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Reviewer comments:
Reviewer #1

(Remarks to the Author)

Coming from a perspective of primarily a learning researcher, | am not sure | can fully appreciate the contribution of this
paper. The learning method used in the paper appears to be off-the-shelf manifold learning, and the (hyper)parameters used
appear to be devised by trial and error (e.g., for the latent space dimension, "we note very little gain in accuracy without a
substantial increase in the latent space dimension").

I am not making these observations as a complaint, just as a rationale for my conclusion that the true contribution of this
paper can only lie in its application to real data and subsequent shape optimization. On those points, | believe the authors'
results (although, as stated, they is far from my field of expertise), but | am left wondering about benchmarks: the paper
makes an argument that explicitly data-driven methods (i.e., learning) can be better and faster than traditional analysis. It
would be good to offer some -- inasmuch as possible, quantified -- support to that claim. While there is a written discussion in
the shape optimization section, | am wondering if it could be explicitly said what the insights are that would not have been
easily obtainable using traditional methods, why they would not be obtainable using traditional methods, and how much they
affect performance.

Reviewer #2

(Remarks to the Author)
The reviewer appreciates the work and effort put in by the authors. However, it is tough to justify the novelty of this work,
especially, for a journal publication.

A non-comprehensive list of previous work in this space below:

There are has been extensive research in using data-driven surrogate models for drag prediction. Few examples below:
Learning mesh-based simulation with graph networks.

Prediction of Aerodynamic Flow Fields Using Convolutional Neural Networks

Geometry-Informed Neural Operator for Large-Scale 3D PDEs

DrivAerNet: A Parametric Car Dataset for Data-Driven Aerodynamic Design and Graph-Based Drag Prediction

Several papers have used the concept of latent space:

Concept Activation Vectors for Generating User-Defined 3D Shapes

Surrogate Modeling of Car Drag Coefficient with Depth and Normal Renderings

On the efficiency of a point cloud autoencoder as a geometric representation for shape optimization
Point2ffd: Learning shape representations of simulation-ready 3d models for engineering design optimization
Exploiting local geometric features in vehicle design optimization with 3d point cloud autoencoders
Scalability of learning tasks on 3d cae models using point cloud autoencoders

Several papers have discussed optimization techniques:

A Data-Driven Interactive System for Aerodynamic and User-centred Generative Vehicle Design
Machine learning in aerodynamic shape optimization

Multi-fidelity deep learning for aerodynamic shape optimization using convolutional neural network

This paper - Concept Activation Vectors for Generating User-Defined 3D Shapes - especially, is very similar to to the current
paper.



Given the extensive body of published work, it is difficult to justify the novelty of this paper for an archival journal publication.
Reviewer #3

(Remarks to the Author)
This paper proposes a data-driven strategy that combines a nonlinear autoencoder and high-fidelity simulation data to
optimize the aerodynamic design of electric vehicles. | have below the comments to the authors.

1.The introduction effectively outlines the context and importance of aerodynamic design in electric vehicles. However, the
transition from traditional methods to the proposed data-driven approach could be elaborated further. Clarifying how the
proposed method specifically improves over traditional aerodynamic optimization techniques will help in understanding the
novel contributions of your work more distinctly.

2. The methodology section describes the use of a nonlinear autoencoder for deriving low-dimensional representations of
vehicle geometries and their aerodynamic performance. It would enhance the paper if the authors could provide more
detailed justification for choosing this specific machine learning model over others. Additionally, a comparison with other
potential models could provide insight into the robustness and efficiency of the chosen method.

3.The results section demonstrates the capability of the proposed method in optimizing vehicle shapes for better
aerodynamic performance. However, the validation of these results appears limited to comparisons within the dataset itself.
It would be beneficial if external validation or cross-validation methods were applied to ensure that the model's predictions
are robust and applicable in real-world scenarios. This could involve testing the optimized designs in physical wind tunnel
experiments or through independent computational fluid dynamics simulations.

4. While the manuscript touches upon the computational advantages of the proposed method, a detailed analysis comparing
the computational costs (both time and resources) against traditional methods is missing. Providing explicit metrics on
computational savings could significantly strengthen the case for the proposed data-driven approach.

5.The discussion section could be expanded to include a more detailed examination of the limitations of the current study.
For instance, the impact of varying mesh resolutions on the model's accuracy or the sensitivity of the model to different types
of vehicle geometries could be explored. Additionally, outlining potential future work, such as integrating other vehicle
performance metrics beyond aerodynamics (like weight or electric consumption), would provide a roadmap for extending the
research.

6. More details on the experimental setup and data collection process used to obtain the vehicle geometries and their
aerodynamic performance would enhance the reliability of the study. This includes specifying the conditions under which the
data were collected, any preprocessing steps taken, and the criteria used for data inclusion or exclusion.

Version 1:

Reviewer comments:

Reviewer #1

(Remarks to the Author)

| thank the authors for the clarifications relevant to my comments. As stated previously, the nature of the paper's claimed
contribution -- aerodynamic analysis and design -- essentially excludes my expertise, which is in learning. | appreciate the
short discussion on the benefits from the standpoint of computational complexity, although | am pointing out that the big-O
notation in "O(1074) hours" is misused: big-O has to do with asymptotic analysis, not with order of magnitude or approximate

amounts.

Altogether, since the authors and | agree that the paper's claimed contribution is not in novel learning methods, | have no
further comments and defer to more qualified reviewers to evaluate the application content.

Reviewer #2

(Remarks to the Author)

Reviewer #3

(Remarks to the Author)
The authors addressed my previous comments and | don't have comments further
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Response to Reviewer 1

Journal: Communications Engineering
Title: Aerodynamics-guided machine learning for design optimization of electric vehicles

Authors: Jonathan Tran, Kai Fukami, Kenta Inada, Daisuke Umehara, Yoshimichi Ono, Kenta Ogawa, and Kunihiko
Taira

Date sent: August 26, 2024

The authors would like to thank the reviewers for taking their time to review our manuscript. Based on the reviewers’
comments, revisions have been made to the manuscript, with major changes highlighted in red. We hope our responses
fully address the comments from the reviewer. In what follows, we list the reviewer’s comments with our responses
shown in blue.

1. Coming from a perspective of primarily a learning researcher, I am not sure I can fully appreciate the contribution
of this paper. The learning method used in the paper appears to be off-the-shelf manifold learning, and the (hy-
per)parameters used appear to be devised by trial and error (e.g., for the latent space dimension,“we note very little
gain in accuracy without a substantial increase in the latent space dimension”).

Response: We agree with the reviewer’s initial point — that is, from a machine learning perspective we are making
use of existing manifold learning and optimization procedures. However, we would like to note that the novelty of the
current work lies not only in the application to real industry designs but in the generation and aerodynamic analysis
of the dataset itself. In comparison to the most comprehensive existing studies (e.g. DrivAerNet, Elrefaie et al.,
2024) we use significantly higher-fidelity simulations that more accurately capture aerodynamic phenomena for real
vehicles. The current work utilizes large-eddy simulations (LES) with production vehicle designs for the first time. The
computational setup more accurately reflects the conditions of the physical wind tunnel testing environment which was
used to validate the simulation (Nagaoka et al., 2024). Previous studies make use of a steady-state Reynolds-averaged
Navier-Stokes (RANS) equations solver at lower fidelity and velocities which results in less accurate results than LES.
It should be made clear that the difference is not simply a matter of numerical accuracy, but it is that entirely different
physical phenomena are captured with our more accurate simulations, such as the existence of a wheel wake from
the rotating mesh solver. We have changed the discussion in the introduction and analysis (pages 3,4) as well as the
discussion of the simulations (page 8) to more directly address these details. We also refer readers to the cited source
for further discussion on the simulations.

e Elrefaie, M., Morar, F., Dai, A., & Ahmed, F. (2024). DrivAerNet++: A Large-Scale Multimodal Car
Dataset with Computational Fluid Dynamics Simulations and Deep Learning Benchmarks. arXiv preprint
arXiv:2406.09624.

e Nagaoka, H., Yenerdag, B., Ambo, K., Philips, D., Ivey, C., Bres, G., & Bose, S. (2024). Prediction of aerody-
namic drag in SUVs with different specifications by using Large-Eddy simulations. SAE Technical Paper, No.
2024-01-2525.

2. I am not making these observations as a complaint, just as a rationale for my conclusion that the true contribution
of this paper can only lie in its application to real data and subsequent shape optimization. On those points, I believe
the authors’ results (although, as stated, they is far from my field of expertise), but I am left wondering about bench-
marks: the paper makes an argument that explicitly data-driven methods (i.e., learning) can be better and faster than
traditional analysis. It would be good to offer some — inasmuch as possible, quantified — support to that claim. While
there is a written discussion in the shape optimization section, I am wondering if it could be explicitly said what the
insights are that would not have been easily obtainable using traditional methods, why they would not be obtainable
using traditional methods, and how much they affect performance.

Response: The reviewer asks for substantiation of how data-driven analysis can outperform traditional analysis,
which is a good point to be made. We make these arguments from a heuristic perspective. Traditional methods
would require an aerodynamicist to parse highly complex, nonlinear fluid interactions from a vast amount of trials
to understand how one may improve aerodynamic performance with specific modifications. Data-driven methods
can assist (not entirely replace) such analysis by producing plausible modifications that should be then validated
with traditional means. The time to run a single LES case at a satisfactory resolution for industry use can take up to
14,950 CPU hours on a computing cluster. Compared to the estimated training and evaluation time of the data-driven
approach which is on the order of a single hour, and can be run on a consumer laptop, we argue that data-driven
analysis can result in significant time savings. We update our discussion on pages 7 and 8 to reference the time costs.



Response to Reviewer 2

Journal: Communications Engineering
Title: Aerodynamics-guided machine learning for design optimization of electric vehicles

Authors: Jonathan Tran, Kai Fukami, Kenta Inada, Daisuke Umehara, Yoshimichi Ono, Kenta Ogawa, and Kunihiko
Taira

Date sent: August 26, 2024

The authors would like to thank the reviewers for taking their time to review our manuscript. Based on the reviewers’
comments, revisions have been made to the manuscript, with major changes highlighted in red. We hope our responses
fully address the comments from the reviewer. In what follows, we list the reviewer’s comments with our responses
shown in blue.

1. The reviewer appreciates the work and effort put in by the authors. However, it is tough to justify the novelty of
this work, especially, for a journal publication.

A non-comprehensive list of previous work in this space below:
There are has been extensive research in using data-driven surrogate models for drag prediction. Few examples below:

e Learning mesh-based simulation with graph networks.

e Prediction of Aerodynamic Flow Fields Using Convolutional Neural Networks

e Geometry-Informed Neural Operator for Large-Scale 3D PDEs

e DrivAerNet: A Parametric Car Dataset for Data-Driven Aerodynamic Design and Graph-Based Drag Prediction

Response: We agree with the reviewer’s point that there are studies in data-driven surrogate models for drag
prediction. From a machine-learning perspective, we have opted for possibly one of the most simple approaches.
However, we note that the novelty of the current work lies in the application to real industry designs as well as in the
generation and aerodynamic analysis of the dataset itself, which we argue is substantially more suitable for industrial
use.

It is to our knowledge that in comparison to the most comprehensive existing studies (e.g. DrivAerNet-++, Elrefaie
et al., 2024) we use significantly higher-fidelity simulations that more accurately capture aerodynamic phenomena for
real vehicles. The current work utilizes large-eddy simulations (LES) with a moving mesh solver and production
vehicle designs. Additionally, the computational setup has been experimentally validated with Honda’s 5 belt wind
tunnel testing environment (Nagaoka et al., 2024), which to our knowledge has not been performed in previous works.

Previous studies make use of steady-state Reynolds-averaged Navier—Stokes (RANS) equations solver at lower
fidelity and velocities, typically with less complex vehicle geometry which results in less accurate results than LES
(Elrefaie et al., 2024). Previous studies have not performed simulations at a similar complexity in terms of computa-
tional setup and simulation conditions. It should be made clear that the difference is not simply a matter of numerical
accuracy of the drag estimate, but it is that entirely different physical phenomena are captured with our more accurate
simulations. One example is the wake generated from outflow from the rotating front wheel geometry which is not
captured without the moving mesh solver, even with the use of LES (Nagaoka et al., 2024).

We have changed the discussion in the introduction and results (pages 3,4) and the discourse of the simulation
(page 8) to focus more specifically on these details. However, we have omitted a more detailed discussion of the
computational setup in favor of a discussion of the applications. Instead, we refer readers to the referenced sources.

e Elrefaie, M., Morar, F., Dai, A., & Ahmed, F. (2024). DrivAerNet++: A Large-Scale Multimodal Car
Dataset with Computational Fluid Dynamics Simulations and Deep Learning Benchmarks. arXiv preprint
arXiv:2406.09624.

e Nagaoka, H., Yenerdag, B., Ambo, K., Philips, D., Ivey, C., Bres, G., & Bose, S. (2024). Prediction of aerody-
namic drag in SUVs with different specifications by using Large-Eddy simulations. SAE Technical Paper, No.
2024-01-2525.

2. Several papers have used the concept of latent space:

e Concept Activation Vectors for Generating User-Defined 3D Shapes.
e Surrogate Modeling of Car Drag Coefficient with Depth and Normal Renderings
e On the efficiency of a point cloud autoencoder as a geometric representation for shape optimization



e Point2ffd: Learning shape representations of simulation-ready 3d models for engineering design optimization
e Exploiting local geometric features in vehicle design optimization with 3d point cloud autoencoders

e Scalability of learning tasks on 3d cae models using point cloud autoencoders
Several papers have discussed optimization techniques:

e A Data-Driven Interactive System for Aerodynamic and User-centred Generative Vehicle Design
e Machine learning in aerodynamic shape optimization

e Multi-fidelity deep learning for aerodynamic shape optimization using convolutional neural network

This paper - Concept Activation Vectors for Generating User-Defined 3D Shapes - especially, is very similar to to the
current paper.

Given the extensive body of published work, it is difficult to justify the novelty of this paper for an archival journal
publication.

Response: We agree that vehicle shape optimization has been discussed previously, with much more elaborate
approaches. However, the novelty of the present study is that it presents a more realistic application of data-driven
analysis to an industrial setting for a few reasons. Beyond what has already been mentioned about the quality of the
data set, none of the previous studies validate the results of the shape optimization or decoded geometries (outside
of the test data) with any aerodynamic analysis (much less that which has been validated by industrial wind tunnel
experiments). We perform an LES on geometries outside that of our validation and test dataset to verify the accuracy
of the learned latent trends.

In the present study, not only do we validate various decoded geometries (a few of which are shown in the results),
but we achieve satisfactory results on highly complex production designs with a simple model that can be run on
a consumer laptop. The time to run a single LES case at a satisfactory resolution for industry use can take up to
14,950 CPU hours on a computing cluster. Compared to the estimated training and evaluation time of this simple
data-driven approach is on the order of a single hour, we observe significant time savings. Our discussions on pages 7
and 8 are updated to reflect these comments



Response to Reviewer 3

Journal: Communications Engineering
Title: Aerodynamics-guided machine learning for design optimization of electric vehicles

Authors: Jonathan Tran, Kai Fukami, Kenta Inada, Daisuke Umehara, Yoshimichi Ono, Kenta Ogawa, and Kunihiko
Taira

Date sent: August 26, 2024

The authors would like to thank the reviewers for taking their time to review our manuscript. Based on the reviewers’
comments, revisions have been made to the manuscript, with major changes highlighted in red. We hope our responses
fully address the comments from the reviewer. In what follows, we list the reviewer’s comments with our responses
shown in blue.

1. The introduction effectively outlines the context and importance of aerodynamic design in electric vehicles. How-
ever, the transition from traditional methods to the proposed data-driven approach could be elaborated further.
Clarifying how the proposed method specifically improves over traditional aerodynamic optimization techniques will
help in understanding the novel contributions of your work more distinctly.

Response: Thank you for the helpful suggestion. Traditional methods would require an aerodynamicist to
parse highly complex, nonlinear fluid interactions from a vast amount of trials to understand how one may improve
aerodynamic performance with specific modifications. Data-driven methods can assist (not entirely replace) such
analysis by producing plausible modifications that should be then validated with traditional means. We update our
discussion on the introduction and on pages 7 and 8 to more directly address these comments.

2. The methodology section describes the use of a nonlinear autoencoder for deriving low-dimensional representations
of vehicle geometries and their aerodynamic performance. It would enhance the paper if the authors could provide
more detailed justification for choosing this specific machine learning model over others. Additionally, a comparison
with other potential models could provide insight into the robustness and efficiency of the chosen method.

Response: We justify the choice of our model for a few reasons. Models based on graph or point cloud data
often employ methods to discretize meshes into a suitable representation. Existing mesh-based methods include the
use of “shrink-wrapping” or “polycubes” which can produce distorted results for highly concave shapes or very sharp
and thin features (Umetani et al., 2018, Rios et al., 2021). This can produce very poor representations of important
features for aerodynamic prediction, such as underbody geometry. Additionally, such mesh based methods consider
only warping of a fixed number of control points, making exploration of more complex geometric modifications, such
as extrusions, difficult. Tt is for these reasons that we opt for a voxel representation rather than a point/graph based
model.

As for the specific choice of the PCA based autoencoder, the current approach of using PCA and an MLP offers a
compromise between computational feasibility and geometric fidelity for use in an industrial setting, with the present
model taking only around a single hour to train on a consumer-grade laptop. It has been previously found that a
simple autoencoder and the combination of PCA + nonlinear autoencoder performed similarly for shape generation
and interpolation with the major difference being the usage of local features (Rios et al., 2021). Knowing this, we
choose the PCA approach as the model training does not require the full state input (which is already on the order
of 2 million voxels for a 20 mm resolution). We do note that the present work can be easily applied to a fully
convolutional model if computational resources permit. We update our discussion on pages 7 and 8 to address the
reviewer’s comments.

e Umetani, N., & Bickel, B. (2018). Learning three-dimensional flow for interactive aerodynamic design, ACM
Transactions on Graphics, 37(4), 1-10.

e Rios, T., van Stein, B., Wollstadt, P., Béack, T., Sendhoff, B., & Menzel, S. (2021). Exploiting local geometric
features in vehicle design optimization with 3D point cloud autoencoders, IEEE Congress on Evolutionary
Computation, 514-521.

3. The results section demonstrates the capability of the proposed method in optimizing vehicle shapes for better
aerodynamic performance. However, the validation of these results appears limited to comparisons within the dataset



itself. It would be beneficial if external validation or cross-validation methods were applied to ensure that the model’s
predictions are robust and applicable in real-world scenarios. This could involve testing the optimized designs in
physical wind tunnel experiments or through independent computational fluid dynamics simulations.

Response: The reviewer has made a good point referring to the validation of the current model. We want to note
that the validation was performed in a few ways.

The computational setup for the Large Eddy Simulations was validated with wind-tunnel experiments at Honda’s
5 belt wind tunnel facility (Nagaoka et al., 2024). We have added a note of this this in the discussion of the simulations
on page 8.

As for the validation of the aerodynamic predictions of the machine learning model, we first performed a cross-
validation study on withheld cases with a train-validation-test split ratio of 80-10-10. Additionally, we performed an
independent CFD study of generated designs during the shape optimization process which are not in the dataset as
shown in Figures 5 and 6, using the same computational setup that has been experimentally validated. It is to our
knowledge that existing studies have not performed validation analyses to the extent that we have. We have updated
the discussion on page 7 to make these points more clear.

e Nagaoka, H., Yenerdag, B., Ambo, K., Philips, D., Ivey, C., Brés, G., & Bose, S. (2024). Prediction of aerody-
namic drag in SUVs with different specifications by using Large-Eddy simulations. SAE Technical Paper, No.
2024-01-2525.

4. While the manuscript touches upon the computational advantages of the proposed method, a detailed analy-
sis comparing the computational costs (both time and resources) against traditional methods is missing. Providing
explicit metrics on computational savings could significantly strengthen the case for the proposed data-driven approach.

Response: We agree that we could be more specific on explicit metrics in comparison to traditional analysis.
The time to run a single LES case at a satisfactory resolution for industry use can take up to 14,950 CPU hours on
a computing cluster. Compared to the estimated training and evaluation time of the data-driven approach which is
on the order of a single hour, and can be run on a consumer laptop, we argue that data-driven analysis can result in
significant time savings. We update our discussion on pages 7 and 8 to reference these comments.

5. The discussion section could be expanded to include a more detailed examination of the limitations of the current
study. For instance, the impact of varying mesh resolutions on the model’s accuracy or the sensitivity of the model
to different types of vehicle geometries could be explored. Additionally, outlining potential future work, such as inte-
grating other vehicle performance metrics beyond aerodynamics (like weight or electric consumption), would provide
a roadmap for extending the research.

Response: We have updated the discussion on pages 7 and 8 to discuss current limitations and future directions
for study. One limitation comes from choice of the voxelized data representation. While it may prove to be a more
accurate representation of some features, the required memory scales cubically with the data resolution. Currently,
we use PCA to make training and evaluating models computationally tractable. However, it would be of interest to
explore different methods to parameterize vehicle geometries that can accurately capture local geometric features while
retaining necessary fidelity for aerodynamic analysis. We also outline extensions of the work to additional relevant
parameters. This includes aerodynamic coefficients, like downforce/lift or sideforce, which are important for stability
and safety, or other relevant parameters like mass or volume.

6. More details on the experimental setup and data collection process used to obtain the vehicle geometries and their
aerodynamic performance would enhance the reliability of the study. This includes specifying the conditions under
which the data were collected, any preprocessing steps taken, and the criteria used for data inclusion or exclusion.

Response: We have updated the methods discussion on page 8 to include more details of the aerodynamic analysis.
For the aerodynamic data collection, the flow is allowed to initialize for 0.32 s (4000 steps), with statistics averaged
over the next 0.8 s (10000 steps) to compute the average flow without transient effects from the flow field initialization.
Baseline geometries were taken from existing production designs and were parametrically modified. Due to the page
limitation of Communications Engineering, we refer readers to more detailed discussion of the aerodynamic data
generation.

e Nagaoka, H., Yenerdag, B., Ambo, K., Philips, D., Ivey, C., Bres, G., & Bose, S. (2024). Prediction of aerody-
namic drag in SUVs with different specifications by using Large-Eddy simulations. SAE Technical Paper, No.
2024-01-2525.
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