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SUPPORTING INFORMATION

1. Analytical Approaches

The Elastic Contact Model

If the force curve can be regarded as an elastic contact, the analysis can be performed with an elastic 

contact model. Since it has been found that the DMT model tends to have a larger error due to ignoring 

deformation caused by adhesion, especially in soft materials1, the JKR model or intermediate models 

in proximity to JKR limit may be preferred. In this paper, force curve analyses with the JKR and MD 

models were performed. In these theories, it is Young’s modulus 𝐸 and the work of adhesion 𝑤 that 

determine the contact situation. Being an elastic contact, i.e., the contact state is in equilibrium, it is 

assumed that 𝐸 and 𝑤 take constant values throughout the entire contact. Taking into account the 

difficulty in determining the zero-point of 𝛿, estimation of the contact radius 𝑎 was conducted 

through an optimization method. The optimization calculations were performed using the `minimize` 

function of the `optimize` module provided in the Python Scipy package.

For analysis using the JKR model, the following procedure was used (Figure S1(a)).

① First, the unloading curve was analyzed. Since the unloading curve usually has more data points 

than the loading curve, and many existing examples of force curve analysis use the unloading 

curve, it is fair to start with an analysis of the unloading curve. Given 𝐸 and 𝑤𝑢𝑛𝑙𝑜𝑎𝑑 as fitting 

parameters, 𝑃 and 𝛿 were calculated using Equations (7) and (8) with various 𝑎. Then, the 

parameters were optimized to minimize the error between this theoretical 𝑃 and 𝛿 and the 

experimental 𝑃 and 𝛿 for the unloading curve. At this point, all experimental 𝛿 for unloading 

were offset so that at a specific point (here, the jump-out point C), its penetration 𝛿𝐶 matches 

between calculated and theoretical values. Offsetting 𝛿 in this manner means considering that 

all points of the unloading curve can be represented by the JKR model. The 𝐸 optimized from 

the unloading curve was assumed to dominate the entire contact. All 𝑎 for unloading curve were 



then calculated from Equation (7) using the optimized 𝐸 and 𝑤𝑢𝑛𝑙𝑜𝑎𝑑.

② Second, the loading curve was analyzed using the optimized 𝐸. Given 𝑤𝑙𝑜𝑎𝑑 as a fitting 

parameter, the optimization was performed similarly to the unloading curve. This time, all 

experimental 𝛿 for loading were offset so that at the maximum load point B, its contact radius 

𝑎𝐵 (which can be obtained using Equation (7) with 𝑤𝑢𝑛𝑙𝑜𝑎𝑑 and 𝑤𝑙𝑜𝑎𝑑 for unloading and 

loading, respectively) matches between loading and unloading. This is because the contact radius 

should be continuously connected at point B, where the transition between the loading phase and 

unloading phase occurs. All 𝑎 for loading curve were calculated from Equation (7) using the 

optimized 𝐸 and 𝑤𝑙𝑜𝑎𝑑.

Note that 𝛿 offset and 𝑤 are obtained separately for the loading and unloading curves. 

For analysis using the MD model, the procedure proceeded in the same manner as for the JKR 

analysis (Figure S1(b)).

① First, the unloading curve was analyzed. Given 𝜆𝑢𝑛𝑙𝑜𝑎𝑑 and 𝑤𝑢𝑛𝑙𝑜𝑎𝑑 as fitting parameters, 𝑃 

and 𝛿 were calculated using Equations (10) to (13) with various 𝑚. Then, those parameters 

were optimized to minimize the error between the theoretical 𝑃 and 𝛿 and the experimental 𝑃 

and 𝛿 for the unloading curve, with the experimental 𝛿 being offset accordingly using point C. 

From 𝜆𝑢𝑛𝑙𝑜𝑎𝑑 and 𝑤𝑢𝑛𝑙𝑜𝑎𝑑 optimized for the unloading curve, Young’s modulus 𝐸 can be 

obtained from Equation (10). As in the JKR analysis, this 𝐸 obtained from the unloading curve 

was assumed to dominate the entire contact. All 𝑎 for unloading curve were then calculated 

from Equation (13) using the optimized 𝜆𝑢𝑛𝑙𝑜𝑎𝑑 and 𝑤𝑢𝑛𝑙𝑜𝑎𝑑.

② Second, the loading curve was analyzed using the optimized 𝐸. Given 𝜆𝑙𝑜𝑎𝑑 as a fitting 

parameter, the optimization was performed in the same manner as described above. All 

experimental 𝛿 for loading were offset so that the contact radius is continuously connected 

across point B. From 𝜆𝑙𝑜𝑎𝑑 optimized for the loading curve, 𝑤𝑙𝑜𝑎𝑑 can be obtained from 

Equation (10). All 𝑎 for the loading curve were calculated from Equation (13) using the 

optimized 𝜆𝑙𝑜𝑎𝑑 and 𝑤𝑙𝑜𝑎𝑑.

In the MD model, in addition to the 𝛿 offset and 𝑤, 𝑚, which defines the interaction zone, is 

obtained separately for the loading and unloading curves. Again, if the two curves completely overlap, 

then all values should be the same for the loading and unloading curves.

Although the above procedures are slightly cumbersome, they are effective for comparing the 

elastic contact models with the viscoelastic Barthel model later. This procedure can treat the work of 

adhesion for loading and unloading independently, as seen in viscoelastic contacts, while keeping 

Young’s modulus constant. At any rate, 𝛿 offset and 𝑤 will result in same values for the loading 



and unloading curves if the two curves completely overlap, i.e., in the case of elastic contact.

Conventionally, when applying the JKR model to force curve analysis, algebraic approaches1,2,3 or 

curve fitting and parametric fitting4,5 utilizing characteristic points on the force curve (e.g. the jump-

out point C) were used. The present procedure for the JKR analysis is also a kind of parametric fitting, 

but it is unique in that 𝐸 and 𝑤 are obtained for loading and unloading respectively, taking into 

account the arbitrariness of the zero-point of the penetration and the continuity of the contact radius. 

It is also an effective method in that it can be applied in the same way to the MD models, which are 

conventionally difficult to handle. Furthermore, the deviation of the force curve from elastic contact 

theories can be directly discussed as a fitting error, which makes these scalable methods.

The Viscoelastic Contact Model

In describing the Barthel model, the viscoelasticity of the sample must be represented by a 

viscoelastic model. Here, a simple standard linear solid (SLS) model was employed, and the relaxation 

function and the creep compliance function were expressed respectively as follows:
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∗, where 𝐸0 is the instantaneous modulus and 𝐸∞ is the relaxed modulus. 𝑇 is the 

relaxation time that governs the time scale of the relaxation phenomena. 𝐸∞ can be estimated in the 

analysis as discussed below, but 𝐸0 and 𝑇 cannot. Therefore, in the analysis, 𝐸0 was given a fixed 

value, and 𝑇 was treated as a fitting parameter.

Force curve analysis using the Barthel model was performed using the following procedure (Figure 

S1(c)). The integral calculations were performed with the ̀ integrate` module provided in Python SciPy 

package.

① Using a force curve that can be regarded as an elastic contact, 𝑤 and 𝐸∞ were calculated based 

on the JKR analysis as described in the previous section. Since this force curve was measured at 

such a low speed that it can be considered elastic, the obtained modulus can be considered as the 

relaxed modulus. As will be discussed later, the samples used in this study were estimated to 

have sufficiently small interaction zones. Therefore, 𝑤 and 𝐸∞ obtained by the JKR fitting are 

reasonable.

② Given the contact radius 𝑎𝐴 at the jump-in point (point A) as a fitting parameter, 𝛿𝐴 and 𝐸𝐴 



were calculated from Equations (7) and (8) using 𝑤 and 𝑃𝐴. 𝐸𝐴 can be considered as the 

modulus governing the contact at the jump-in point. This process is intended to incorporate the 

relaxation state at the jump-in point, assuming that the contact state at there can be expressed by 

the JKR model. In this way, depending on the size of 𝑎𝐴 given (and 𝛿𝐴 calculated), the 

relaxation condition at point A (which is reflected in 𝐸𝐴) can be captured into the force curve 

analysis. All experimental 𝛿 (for loading and unloading) were then offset so that at the jump-in 

point, its penetration 𝛿𝐴 matches between calculated and experimental values.

③ All 𝑎(𝑡) were calculated considering the following steps.

A) Suppose the contact radius is known at times up to 𝑡𝑛―1, i.e., (𝑡𝐴, 𝑃𝐴, 𝛿𝐴, 𝑎𝐴), (𝑡1, 𝑃1, 𝛿1, 

𝑎1), (𝑡2, 𝑃2, 𝛿2, 𝑎2),…, (𝑡𝑛―1, 𝑃𝑛―1, 𝛿𝑛―1, 𝑎𝑛―1) are all known. Here, the time at point A is 

taken as the starting point of the contact, i.e., 𝑡𝐴 = 0.

B) The 𝑎𝑛 at time 𝑡𝑛 can be obtained by optimizing in a way that minimizes the difference 

between the experimental value of 𝑃𝑛 and the calculated value of 𝑃𝑛 from Equation (19). 

As noted above, 𝐸0 was given a fixed value and 𝑇 was treated as a fitting parameter.

The above steps can be applied inductively to all points in turn if 𝑎𝐴 and 𝛿𝐴 are known. 

Therefore, the process up to this point allows the calculation of all 𝑎(𝑡) at each point of the force 

curve. Note, however, that the 𝑎(𝑡) calculated here considers only Equation (19) and does not 

consider the self-consistency equations.

④ Using the self-consistency equations, all 𝜖(𝑡) and 𝑡𝑟(𝑡) can be obtained. Note that since 𝑎(𝑡) 

has already been determined above, the crack velocity 𝑑𝑎(𝑡)/𝑑𝑡 can be calculated at each time. 

Then Equation (20) (or (21)) and 𝑡𝑟(𝑡) = 𝜖(𝑡) |𝑑𝑎(𝑡)/𝑑𝑡| can be solved as a simultaneous 

equation for 𝜖(𝑡) and 𝑡𝑟(𝑡).

⑤ 𝑎(𝑡), 𝜖(𝑡), and 𝑡𝑟(𝑡) calculated so far must concurrently satisfy the coupling equations. To 

check this, the auxiliary function 𝑔(𝑎,𝑡) was calculated from Equations (22) and (23), and then 

it was verified whether they were consistent. The fitting parameters, 𝑎𝐴 and 𝑇, were optimized 

until the two 𝑔(𝑎(𝑡),𝑡) became consistent.

At first glance, this fitting method may appear to be incomplete, using only a small part of the force 

curve. However, the advantage of the Barthel’s equation, such as Equation (19), is that when 

calculating 𝑎(𝑡) at a certain point, it incorporates the history up to that point, meaning all the points 

on the force curve leading up to that point are considered. Furthermore, the auxiliary function 𝑔(𝑎,𝑡) 

was calculated from Equations (22) and (23), and the fitting parameters were optimized so that the 

difference between these 𝑔(𝑎,𝑡) values is minimized across the entire force curve. Therefore, it does 

not mean that only a part of the force cure is being used.





Figure S1 Analysis procedures with (a) the JKR model, (b) the MD model, and (c) the Barthel model.

2. Force curve analysis with the elastic JKR and MD models

The force curve of the PDMS at a sufficiently small ramp rate can be regarded as elastic because 

of the overlap of the loading and unloading curves. So, first of all, such an elastic curve at 10 nm/s 



was analyzed using the JKR and MD models. Figure S2(a) shows the time variation of the contact 

radius obtained from the JKR and MD models, and Table S1 shows the physical values estimated from 

them. In terms of comparing the JKR and the MD models, the physical values estimated from those 

two models in Table S1 were almost identical, and the estimated contact radius in Figure S2(a) entirely 

overlaps. The work of adhesion 𝑤 obtained from the loading and unloading curves was almost same 

in both models, as expected for the elastic contact. Since the parameter 𝜆 for the MD model was 

about 117, implying that the contact was quite JKR-like, it seems reasonable that there was almost no 

difference between the two models. The interaction zone size 𝜖 was estimated to be about 0.01 nm 

throughout the contact, which was quite small compared to the contact radius. Figure S3(a) shows the 

experimental force curves during contact reflecting 𝛿 offset for the loading and unloading, with the 

theoretical curves obtained from the JKR model. Same figure for the MD model was omitted as no 

differences were found with the JKR model. The experimental curves and the theoretical curves were 

in good agreement for the loading and unloading, confirming that the analysis was carried out correctly. 

Note that the penetration at point B continuously connected between the loading and unloading (Figure 

S3(a) inset).

Next, although somewhat unreasonable, the force curve at a higher ramp rate (9770 nm/s), where 

its viscoelasticity was not negligible, was analyzed using the JKR and MD models. The results are 

shown in Figure S2(b), Figure S3(b), and Table S1. Again, there was little difference between the 

results from the JKR model and the MD model. In Figure S3(b), while the unloading curve agreed 

well with the experimental curve and the theoretical curve, the loading curve showed a large mismatch 

between the two. The present analysis assumes that the same Young’s modulus (i.e., the slope of the 

force curve) dominates in both the loading and unloading phases (and this assumption seems at least 

reasonable for the bulk properties). However, when the ramp rate is large, the loading and unloading 

curves do not overlap, i.e., the slopes are different, so it becomes unfeasible to analyze the loading 

curve with the slope of the unloading curve. Due to this, in minimizing the error between the 

theoretical curve and the experimental curve during loading, the penetration at point B became 

discontinuous with the unloading curve (Figure S3(b) inset). Therefore, though the time variation of 

the contact radius in Figure S2(b) appears to be satisfactory, the validity of this result is questionable. 

As for Table S1, the results of the loading analysis are unreliable, while 𝐸 and 𝑤𝑢𝑛𝑙𝑜𝑎𝑑 from the 

well-executed unloading analysis may be reasonable.

As described above, treating viscoelastic force curves with elastic contact theories faces limitations, 

especially when discussing the contact radius. Some papers discuss the contact radius of the unloading 

phase with elastic models after careful preparation of an experimental system in which the start of 



unloading (i.e. point B) can be regarded as a fully relaxed state6-9. However, it is not guaranteed that 

point B is in a fully relaxed state in AFM force curve measurements. In addition, the loading and 

unloading curves cannot be treated in a unified manner under experimental systems specializing in 

unloading analysis. Therefore, to correctly discuss the contact radius in both loading and unloading of 

viscoelastic force curves, an analysis based on the viscoelastic contact model is required.

Figure S2 The time variation of the contact radius for the ramp rate of (a) 10 nm/s and (b) 9770 nm/s. 

Thick solid blue lines and thin dashed orange lines represent the contact radius from the JKR and MD 

models, respectively.



Figure S3 Comparison between experimental curves (blue lines for loading and green lines for 

unloading) and theoretical curves (red lines for loading and orange lines for unloading). (a) shows 

curves for 10 nm/s, while (b) shows curves for 9770 nm/s. Insets provide an enlarged view around 

point B.

Table S1 Physical values estimated in force curve analysis using the JKR and MD models.

3. Force curve analysis with the viscoelastic Barthel model

Following the discussion so far, analyses based on the Barthel model were conducted using the 

method shown above. 𝐸∞ and 𝑤 were determined to be 3.38 MPa and 0.0466 N/m, respectively, 

based on the JKR analysis of the force curve of 10 nm/s in Table S1. 𝐸0 was assumed to be 1 GPa, a 

common value for the instantaneous modulus of elastomers. In the optimization, optimal 𝑇 and 𝑎𝐴 

were grid-searched in the range of 1.0 × 10―8 to 5.0 × 10―6 s and 175 to 350 nm, respectively, 

such that the auxiliary function 𝑔(𝑎(𝑡),𝑡) obtained from Equations (22) and (23) was consistent 



throughout the entire time period of the contact. Recall that Equations (22) and (23) both correspond 

to the normal surface stress acting on the surface, but Equation (22) is an expression as a superposition 

of the history of stress acting on the location of interest, while Equation (23) is an expression of the 

stress currently acting on that location based on the double-Hertz model. Therefore, under optimal 𝑇 

and 𝑎𝐴, 𝑔(𝑎(𝑡),𝑡) obtained from Equations (22) and (23) should be equal. As an example, consider 

the analysis of the force curve at 301 nm/s. Under the optimal 𝑇 and 𝑎𝐴, 𝑔(𝑎(𝑡),𝑡) obtained from 

Equation (22) (thick solid blue line) and that obtained from Equation (23) (thin dashed orange line) 

were consistent over the entire time period, as shown in Figure S4(a). Note that, although 𝑔(𝑎(𝑡),𝑡) 

is defined as a transform of negative adhesive stress, its sign is reversed in this figure for clarity. To 

achieve such an optimal result, the difference between two 𝑔(𝑎(𝑡),𝑡) curves (Δ𝑔) was examined and 

mapped for various 𝑇 and 𝑎𝐴 as shown in Figure S4(b). The point where the minimum Δ𝑔 was 

obtained in this heat map (X sign) was considered to be the optimum values.

Figure S4 The Barthel analysis of the force curve at 301 nm/s. (a) A comparison of two 𝑔(𝑎(𝑡),𝑡) 

from Equations (22) and (23) at optimal 𝑇 and 𝑎𝐴. (b) Δ𝑔 mapped for different 𝑇 and 𝑎𝐴.

The optimized fitting parameters are shown in Table S2. As the ramp rate increased, the optimal 

value of 𝑎𝐴 became steadily smaller. 𝑎𝐴 was introduced to capture the relaxation state at the jump-

in point A, which was reflected in 𝐸𝐴. Thus, this result implies that 𝑎𝐴 gets smaller and 𝐸𝐴 gets 

larger as the jump-in behavior becomes more instantaneous under the large ramp rates. This is 

consistent with the rate dependency in Figure 2(a), where the tip was less likely to be pulled in at point 

A at higher rates. 𝑇 was estimated to be of the very small order of 10―6 to 10―7 s. Since 𝑇 

obtained here is a time constant that approximates the actual PDMS relaxation behavior in a simple 

SLS model with a single relaxation time, its detailed physical meaning is not entirely clear. Yet, it can 

be assumed to have some relevance to the actual relaxation behavior of the PDMS. Given the small 



tan𝛿 of PDMS, it seems reasonable that 𝑇 is very small and that the relaxation completes almost 

instantaneously. It is of interest that 𝑇 tended to decrease as the ramp rate increased. As 𝑇 is an 

intrinsic property of the PDMS in the SLS model, it should inherently be estimated at a constant value. 

The fact that 𝑇 was not constant in the present analysis may indicate that the relaxation process 

contributing to the contact phenomena may vary according to the time scale of the measurement, as 

the actual elastomer relaxation is expressed by multiple relaxation phenomena. This perspective needs 

better understanding in the future, for example by considering the Barthel analysis using more realistic 

viscoelastic models such as the Prony approximation or fractional viscoelastic models10. Another 

aspect that may need to be investigated is the possibility that the measured force curves may reflect 

not only the physical properties of the PDMS, but also other factors such as the stiffness of the AFM 

probe and its responsiveness.

Table S2 Optimized fitting parameters for the Barthel analysis.

References

(1) Fujinami, S.; Ueda, E.; Nakajima, K.; Nishi, T. Analytical methods to derive the elastic modulus 

of soft and adhesive materials from atomic force microscopy force measurement. J. Polym. Sci., Part 

B: Polym. Phys., 2019, 57 (18), 1279-1286.

(2) Sun, Y.; Akhremitchv, B.; Walker, G.C. Using the adhesive interaction between atomic force 

microscopy tips and polymer surfaces to measure the elastic modulus of compliant samples. Langmuir, 

2004, 20 (14), 5837-5845.

(3) Grunlan, J.C.; Xia, X.; Rowenhorst, D.; Gerberich, G.G. Preparation and evaluation of tungsten 

tips relative to diamond for nanoindentation of soft materials. Rev. Sci. Instrum., 2001, 72 (6), 2804-

2810.

(4) Dokukin, M.E.; Sokolov, I. Quantitative mapping of the elastic modulus of soft materials with 

HarmoniX and PeakForce QNM AFM modes. Langmuir, 2012, 28 (46), 16060-16071.

(5) Ebenstein, D.M.; Wahl, K.J. A comparison of JKR-based methods to analyze quasi-sitatic and 



dynamic indentation force curves. J. Colloid Interface Sci., 2006, 298 (2), 652-662.

(6) Violano, G.; Chateauminois, A.; Afferrante, L. A JKR-like solution for viscoelastic adhesive 

contacts. Front. Mech. Eng., 2021, 13 (7), 2021.

(7) Violano, G.; Afferrante, L. Adhesion of compliant spheres: an experimental investigation. Proc. 

Struct. Integr., 2019, 24, 251-258.

(8) Das, D.; Chasiotis, I. Rate dependent adhesion of nanoscale polymer contacts. J. Mech. Phys. 

Solids, 2021, 156, 104597.

(9) Ciavarella, M.; Joe, J.; Papangelo, A.; Barber, J.R. The role of adhesion in contact mechanics. J. 

R. Soc. Interface, 2019, 16 (151), 20180738.

(10) Bonfanti, A.; Kaplan, J.L.; Charras, G.; Kalba, A. Fractional viscoelastic models for power-law 

materials. Soft Matter, 2020, 16, 6002-6020.


