and reached nominal significance (P<0.05) for at least one estimated phenotype 

(Supplementary Table 7), and a further 12 loci showed the same direction of effect (P>0.05).” 

 

Discussion section: 

“We subsequently estimated phenotypes from this LMM and used them to conduct GWAS 

analyses (N=19,308 individuals of European descent in the meta-analysis and N=6,332 

individuals of African American descent).” 

 

6. Based on the LDSC paper, it is recommended to report genetic correlations of traits 

with z-scores of heritability estimates >4, so that the genetic correlations are 

interpretable. I guess that’s the threshold used by the authors and which defines the 

note in Figure 3. I would recommend adding the z-score for heritability to 

Supplementary table 5.  

The reviewer is correct that we used z-score for heritability estimates >4 as our threshold. 

We have added the z-scores for heritability to Supplementary Table 5 and also updated the 

Figure 3 title: 

“SNP-based heritabilities for AP age, infancy and adolescent slope are low, with high 

standard errors (resulting in a z-score < 4), and therefore the genetic correlations with these 

traits are unreliable but are shown for completeness.” 

 

7. As the authors mention the EGG consortium in the co-author lists, I was expecting 

to find information on the consortium and affiliated individuals somewhere in the 

manuscript, but I could not find this information.  

We have added the EGG consortium members and their affiliations to the supplementary 

material. 

 

Reviewer #2 (Remarks to the Author): 

The manuscript is exceptionally well written, and the Supplementary Information is 

meticulously organized, demonstrating a commendable level of detail and clarity in 

the methodological descriptions. However, I do have some concerns regarding the 

interpretation of the findings and the potential precedent this framework may 

establish for future research in the field, particularly given its development by 

distinguished experts.  



 

1. Algorithm convergence issues. While it is understandable that the lme() function 

might encounter convergence issues, relying on software errors as a criterion for 

model selection may not be advisable. It is evident from the goodness-of-fit measures 

in Supp Table 3 that models with CAR(1) residuals fit the data best (when lme() does 

not experience convergence problems). Considering the paper's goal to establish a 

framework within the GWAS field for time-varying traits, it would be advantageous to 

either propose and implement alternative methods that scale to GWAS without such 

errors, or to clearly discuss this as an unresolved issue, providing insights into why 

these convergence issues occur and highlighting the remaining challenges. 

We agree with the reviewer that relying on software errors for model selection is not ideal. 

However, model convergence issues are a well-known problem when fitting linear mixed 

effects models to complex data structures like we have (e.g., Bridge et al. (2024) Stat Med.) 

and often indicates that the observed data do not support the need for complex slopes and 

serially correlated residuals. The most common reason for models not converging is 

because of a negative estimate of a variance or when the magnitude of the correlation 

between two random effects reaches or exceeds an absolute value of 1. Unfortunately, it is 

difficult (impossible) to find out which variance/covariance is causing the issue in most 

common statistics packages. These convergence issues can often indicate that the model is 

over-specified, which we suspect is the case when we include the extra parameter when 

specifying the CAR(1) correlation structure. Along with reducing the complexity of the model 

specification (as described in the methods section), we also increased the number of 

iterations the model could take and tested different optimization methods to attempt to get 

model convergence but with limited success (see the code in the EGGLA package for the 

iterative process we took to try and resolve these issues: 

https://github.com/mcanouil/eggla/blob/main/R/egg_model.R). We have added the following 

paragraph to the discussion outlining some of these issues and how others could attempt to 

resolve them when applying this framework to their data: 

“We acknowledge that we experience a number of convergence issues in the range of 

models we applied across the cohorts. Although it is not ideal to select models based on 

whether they converge, it is a practical solution when attempting to apply the same model to 

a range of datasets with different data structures. Some practical advice to others 

experiencing convergence issues when attempting to implement our framework include 

centring the age variable (particularly when zero is not within the age range as the model 

can struggle to extrapolate to zero), ensuring that each cohort has enough repeated 

measures of the phenotype (more repeated measurements per individual will allow a more 

complex random effects structure to be fit), testing different optimization algorithms and 

https://github.com/mcanouil/eggla/blob/main/R/egg_model.R


finally, if one of several cohorts is particularly problematic in terms of convergence then 

investigate the data structure of that cohort and assess whether it is important to include 

them in the analyses.” 

 

2. Opaque temporal correlation structure. The framework utilizes the linear mixed 

model approach detailed by Pinheiro and Bates (PB; ISBN 1441903178), employing 

the nlme package. PB's model incorporates three components: (i) fixed effects, (ii) 

random effects, and (iii) autocorrelated or independent residuals within groups. The 

authors’ chosen model incorporates random cubic slope coefficients alongside 

independent residuals, necessitating that all within-individual residual temporal 

correlation, conditional on the fixed effects, be modeled by the random coefficients in 

a polynomial/spline model. However, this approach to modeling temporal 

autocorrelation may lack transparency and could potentially introduce unintended 

biases, in particular by introducing artefactual correlations between derived 

phenotypes (more on this in comment 3 below). These issues might be exacerbated 

when the origin of the polynomial is set at age zero (relative to, say, average age), and 

where there is a disparity between the forms of fixed and random effects (spline vs. 

polynomial). A more transparent, robust and accurate model for within-individual 

residual variation around fixed effects might involve a smooth stationary time series, 

such as a stationary CAR(1) or Gaussian process, complemented by white noise. 

We thank the reviewer for the thought-provoking question. We have conducted two 

sensitivity analyses to assess the impact of different linear mixed models on our estimated 

phenotypes: 

1. A linear mixed effects model with the cubic spline function for age in the fixed effects, 

cubic slope function in the random effects and CAR(1) correlation structure for the 

within-individual residual variation (i.e. the same fixed and random effects as our 

preferred model, with the addition of the CAR(1) correlation structure). 

2. A linear mixed effects model with the cubic spline function for age in the fixed effects 

and random effects, and CAR(1) correlation structure for the within-individual residual 

variation (i.e. the best fitting model based on AIC and BIC in the ALSPAC and 

NFBC1986 cohorts). 

We fit these two models in the ALSAPC and NFBC1986 cohorts, where we did not have 

convergence issues (see Supplementary Table 3, where the error messages are presented 

for the other cohorts), and then estimated the 12 phenotypes from these modified linear 

mixed effects models.  

 



The estimated phenotypes were concordant between the preferred model and these two 

modified models, as seen in the new Supplementary Figures 4 and 5 for the estimated 

phenotypes in the ALSPAC and NFBC1986 females and males. The slopes and age at 

adiposity peak and rebound are slightly more sensitive to changes in the underlying model 

than the AUCs and BMI at the adiposity peak and rebound, which was more evident in the 

NFBC1986 cohort. Additionally, the correlations between the phenotypes were relatively 

consistent across the linear mixed models as seen in the new Supplementary Table 5. 

Therefore, we do not believe that the correlations between the estimated phenotypes are 

artifacts of the within-individual components fit in the LMM. 

 

We have added the following text to the results section: 

“We performed sensitivity analyses in the ALSPAC and NFBC1986 cohorts where we 

changed the random effects and the correlation structure in the LMM and used these 

updated models to re-estimate the phenotypes within each time window. The estimated 

phenotypes were relatively robust to these changes in the underlying LMM (Supplementary 

Figure 5 and Supplementary Figure 6) and the correlations between the estimated 

phenotypes were similar (Supplementary Table 5).” 

 

The following to the discussion: 

“This indicates that the dependencies between the estimated phenotypes are consistent 

regardless of the underlying LMM fit to the repeated measures data, which is consistent with 

our comparison of estimated phenotypes using different structures to model within-individual 

variation.” 

 

And the methods section: 

“To check whether our estimated phenotypes were robust to different underlying LMMs, we 

estimated the phenotypes from two additional LMMs, one fitting the CAR(1) correlation 

structure (keeping the fixed and random effects the same as our preferred model) and the 

second fitting a cubic spline in the random effects in addition to the CAR(1) correlation 

structure (i.e. the best fitting model according to AIC and BIC in a number of the cohorts – 

see Supplementary Table 3). We performed these two sensitivity analyses in ALSPAC and 

NFBC1986, where there were no convergence issues in these updated LMMs. After fitting 

each LMM, we estimated the slopes and AUCs within each time window, in addition to the 

age and BMI at the AP and AR and compared them to the estimated phenotypes from the 

preferred model. We also calculated the correlation matrices and compared them to those 

from the preferred model.” 

 



3. Are derived phenotype results artificially mediated by adolescent/adult BMI? There 

is a need for a more robust demonstration that the GWAS hits for derived phenotypes 

are not predominantly mediated by adolescent or adult BMI, which could merely 

reflect the residual autocorrelation structure issue described in comment 2, rather 

than a biological connection. Adjusting the GWAS analyses for a measure of BMI that 

best represents adolescent/adult BMI in the cohorts would help clarify this. Options 

include: adjusting for adolescent AUC in other derived phenotypes’ GWASs; or 

adjusting for final BMI, in which case an interaction with age to model systematic 

trends across different final measurement time points within the 16-18 range might 

also be beneficially included. 

We would expect there to be biological connection between BMI in early life and adult BMI, 

and we want to use this framework to help understand how genetics contributed to that 

connection. There have been numerous examples of how genetic loci that influence adult 

anthropometric traits operate on the phenotype across life (see for example, Hardy et al 

(2010) Human Molecular Genetics,  Sovio et al (2011) PLOS Genetics, Paternoster et al 

(2011) Human Molecular Genetics, Warrington et al (2013) PLOS ONE, Warrington et al 

(2015) Human Molecular Genetics). So, we do not want to adjust out the effect of adult BMI 

and lose the ability to describe the growth pattern of adult BMI associated loci. Additionally, 

adolescent/adult BMI cannot mediate the relationship between change in BMI across 

childhood and genetic variants as it occurs after the time period we are investigating. 

Therefore, our estimated phenotypes in childhood could mediate the relationship between 

genetic variants and adolescent/adult BMI, but not the other way around. Finally, by 

adjusting for a heritable covariate in GWAS analyses, such as adult BMI or adolescent AUC, 

we could introduce collider bias (Aschard et al (2015) American Journal of Human Genetics 

and Day et al (2016) American Journal of Human Genetics) whereby a SNP that is 

associated with the covariate (here adult BMI or adolescent AUC, whichever is adjusted for) 

is spuriously associated with the outcome (our estimated phenotypes). Therefore, this would 

artificially inflate the number of SNPs associated with our estimated phenotypes, rather than 

adjusting for any residual correlation.  

 

4. Assessment of model fit. The authors provide a wide range of measures of model 

goodness of fit. BIC and AIC are probably more appropriate than the other measures, 

as they should hopefully be less likely to overfit the data by penalizing model 

complexity. Preferable to AIC/BIC, but more computationally intensive, would be 

cross-validated performance (e.g. cross-validated likelihood). Since they are 

developing a framework, the authors should carefully discuss the best approaches to 



model choice, particularly in their current context, where interest is on accurate 

estimation of within-individual slopes via the predicted random effects.  

We agree with the reviewer that BIC and AIC are the most appropriate criteria for comparing 

the model fit due to their penalization of overfitting and have updated the manuscript to use 

these metrics. The other metrics were included to provide insight into model fit within each 

cohort. Primarily we used BIC for model selection, as it penalizes model fit more than AIC. 

We have updated Table 2 to show the AIC/BIC metrics and the highlighted cells in 

Supplementary Table 3 to those models with the lowest AIC and BIC within each cohort/sex. 

We have also added the following to the methods section: 

“The selection of the overall best model was based on the most favourable model 

performance metrics across all cohorts, focusing on AIC and BIC as they penalize model 

complexity, as well as model convergence and warning and error messages.” 

 

We have also updated the results sections: 

“We used Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC) 

performance metrics to define the best fitting model as they appropriately penalize model 

complexity. In ALSPAC, CHOP African Americans, females in NFBC1966, and NFBC1986 

the best model included a cubic spline function for age in both the fixed and random effects 

and a CAR(1) correlation structure (Table 2 and Supplementary Table 3). For the males in 

NFBC1966 and OBE, the best fitting model included a cubic spline function for age in the 

fixed effects, a quadratic spline function in the random effects and a CAR(1) correlation 

structure specified. Finally, the best fitting model in the male, European American subset of 

CHOP had a cubic spline in the fixed effects, a cubic slope in the random effects, and no 

correlation structure and the females was a cubic spline in the fixed effects, linear splines in 

the random effects and a CAR(1) correlation structure.” 

 

5. Run times and complexity. A discussion on the computational complexity of the 

model fitting process, including details on run times and the scalability of the 

methods for larger datasets, is essential. The datasets used in this study are relatively 

modest by contemporary biobank standards; thus, demonstrating scalability or 

acknowledging limitations would be crucial for the framework's application to broader 

contexts. 

We agree that these datasets are considerably smaller than the large biobanks available; 

however, they have far more repeated measurements than the biobanks currently. We have 

added the following to the discussion section of the paper to give readers an understanding 

of the scalability: 



“Third, we have only tested our framework on relatively small cohorts with large numbers of 

repeated measurements and it is unclear how this will scale to biobank size studies with over 

one hundred thousand individuals. For instance, in ALSPAC where there are 6,818 samples 

and 60,169 observations within females, the compute time for each model ranged from 0.04 

minutes for the model with a cubic slope in the fixed effects and linear slope in the random 

effects to 20.2 hours for the model with a cubic spline in the fixed effects and the random 

effects . In contrast, the models took 0.03 minutes and 5.05 hours respectively in the 

NFBC1966 females where there were 3,280 individuals with 52,162 observations. Therefore, 

the computational burden may be too large once the sample size gets into the hundreds of 

thousands.” 

 

6. BMI vs log(BMI). With reference e.g. to Sovis et al 2011 and Warrington 2015, who 

use log(BMI), the authors should discuss and compare the relative merits of BMI 

(additive errors) versus log(BMI) (multiplicative errors) in this context. 

We, like Sovio et al. (2011) and Warrington et al. (2015), have used log(BMI) in our 

analyses. We have added the following to the limitations section of the discussion: 

“Fourth, we have analysed BMI on the natural log scale for its statistical properties, but this 

makes the interpretation of effects on BMI more difficult due to the multiplicative errors.” 

 

7. Fixed effects meta analysis. Expanding the main text to include more detail from 

Supp Table 7 about the tests performed for heterogeneity and the observed minimal 

evidence of heterogeneity across the European cohorts would be informative. 

We have added the following to the results section of the paper (including two new 

supplementary figures) to describe the heterogeneity across the fixed effects meta-analysis: 

“There was no evidence of heterogeneity across the genome in our fixed effects meta-

analysis for the majority of our estimated phenotypes (Supplementary Figure 7). There was 

some inflation observed for the early childhood slope and the late childhood AUC, but this 

was driven by the inclusion of the OBE cohort (see Supplementary Figure 8 for Q-Q plots 

excluding OBE).” 

“There was some evidence of heterogeneity (P<0.05) at variants in the SEC16B, ADCY3, 

OLFM4 and FTO loci (Supplementary Table 7).” 

We also added the following to the methods section: 

“We conducted an inverse-variance weighted fixed-effects meta-analysis, combining each of 

the five European cohorts, for each of the estimated phenotypes using GWAMA v.2.1 (Mägi 

and Morris 2010), and performed a test of heterogeneity in the effect sizes.” 

 



8. Please clarify the meaning of color used on the diagonal in Figure 3. 

We have amended Figure 3 and changed the colour on the diagonal (SNP heritability 

estimates) to distinguish them from the genetic correlation estimates.  

 

Reviewer #3 (Remarks to the Author): 

The authors present a new framework/workflow based on non-linear mixed models to 

fit longitudinal trajectories of traits and to identify variants associated with changes in 

these trajectories. Using cubic splines, they modelled childhood body mass index 

(BMI) trajectories from 2 weeks of age to 18 years old. They then computed some 

summary measures (slope, area under the curve (AUC)) and estimated age at peak 

adiposity and peak rebound predicted by those models. After running genome-wide 

association scans (GWAS) on these summary measures, they identified only one 

novel locus mostly associated with AUC in early childhood, albeit replicating many 

other loci previously found in adult BMI GWAS. 

 

Fitting the right model and identifying variants related with changes in longitudinal 

studies is a particularly challenging problem. This novel method is welcomed since 

most GWAS are using cross-sectional, not longitudinal or time-varying measures. The 

Methods section gives enough detail to reproduce similar results in other cohorts and 

an R package has been developed for implementing all the necessary steps before 

running the GWAS. 

 

1) The authors did a great job in fitting the (highly) non-linear childhood BMI 

trajectory. Unfortunately, when it comes to association testing, one cannot state that 

this a true longitudinal or time-varying GWAS, because only summary measures like 

slope or AUC, i.e. a single measure, is tested for genetic association: the multivariate 

aspect of it is lost in a sense. Unless some simulations are designed with a variant 

changing the longitudinal trajectory, it is very difficult to assess if these types of 

approaches as proposed in this manuscript really increase statistical power. I am not 

asking authors to compute power estimates, but this would have been a nice addition 

to the paper. 

We agree with the reviewer that power calculations would be a nice addition, but they were 

out of the scope of this current study. We do not claim that our two-step approach to 

modelling repeated measures data increases statistical power over incorporating the genetic 

data into the LMM, but rather use the two-step approach to reduce computational complexity 

and increase interpretability of the genetic effect sizes that are estimated.  

 



2) In these types of data, we often observe missing values, e.g. due to attrition or 

missed visits. Do the authors have some kind of rule of thumb with respect to 

percentages of missing values per individual these types of modeling approaches can 

tolerate? 

Unfortunately there is no obvious rule of thumb when it comes to rates of missing data. 

There needs to be enough data so that the model is identified. This will be dependent on 

how complex the model is that is being fit to the data. For example, our model with the cubic 

slope in the random effects would require the cohort to have at least four repeated measures 

per person, but if there is substantial missing data then it is likely that more measures are 

required. The model assumes that data is missing at random, so the estimated parameters 

will not be biased by missing data (provided it is missing at random and there is not some 

underlying structure to the missingness).  

 

3) The cohorts presented in this paper have many observation over time, and most 

importantly, the measures are somehow observed in the same time window (from 

birth to 18 years old, except for OBE). However, many electronic health records 

(EHRs) are now routinely linked to genotype data. In these EHRs, the observations 

vary a lot with respect to the number of measures, the timing and frequency, even 

though they are usually restricted to a fixed time window (e.g. up to 10 years before 

recruitment in a genetic study). As an example, a genetic study could include 80% of 

participants having 1 or 2 measures for blood pressure, while the remaining 20% have 

measures every 6 months or every year for 10 years. Could the proposed approach be 

amenable to this type of scattered observations? 

We thank the reviewer for this interesting question. We believe our approach would be 

amenable to data coming from EHRs in large biobank studies; however, it would be 

dependent on how many repeated measures are available and what the research question 

is. Some EHRs only have disease diagnoses over time (for example, using ICD codes) 

rather than quantitative phenotypes, making these methods more difficult to apply. As 

mentioned in our response to reviewer 2 question 5, we have not tested our models on 

large, biobank size datasets, which is a limitation of our current study. Using the example 

given by the reviewer, where 80% of participants had one or two measures and 20% had 

very detailed repeated measures, we expect that the 80% of people would get shrinkage to 

the cohort average effect (as mentioned in the limitations section of the discussion), which 

would likely have impacts on how well the GWAS could detect novel variants. In this case, a 

simple rate of change in phenotype, accounting for the difference in age and follow-up time, 

might be more computationally efficient rather than fitting these highly complex models. A 

recent paper in Nature Communications has done this using the UK Biobank 



(https://www.nature.com/articles/s41467-024-47802-7 ). We have added the following to the 

discussion: 

“Additionally, large biobank studies, such as the UK Biobank, only have a few repeated 

measurements and therefore it would be difficult to model non-linear trajectories. The 

methods developed for phenotypes that change linearly over time may be more appropriate 

(Sikorska et al. 2013; Meirelles et al. 2013; Yuan et al. 2021; Sikorska et al. 2018; Ko et al. 

2022), or a simple rate of trait change could be derived (Kemper et al. 2024). However, we 

recommend these methods be tested within the age groups available in the biobank studies 

as almost all phenotypes follow non-linear patterns during the life-course.” 

 

4) Will the authors submit in a near future the eggla R package to CRAN? 

Unfortunately, we are unable to publish the R package to CRAN because of their policies 

around containing binary programs (PLINK2 here). Unfortunately, PLINK2 versions are not 

archived, so if we do not incorporate the PLINK2 binary inside our workflow, then we cannot 

ensure that the same version is used across all cohorts. The R package can easily be 

installed following instruction from GitHub (https://github.com/mcanouil/eggla, 

https://m.canouil.dev/eggla/) or from R Universe (https://mcanouil.r-universe.dev/eggla). 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

All my points have been addressed properly, for this I thank the authors. Only one remaining point, 
maybe an small statement regarding how family structure should be addressed within the 
proposed framework, as a summary of the reply of the authors concerning this point in my previous 
review. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have addressed my concerns in this revised manuscript. 

 

Reviewer #2 (Remarks on code availability): 

 

I have not run the code, but the author's website (https://m.canouil.dev/eggla/articles/eggla.html) 
provides detailed instructions for setting up and running their software in a variety of environments. 

 

 

Reviewer #3 (Remarks to the Author): 

 

I am satisfied with the Authors' responses to my previous comments. 

 

 



Reviewer #1 (Remarks to the Author): 

All my points have been addressed properly, for this I thank the authors. Only one 

remaining point, maybe an small statement regarding how family structure should be 

addressed within the proposed framework, as a summary of the reply of the authors 

concerning this point in my previous review. 

We thank the reviewer for their previous comments which were very insightful and helped us 

to improve our manuscript. We have added the following text to the discussion to address 

how family structure could be incorporated into our proposed framework: 

“Sixth, we have removed related individuals from the majority of the cohorts (all except 

CHOP where relatively little cryptic relatedness was present). However, a random effect for 

family membership could be included in the LMM if there is a substantial number of relative 

pairs and family information is available.” 

 

Reviewer #2 (Remarks to the Author): 

The authors have addressed my concerns in this revised manuscript. 

Reviewer #2 (Remarks on code availability): 

I have not run the code, but the author's website 

(https://m.canouil.dev/eggla/articles/eggla.html) provides detailed instructions for 

setting up and running their software in a variety of environments. 

We again thank the reviewer for their useful comments on our previous version and are 

pleased we have appropriately addressed their previous concerns. 

 

Reviewer #3 (Remarks to the Author): 

I am satisfied with the Authors' responses to my previous comments. 

We would also like to thank reviewer 3 for their previous comments.  

https://m.canouil.dev/eggla/articles/eggla.html
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