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S 1 Model-based Extensions to Forest Model

S 1.1 Extension to High-dimensional Clustering Model

For clustering high dimensional data, good performances have been demonstrated through

finding a low-dimensional sparse representation zi for each yi (Vidal, 2011; Wu et al., 2014),

and then clustering zi instead of yi. To briefly review the idea, for high-dimensional data,

a useful assumption is that yi ∈ Rp can be “reconstructed” using a linear combination of a

few other yj’s, that is, yi ≈
󰁓

j wi,jyj, with wi,i = 0 and wi = (wi,1, . . . , wi,n) contains only

a few non-zeros.

Although wi is obtained as a vector of coefficients, it can be viewed as a low-dimensional

relative coordinate, that can be used instead of the absolute coordinate yi ∈ Rp. The key

idea is that if wi and wj are in different subspaces (w′
iwj = 0), then yi and yj are likely to

be in different clusters. Using a similarity function defined on each pair (wi, wj), one could

obtain a similarity matrix and then apply the spectral clustering algorithm.

We now propose a generative distribution. We use W = [w′
1, . . . , w

′
n] as the n×n matrix

with the ith row equal to wi, and Y the n× p data matrix. We include the reconstruction

loss 󰀂Y −WY 󰀂2F (with 󰀂.󰀂F the Frobenius norm) via a matrix Gaussian distribution:

Y ∼ Matrix-Gaussian
󰀋
O, σ2

y [(In −W )′(In −W )]−1, Ip
󰀌
.

We note a link between this model and the spatial autoregressive (SAR) model (Ord,

1975), except that the neighborhood information W is not known. We view each wi as a
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transform of another unit-norm vector zi that satisfies 󰀂zi󰀂2 = 1 and 󰀂zi󰀂0 = d (the number

of non-zeros is d) via

wi,k = αizi,k, for k ∕= i, wi,i = 0, zi,i ∈ R,

with αi > 0 some scale parameter, and zi,i not necessarily zero. And we model (z1, . . . , zn)

as from a forest model based on sparse von Mises–Fisher densities:

z1, . . . , zn ∼ Forest Model(T ),

f(zi | zj;κ) ∝ exp(κz′izj)1(z
′
izj ∕= 0)1(󰀂zi󰀂2 = 1, 󰀂zi󰀂0 = d),

r(zi) ∝ 1(󰀂zi󰀂2 = 1, 󰀂zi󰀂0 = d).

The leaf f(zi | zj;κ) is supported in those (d−1)-dimensional unit spheres S(d−1) ⊂ S(n−1),

such that zi and zj are not in completely disjoint subspaces. The von Mises–Fisher density

in a given S(d−1) has a tractable normalizing constant that depends on κ only. Further,

with 󰀂zj󰀂0 = d, we can easily tell the number of those S(d−1) with zi : z
′
izj ∕= 0 is equal to

󰀃
n
d

󰀄
−

󰀃
n−d
d

󰀄
. Similarly, r is a uniform density on all S(d−1) ⊂ S(n−1). Therefore, both of

the normalizing constants in f and r are available. We refer to the model for Y as a latent

forest model.

One could further assign priors on κ, σ2
y and αi’s, and develop a Gibbs sampling al-

gorithm for posterior estimation. In this section, since our main focus is to demonstrate

a high-dimensional model extension and compare the point estimates against a few other

algorithms, we use a fast posterior approximation algorithm for the above model. Specifi-

cally, we first use the lasso algorithm to solve for a sparse Ŵ = argminW :wi,i=0 ∀i(1/2)󰀂Y −

WY 󰀂2F + λ󰀂W󰀂1 with λ = 1; then for each ŵi, we take the top (d − 1) elements in mag-

nitude, and set the other elements to zero. Then we replace wi,i by 1 and normalize the

vector to produce a unit 2-norm vector zi. Conditioning on the transformed matrix Ẑ and

κ fixed to 10, we sample the forest T using the random-walk covering algorithm.
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To assess the clustering performance, we use the image data from the Yale face database

B (Georghiades et al., 2001). This dataset contains single light source images of 10 subjects.

We take the ones corresponding to the forward-facing poses under 64 different illumination

conditions (shown in Figure S.1). We resize each image to have 48×42 pixels. We label

those images by subject id from 1 to 10. Therefore, we have a clustering task with n = 640

and p = 2, 016.

(a) One subject under illumina-

tion condition 1.

(b) One subject under illumi-

nation condition 2.

(c) One subject under illumina-

tion condition 3.

(d) Another subject under illu-

mination condition 1.

(e) Another subject under illu-

mination condition 2.

(f) Another subject under illu-

mination condition 3.

Figure S.1: a few sample photos from the Yale face database B (Georghiades et al., 2001).

We compare the performance against several popular clustering methods. To produce

a point estimate, for the forest model on zi’s, we apply spectral clustering with K = 10 on
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the posterior co-assignment probability matrix (as described in the main text); for each of

the other methods, we use K = 10 as the specified parameter. To evaluate the clustering

accuracy, we relabel the point estimate (c1, . . . , cn) using the Hungarian matching algorithm

(Kuhn, 1955), so that the Hamming distance disth between (c1, . . . , cn) and the subject id’s

is minimized. Then the clustering accuracy is calculated as (n− disth)/n. As the accuracy

can be sensitive to the initialization of each algorithm, for a fair comparison, we repeat

running each algorithm 20 times, and report the mean and the 95% confidence interval.

Method K-means Mclust (VII) Mclust (VEI) Mclust (EII)

Accuracy 0.18 (0.16, 0.21) 0.24 (0.24, 0.24) 0.26 (0.26, 0.26) 0.23 (0.23, 0.23)

Method HDDC (AkjBkQkDk) HDDC (AkjBQkDk) SpecC on e−λs󰀂yi−yj󰀂2
2 SpecC on y′iyj

Accuracy 0.324 0.296 0.35 (0.25, 0.43) 0.30 (0.28, 0.34)

Method K-means on wi SpecC on (wi
′wj)+ SpecC on |wi,j |+ |wj,i| Forest on zi

Accuracy 0.25 (0.18, 0.39) 0.64 (0.52, 0.69) 0.59 (0.46, 0.68) 0.82 (0.71, 0.93)

Table S.1: Clustering 640 face photos collected from 10 subjects.

Tabel S.1 shows the results. We use the K-means function from the native R library,

the Mclust function in the MCLUST package (Scrucca et al., 2016) for various Gaussian

mixture models, the hddc function in HDclassif (Bergé et al., 2012) package for Gaussian

mixture models with near low-rank covariance matrices, and the specc function from the

kernlab package (Karatzoglou et al., 2004) for the spectral clustering algorithm. For those

spectral clustering algorithms, we use wi’s as the sparse representation estimated from the

lasso regression, without imposing a low-cardinality constraint. For the latent forest model,

we use zi’s with cardinality constraint at d = 4.

Clearly, for this high-dimensional dataset, clustering the sparse representation zi’s (or

wi’s) instead of yi’s has a significantly improved accuracy. Interestingly, we found that K-
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means on those wi’s produce much worse results than all the spectral clustering algorithms.

This suggests that forest models (as a generative model for spectral clustering) give a better

fit to those wi’s, compared to the Gaussian mixture models (as a generative model for K-

means). Lastly, compared to the existing spectral clustering algorithms using similarity

|wi,j|+ |wj,i| (Vidal, 2011) or (wi
′wj)+ (Wu et al., 2014), imposing a cardinality constraint

seemed to further improve the signal that is helpful for clustering. To verify this, we

also conducted spectral clustering using similarity (zi
′zj)+ and obtained almost the same

clustering accuracy as the one from the latent forest model.

As shown in Figure S.2, for this high-dimensional dataset, the pairwise Euclidean dis-

tance 󰀂yi − yj󰀂2’s are too noisy to be used for clustering, the inner product on the sparse

zi has much less noise, and the pairwise co-assignment probability matrix produces a very

clear partition of 10 clusters.

(a) Euclidean distances be-

tween yi’s.

(b) (zi
′zj) between the latent

zi’s.

(c) Pr(ci = cj | y) from the la-

tent forest model.

Figure S.2: Pairwise information between the observed yi’s, and sparse latent zi’s, and

posterior co-assignment probability matrix in the latent forest model.
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S 1.2 Extension to Covariate-dependent Forest Clus-

tering

Following Müller et al. (2011), we now illustrate an extension where the clustering is de-

pendent on external covariates xi’s (each xi is an m-dimension vector). Müller et al. (2011)

proposed the following covariate-dependent product partition model (PPMx):

Π0(V1, . . . , VK | K, x) ∝
K󰁜

k=1

C(Vk)G({xi}i∈Vk
),

where C and G together form a modified cohesion function, with G positive-valued and

quantifying the overall similarity among those xi : i ∈ Vk. To specify G, Müller et al.

(2011) proposed to use

G({xi}i∈Vk
) =

󰁝
[
󰁜

i∈Vk

g̃1(xi; ξk)]g̃2(ξk)dξk

with g̃1 and g̃2 some probability density/mass functions with conjugacy, such as g̃1 as

multivariate Gaussian N(· | µk,Σ1) and g̃2 as Gaussian for N(µk | 0,Σ2), with Σ1 and Σ2

some fixed parameters. Importantly, the purpose of G is to form a density-based cohesion

function as a priori, hence G is not interpreted as the generative distribution for xi’s.

We note that the above G({xi}i∈Vk
) effectively treats xi : i ∈ Vk as conditionally

independent. Now suppose there is a tree Tk, we can equivalently form a joint distribution

by starting from a xk∗ ∼ g̃1(·; ξk), and then for any (i, j) ∈ Tk, (xj −xi) ∼ g̃∗1(·; ξk), with g̃∗1

the transformed distribution on the difference. Therefore, we have a tree-based similarity

function:

G({xi}i∈Vk
;Tk) =

󰁝 󰀗
g̃1(xk∗ ; ξk)

󰁜

(i,j)∈Tk

g̃∗1(xj − xi; ξk)

󰀘
g̃2(ξk)dξk.

In this section, we use Gaussian g̃1 and g̃2 as mentioned above. We have g̃∗1 as N(· | 0, 2Σ1).
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After integration, we have

G({xi}i∈Vk
;Tk) =

󰁜

(i,j)∈Tk

|2π(2Σ1)|−1/2 exp

󰀗
− (xi − xj)

′(4Σ1)
−1(xi − xj)

󰀘

󰁿 󰁾󰁽 󰂀
f0(xi;xj)

×

|2πΣ1Σ2|−1/2|Σ−1
1 + Σ−1

2 |−1/2 exp

󰀗
− 1

2
x′
k∗Σ

−1
1 xk∗ +

1

2
x′
k∗Σ

−1
1 (Σ−1

1 + Σ−1
2 )−1Σ−1

1 xk∗

󰀘

󰁿 󰁾󰁽 󰂀
r0(x∗

k)

,

where we use f0 and r0 to simplify notation. Therefore, we can achieve similar effects of

PPMx, using an x-informative tree distribution:

Π(Ek | Vk)Π(k
∗ | Ek, Vk) =

r0(xk∗)
󰁔

(i,j)∈Tk
f0(xi; xj)

[
󰁓

k∈Vk
r0(xk)][

󰁓
T ′
k

󰁔
(i,j)∈T ′

k
f0(xi; xj)]

,

Π0(V1, . . . , VK , K) ∝ λK

󰀝 K󰁜

k=1

[
󰁛

k∈Vk

r0(xk)][
󰁛

T ′
k

󰁜

(i,j)∈T ′
k

f0(xi; xj)]

󰀞
.

Note that if f0(xi; xj) ∝ 1 for any (xi, xj), and r0(xi) ∝ 1 for any xi, then the above would

be Π0(V1, . . . , VK , K) = λKnnk−1
k , the same as the distribution we describe in the main

text.

Compared to directly clustering (yi, xi) as the joint observation together, a strength of

the above approach (and PPMx methods in general) is that as a priori, we can directly

control the influence from xi to clustering, by adjusting the parameters in G. For example,

we use Σ1 = Σ2 = ηSn with Sn the empirical covariance of xi’s and η > 0 an adjustable

hyper-parameter. This leads to f0(xi; xj) = |2π(2Σ1)|−1/2 exp[−(xi − xj)
′(4Σ1)

−1(xi − xj)]

and r0(xk∗) = |2π(2Σ1)|−1/2 exp[−x′
k∗(4Σ1)

−1xk∗ ]. As η increases, the influence of xi be-

comes weaker. Note that if we were to use xi in a likelihood, we would not have such

flexibility.

To illustrate this model, we use the Palmer Penguins dataset provided in the “palmer-

penguins” package (Horst et al., 2020). To clarify, for such a clean dataset, existing ap-

proaches such as the Gaussian mixture model can also produce a similarly good accuracy;

our goal here is to illustrate the high extensibility of the forest model via distribution
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specification.

We remove the duplicated data entries and have a sample of size n = 334. The dataset

has observations about three species of Antarctic penguins, containing the length and depth

measurements of each penguin’s bill (in mm). These two variables contain strong signals

for distinguishing between species, and we denote each record of (length, depth) by yi. In

addition, the dataset also has measurements of flipper length (in mm) and body mass (in

grams), and we denote each record by xi.

As shown in Figure S.3, the forest model without using covariates correctly estimates

most species labels. On the other hand, including the external information from xi further

increases the accuracy.

(a) Penguin data, col-

ored by species.

(b) Forest model es-

timate without using

covariates.

(c) Forest model esti-

mate using xi as ex-

ternal covariates with

η = 2.

(d) Forest model es-

timate using xi as ex-

ternal covariates with

η = 1.

Figure S.3: Clustering the penguin data that contain records of bill length and depth. The

forest model alone (Panel b) leads to a good estimate (accuracy 94.6%). Nevertheless, using

external covariates (flipper length and body mass) gives more accurate estimates (Panel c:

accuracy 95.8%, Panel d: accuracy 97.3%).

8



S 1.3 Algorithm for Estimating Multi-view Cluster-

ing

We use k
(s)
i ∈ {1, . . . , K̃} to denote the latent assignment k

(s)
i = l, for η

(s)
i = η∗l . We use

the following Gibbs sampling algorithm:

• Using LT (s)
1:n,1:n

to denote the Laplacian matrix of the forest graph without auxiliary

node 0, we have

z(s) | η(s), T (s) ∼ N

󰀝
(LT (s)

1:n,1:n
/ρ+ I/σ2

z)
−1(η(s)/σ2

z), (LT (s)
1:n,1:n

/ρ+ I/σ2
z)

−1

󰀞
.

• Sample

Pr(k
(s)
i = l | ·) ∝ vi,l exp

󰀃
− 1

2
󰀂z(s)j − η∗l 󰀂22/σ2

z

󰀄
.

• Sample vi ∼ Dir({1/κ̃+
󰁓

s 1(k
(s)
i = l)}l=1,...,κ̃).

• Sample T (s) and θ(s) for all s, according to the algorithm in Section 3.1 of the main

text.

S 2 Proof of Theorems

S 2.1 Proof of Theorem 1

Proof: For ease of notation, in this proof, we use p = (n+ 1).

1. Obtain closed-form of the marginal connecting probability.

Since L correspond to a connected graph with weight Ai,j = exp(Wi,j) for i ∕= j and

Ai,i = 0, hence only has one eigenvalue equal to 0 and with eigenvector 󰂓1/
√
p, therefore we
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have:

p−1

n+1󰁜

i=2

λ(i)(L) = |L+ J/p2|,

where J = 󰂓1󰂓1T. Let L̃ = L+ J/p2, differentiating log |L̃| with respect to Wi,j yields:

Mi,j = (Ωi,i + Ωj,j − 2Ωi,j)Ai,j,

where Ω = L̃−1, and Mi,i = 0.

2. Obtain M as a perturbation form

Let L =
󰁓p

l=1 λlψlψ
T
l be the eigendecomposition of L, and N = D−1/2LD−1/2. Note

that,

Mi,j =(Ωi,i + Ωj,j − 2Ωi,j)Ai,j

=(Ωi,i + Ωj,j − 2Ωi,j){−Li,j1(j ∕= i)}

(a)
=󰂓bTi,j(L+ J/p2)−1󰂓bi,j(−Li,j)

=D
1/2
i

󰂓bTi,j(L+ J/p2)−1󰂓bi,jD
1/2
j (−Ni,j)

where (a) is due to Ωi,i+Ωj,j −2Ωi,j = 0 if 1(j ∕= i) = 0, hence 1(k ∕= i) can be omitted; 󰂓bi,j

is a binary vector with the ith element 1 and the kth element −1, and all other elements 0.

Let αi,j := D
1/2
i

󰂓bTi,j(L + J/p2)−1󰂓bi,jD
1/2
j for i ∕= j. Since Ni,i = 1, and x(I − N) has

the same eigenvectors as N for any scalar x > 0, we see that M = −α ◦ (I − N) is an

element-wise perturbation of x(I −N). Therefore, our next task is to show α is close to a

simple xJ for some x > 0.

3. Bound the difference between the K leading eigenvectors.

Slightly changing the above,

αi,j = D
1/2
i

󰂓bTi,j(L+ J/p2)−1󰂓bi,jD
1/2
j

= D
1/2
i

󰂓bTi,jD
−1/2(N +D−1/2JD−1/2/p2)−1D−1/2󰂓bi,jD

1/2
j .
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Using N = I −D−1/2AD−1/2, we have

(N +D−1/2JD−1/2/p2)−1 = {I −D−1/2(A− J/p2)D−1/2}−1

(a)
= I +

∞󰁛

k=1

{D−1/2(A− J/p2)D−1/2}k

= I + E.

where (a) uses the Neumann expansion, as E is not divergent:

E = D1/2(L+ J/p2)−1D1/2 − I = D1/2(

p󰁛

l=2

λ−1
l ψlψ

T
l + J)D1/2 − I,

as λ2 > 0, E is bounded element-wise for any D with finite-value elements. Further, note

thatD
−1/2
i (Ai,j−1/p2)D

−1/2
j → 0 and monotonically decreasing for fixed Ai,j and increasing

Di or Dj; hence E is always bounded elementwise even as all Di → ∞. We denote the

bound constant by maxi,j |Ei,j| ≤ 󰂃.

Combining the above,

αi,j = D
1/2
i D

1/2
j

󰂓bTi,j
󰀋
D−1 +D−1/2ED−1/2

󰀌
󰂓bi,j

= D
1/2
i D

1/2
j

󰁱
(D−1

i +D−1
j ) + (D−1

i Ei,i +D−1
j Ej,j − 2D

−1/2
i D

−1/2
j Ei,j)

󰁲
.

Now we can bound the difference between M and x(I −N) minimized over x:

min
x

max
i,j

|{(α− xJ) ◦ (I −N)}i,j|

= min
x

max
i,j

|(αi,j − x)(D
−1/2
i D

−1/2
j Ai,j)|

= min
x

max
i,j

󰀏󰀏󰀏
󰁱
(D−1

i +D−1
j )− xD

−1/2
i D

−1/2
j + (D−1

i Ei,i +D−1
j Ej,j − 2D

−1/2
i D

−1/2
j Ei,j)

󰁲
Ai,j

󰀏󰀏󰀏

≤ min
x

max
i,j

󰀏󰀏󰀏
󰁱
(D−1

i +D−1
j )− xD

−1/2
i D

−1/2
j + (D−1

i 󰂃+D−1
j 󰂃+ 2D

−1/2
i D

−1/2
j 󰂃)

󰁲
Ai,j

󰀏󰀏󰀏

(a)

≤ max
i,j

󰁱
(1 + 󰂃)(D

−1/2
i −D

−1/2
j )2Ai,j

󰁲
,

where (a) chooses x = 2(1 + 󰂃) + 2󰂃.

Using Theorem 2 from Yu et al. (2015), there exists a orthonormal matrix R ∈ RK×K ,

such that,
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󰀂Ψ1:K − φ1:KR󰀂F ≤ 23/2 min{
√
K󰀂(α− xJ) ◦ (I −N)󰀂op, 󰀂(α− xJ) ◦ (I −N)󰀂F}

ξK − ξK+1

(1)

for any x > 0.

Since |{(α − xJ) ◦ (I − N)}i,j| is upper-bounded hence is sub-Gaussian with bound

parameter σe = maxi,j{(1 + 󰂃)(D
−1/2
i −D

−1/2
j )2Ai,j}.

Using Theorem 1 of Duan, Michailidis and Ding 2020 (arXiv preprint:1910.02471), with

probability 1− δt

󰀂Ψ1:K − φ1:KR󰀂F ≤ 23/2(
√
Kpσe)

ξK − ξK+1

t.

where δt = exp[−(t2/64 − log(5
√
2))p]. Taking t = 14, we have (t2/64 − log(5

√
2)) > 1.

Therefore, we have with probability at least 1−exp(−p) {which is greater than 1−exp(−n)}.

󰀂Ψ1:K − φ1:KR󰀂F ≤ 40
√
Kpσe

ξK − ξK+1

.

□

S 2.2 Proof of Theorem 2 and 3

Let the conditional probability associated with Gaussian leaf density f be Pr{B(y1,Mn/2) |

y1} = mn, where B(y1,Mn/2) stands for an open ball of radius Mn/2 around y1. If the true

number of clusters is K = K0, then mn−K−1
n is the probability that the distances {d0ℓ,n}l

in the minimum spanning tree under null are all below M . Specifically, let En = {d0ℓ,n ≤

Mn/2 : 1 ≤ ℓ ≤ n−K − 1} =. Then Pr(En) = mn−K−1
n .

With xi ∼N(0, σ0,n), we have mn = Pr(
󰁓p

i=1 x
2
i

σ0,n < M2
n

22σ0,n ) = 1−
Γ
󰀓
p/2, M2

23σ0,n

󰀔

Γ(p/2)
, where Γ(·, ·)

stand for the upper incomplete gamma function using cumulative distribution function of χ2

distribution. Since p belongs to the set of natural numbers, we have Γ(p/2, x) < C1x
p/2e−x

except for p = 1.5 and any x > 0 with some constant C1 which depends on p (Pinelis,
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2020). However, for large x, we have Γ(p/2, x) < C1x
p/2e−x even for p = 1.5. We then have

mn > 1 − C2

Γ(p/2)
(log n)p/2−1e−m̃0 logn = 1 − C2

Γ(p/2)
(logn)p/2−1

nm̃0
where C2 = C1(m̃0)

p/2−1. Since

m̃0 > (p/2 + 2), we have mn−K−1
n > 1− (n−K − 1) C2

Γ(p/2)
(logn)p/2−1

nm̃0
→ 1 as n → ∞ as logn

n

goes to 0. Hence pr(En) → 1.

We further have,
󰁓

n≥K [1 − {1 − C2

Γ(p/2)
(logn)p/2−1

nm̃0
}n−K−1] <

󰁓
n n

C2

Γ(p/2)
(logn)p/2−1

nm̃0
. Thus

for m̃0 > 2 + p/2, we have
󰁓

n[1− {1− C2

Γ(p/2)
(logn)p/2−1

nm̃0
}n−K−1] < ∞. Then, by the Borel-

Cantelli Lemma, we also have almost sure convergence of this event.

We now show for y ∈ En, the ratio of the maximum posterior probability assigned to a

non-true clustering arrangement to the posterior probability assigned to the true clustering

arrangement converges to zero.

Proof of Theorem 2

Note that for any σ and a given R, the posterior Π(TMST,R, σ | y) is maximized at the

T , which is a combination of minimum spanning trees constructed within the regions Rk’s.

Thus,

We have Π(R0|y)
Π(TMST,R0 ,σ0,n|y) > 1 as Π(R0 | y) =

󰁓
T Π(T , R0, σ0,n | y).

Π(TMST,R, σ
0,n | y)

Π(TMST,R0 , σ0,n | y)

≤
󰀕
󰂃2
󰂃1

󰀖K

exp

󰀣
−

n−K0−1󰁛

ℓ=1

d2ℓ,n/(2σ
0,n) +

n−K−1󰁛

ℓ=1

(d0ℓ,n)
2/(2σ0,n)

󰀤
,

where
󰁓n−K−1

ℓ=1 d2ℓ,n is the total squared norm distance on the minimum spanning tree under

the partition regions R excluding the edges with the root node and
󰁓n−K0−1

ℓ=1 (d0ℓ,n)
2 is the

same under TMST,R0 . The above is because based on the Prim’s algorithm (Prim, 1957), the

minimum spanning tree is equal to the result of sequential growing a tree starting from one

node, each time by adding an edge (along with a node) with the shortest distance between

one node in the existing tree and one of the remaining nodes not yet in the tree. Clearly,
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at each step, the edge choice is unaffected when changing distance from d to d2; therefore,

the minimum spanning trees based on the sum of d2l,n and the sum of dl,n are the same.

Since, infx∈R0
i ,y∈R0

j
󰀂x − y󰀂2 > Mn, for all i ∕= j, for at least one ℓ, we must have

dℓ,n > M . Due to the above result, with probability at least mn
n, we have

󰁓n−K−1
ℓ=1 (dℓ,n)

2 >

󰁓n−K−1
ℓ=1 (d0ℓ,n)

2 + M2
n/4, which implies

Π(TMST,R,σ0,n|y)
Π(TMST,R0 ,σ0,n|y) < n−m̃0 . And we further have that

mn
n → 1 as n → 1.

Proof of Theorem 3

First, we consider that the alternative partitioning has a lower number of clusters than

the null. Let that be K, which is less than K0. Then we have

Π(TMST,R, σ
0,n | y)

Π(TMST,R0 , σ0,n | y)

≤ λK−K0
K0!

K!

󰀕
󰂃2
󰂃1

󰀖K
(σ0,n)(K0−K)/2

󰂃K0−K
1

exp

󰀣
−

n−K−1󰁛

ℓ=1

d2ℓ,n/(2σ
0,n) +

n−K0−1󰁛

ℓ=1

(d0ℓ,n)
2/(2σ0,n)

󰀤
,

We again must have
󰁓n−K−1

ℓ=1 (dℓ,n)
2 >

󰁓n−K0−1
ℓ=1 (d0ℓ,n)

2+M2
n/4 with probability mn

n → 1

as the alternative partitioning will have edges with length greater than Mn.

Next, we show the above when the alternative partitioning has a larger number of

clusters than the null. Specifically, for K > K0, we replace A3 and vary the conditions on

r(y) with n.

Then we have

Π(TMST,R, σ
0,n | y)

Π(TMST,R0 , σ0,n | y)

≤ λK−K0
K0!

K2!

󰀕
c2
c1

󰀖K

cK−K0
2 (σ0,n)(K0−K)/2

× exp

󰀣
−(K −K0)M

2
n/(2σ

0,n)−
n−K−1󰁛

ℓ=1

d2ℓ,n/(2σ
0,n) +

n−K0−1󰁛

ℓ=1

(d0ℓ,n)
2/(2σ0,n)

󰀤
,

Again, for any K > K0, the above ratio goes to zero as n → ∞ we have 1/(σ0,nn) → 0

with probability at least mn
n → 1.
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S 3 Posterior consistency of the clustering

Here, we study the clustering consistency of our Bayesian methods when the number of

clusters is known.

Theorem S 1 Under some assumptions outlined below, we have Π(R ∕= R0|y) → 0 almost

surely, unless R0
i ⊆ Rξ(i) for some permutation map ξ(·) when number of clusters in known.

The total number of possible clusters with n data points and K clusters is
󰀃
n−1
K−1

󰀄
, which is

of order nK . To show clustering consistency, we require the following assumption,

• (S1, Diminishing scale and minimum separation) We let σ0,n = C ′(1/n log1+ι n for

some ι > 0 and C ′ > 0 and infx∈R0
k,y∈R

0
k′
󰀂x − y󰀂2 > Mn, for all k ∕= k′ with some

positive constant Mn > 0 such that M2
n/σ

0,n = 8m̃0n log(n) for all (i, j) and is known

for some constant m̃0 > p/2 + 2.

In the above assumption, the main requirement isM2
n/σ

0,n = 8m̃0n log(n) which is achieved

by allowing the scale to decay faster than Assumption A1. Alternatively, one may increase

Mn instead of reducing σ0,n. However, from a practical point of view, one would expect

Mn to be a non-increasing function of n.

Π(R | y)
Π(R0 | y)

=

Π(R|y)
Π(TMST,R,σ0,n|y)

Π(R0|y)
Π(TMST,R0 ,σ0,n|y)

Π(TMST,R, σ
0,n | y)

Π(TMST,R0 , σ0,n | y) ,

We have Π(R0|y)
Π(TMST,R0 ,σ0,n|y) > 1 and Π(R|y)

Π(TMST,R,σ0,n|y) < nn−2 (the total number of possible

spanning trees with n points) hence Π(R|y)
Π(R0|y) ≲ nn−2 Π(TMST,R,σ0,n|y)

Π(TMST,R0 ,σ0,n|y)

When the number of clusters is known,

1− Π(R0 | y)
Π(R0 | y) =

󰁛

R ∕=R0

Π(R | y)
Π(R0 | y) ≲ exp((n+K − 2) log n)

Π(TMST,R, σ
0,n | y)

Π(TMST,R0 , σ0,n | y)

15



And applying the steps from our previous section, we have 1−Π(R0|y)
Π(R0|y) < exp(−n log n),

goes to zero and thus completes the proof.

S 4 Additional Numerical Experiments

S 4.1 Uncertainty Quantification on Clustering Data

from a Mixture Model

We now present some uncertainty quantification results, for clustering data that are from

a mixture model. We experiment with n = 400 data points in R2 generated from a two-

component mixture distribution:

yi ∼ 0.5K(· | µ1) + 0.5K(· | µ2),

for i = 1, . . . , n, with µ1 = (0, 0) and µ2 = (b, b) two location parameters. We experiment

with two settings, with K as (i) independent bivariate Gaussian distribution N(µk, I2), (ii)

independent bivariate t distribution with 5 degrees of freedom t5(µk).

When fitting models, we consider the unknown K scenario, and use the distribution

Π(T ) ∝ λK for the Bayesian forest model, with λ = 0.5. For comparison, we use the

Dirichlet process Gaussian mixture model (DP-GMM) with a Gamma(2, 20) hyper-prior on

the concentration parameter (with prior mean 0.1). We use the “dirichletprocess” package

in R (Ross and Markwick, 2018) for estimating the posterior distribution from DPMM.

Notice that our two choices of K above correspond to fitting a Dirichlet process mixture

with correctly specified components and one with misspecified components, respectively.

To estimate the posterior, for each model, we ran the MCMC algorithm for 1,000

iterations and discarded the first 500 iterations. We calculated the posterior co-assignment
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probability matrix Pr(ci = cj | y), and the posterior number of clusters Pr(K | y).

When the data are from the Gaussian mixture (Figure S.5), both the DP-GMM and

the forest model lead to satisfactory performances, with the mode of Pr(K | y) equal/close

to the ground truth at K = 2. It is interesting to note that there is a proportion of the

posterior sample from the forest model corresponds to K = 1. This is likely due to less

parametric assumption imposed on the shape of the clusters, compared to the DP-GMM.

Nevertheless, the posterior mode of the forest model correctly falls on K = 2.

On the other hand, when the data are from the t5 mixture (Figure S.6), we find the DP-

GMM always show an over-estimation problem. Such issues are due to the misspecification

in the component distribution, and Cai et al. (2021) have shown that switching to a finite

Gaussian mixture with a prior on K does not solve the problem. In comparison, the

clustering of the forest model shows much less sensitivity to model specification.
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(a) Data from

two-component

GMM (b = 4).

(b) Pr(ci = cj | y)

from the forest model.

(c) Pr(K | y) from

the forest model.

(d) Pr(ci = cj | y)

from DP-GMM.

(e) Pr(K | y) from

DP-GMM.

(f) Data from

two-component

GMM (b = 3).

(g) Pr(ci = cj | y)

from the forest model.

(h) Pr(K | y) from

the forest model.

(i) Pr(ci = cj | y)

from DP-GMM.

(j) Pr(K | y) from

DP-GMM.

(k) Data from

two-component

GMM (b = 2).

(l) Pr(ci = cj | y)

from the forest model.

(m) Pr(K | y) from

the forest model.

(n) Pr(ci = cj | y)

from DP-GMM.

(o) Pr(K | y) from

DP-GMM.

Figure S.4: Uncertainty quantification in clustering data generated from a two-component

Gaussian mixture model.
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(a) Data from

two-component

t5-MM (b = 4).

(b) Pr(ci = cj | y)

from the forest model.

(c) Pr(K | y) from

the forest model.

(d) Pr(ci = cj | y)

from DP-GMM.

(e) Pr(K | y) from

DP-GMM.

(f) Data from

two-component

t5-MM (b = 3).

(g) Pr(ci = cj | y)

from the forest model.

(h) Pr(K | y) from

the forest model.

(i) Pr(ci = cj | y)

from DP-GMM.

(j) Pr(K | y) from

DP-GMM.

(k) Data from

two-component

t5-MM (b = 2).

(l) Pr(ci = cj | y)

from the forest model.

(m) Pr(K | y) from

the forest model.

(n) Pr(ci = cj | y)

from DP-GMM.

(o) Pr(K | y) from

DP-GMM.

Figure S.5: Uncertainty quantification in clustering data generated from a two-component

t5 mixture model.
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S 4.2 Additional Experiments on Clustering Near-Manifold

Data

We conduct additional simulations on clustering near-manifold data. The results are shown

in Figure S.7.

(a) Posterior point esti-

mate.

(b) Pr(ci = cj | y). (c) Posterior point esti-

mate.

(d) Pr(ci = cj | y).

(e) Posterior point esti-

mate.

(f) Pr(ci = cj | y). (g) Posterior point esti-

mate.

(h) Pr(ci = cj | y).

Figure S.6: Clustering data generated near manifolds.
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S 4.3 Additional Simulations on Uncertainty and Clus-

tering Accuracy

We now compare the uncertainty and clustering accuracy. We consider three possible

scenarios as different sources of uncertainties: increasingly imbalanced cluster sizes, an

increasing number of clusters, and an increasing number of noisy points between clusters.

In addition, we gradually reduce the separation between clusters, so that the uncertainty

can increase as well.

When measuring the clustering accuracy of the point estimate, we calculate the ad-

justed Rand index (ARI), normalized mutual information (NMI), as well as the clustering

accuracy rate (the match rate between the point estimate of ĉi and each ground-truth label,

minimized over all possible label switchings in ĉi). We run 10 times of experiments under

each combination of values, and show the boxplots.

For the first scenario, we generate n = 400 data points from a two-component indepen-

dent bivariate t distribution with 5 degrees of freedom, yi ∼ w̃1t5(· | [0, 0]) + (1− w̃1)t5(· |

[b̃, b̃]). We experiment with different values of w̃1 ∈ {0.5, 0.3, 0.1} to have different degrees

of cluster size imbalance, as well as different values of b̃ ∈ {5, 4, 3} to have different degrees

of separation between cluster centers. The results are shown in Figure 7.
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(a) Two clusters of imbal-

anced sizes with two means

separated by vector [5, 5]

(above). The experiments

are repeated with the propor-

tion of Cluster 1 size taken

from {0.5, 0.3, 0.1}, and the

clustering accuracy measures

are shown below.

(b) Two clusters of imbal-

anced sizes with two means

separated by vector [4, 4]

(above). The experiments

are repeated with the propor-

tion of Cluster 1 size taken

from {0.5, 0.3, 0.1}, and the

clustering accuracy measures

are shown below.

(c) Two clusters of imbal-

anced sizes with two means

separated by vector [3, 3]

(above). The experiments

are repeated with the propor-

tion of Cluster 1 size taken

from {0.5, 0.3, 0.1}, and the

clustering accuracy measures

are shown below.

Figure 7: Clustering accuracy decreases as the cluster sizes become more imbalanced. The

adjusted Rand index (ARI), normalized mutual information (NMI), and the clustering

accuracy rate (Accuracy, the match rate between ĉi and the ground truth, minimized over

all possible label switchings in ĉi) are shown.

For the second scenario, we generate n = 400 data points from a K̃-component bivariate

t distribution with 5 degrees of freedom, yi ∼
󰁓̃K̃

k=1(1/K̃)t5(· | [bk, bk]). We experiment
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with different values of K̃ ∈ {3, 6, 9} to have different numbers of clusters, as well as

different values of bk = 3(k− 1), 4(k− 1) or 5(k− 1) to have different degrees of separation

between cluster centers. The results are shown in Figure 8.

(a) Increasing number of

clusters.

(b) Increasing number of

clusters.

(c) Increasing number of clus-

ters.

Figure 8: Clustering accuracy decreases as the number of clusters increases. The adjusted

Rand index (ARI), normalized mutual information (NMI) and the clustering accuracy rate

(Accuracy, the match rate between ĉi and the ground-truth, minimized over all possible

label switchings in ĉi) are shown.

For the third scenario, we first generate n = 400 data points near the two moon mani-

folds that are well separated from one another, then we add m number of points generated

from Gaussian distribution with variance γ̃2, and its center placed between the two mani-

folds. We experiment with different values of m ∈ {10, 100, 200}, so that the clusters would

appear somewhat connected to each other asm increases; we also vary γ̃2 ∈ {0.12, 0.22, 0.32}
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to have different levels of noise. The results are shown in Figure 9.

(a) Noisy points (green, with

variance 0.12) between clus-

ters (above). The clustering

accuracy measures are col-

lected (below) with the num-

ber of noisy points taken

from {10, 100, 200}.

(b) Noisy points (green, with

variance 0.22) between clus-

ters (above). The clustering

accuracy measures are col-

lected (below) with the num-

ber of noisy points taken

from {10, 100, 200}.

(c) Noisy points (green, with

variance 0.32) between clus-

ters (above). The clustering

accuracy measures are col-

lected (below) with the num-

ber of noisy points taken

from {10, 100, 200}.

Figure 9: Clustering accuracy decreases as the number of noisy points between clusters

increases. The adjusted Rand index (ARI), normalized mutual information (NMI), and

the clustering accuracy rate (Accuracy, the match rate between ĉi and the ground truth,

minimized over all possible label switchings in ĉi) are shown.
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S 4.4 Diagnostic plots for Markov chain Monte Carlo

The MCMC algorithm that we describe in the main text shows a fast mixing of Markov

chains. To illustrate this, we use the Markov chain collected from the experiment related

to Figure S.6(k), and calculate the autocorrelations in (i) the degrees for each node in the

forest Di,i’s, and (ii) the number of clusters K. We plot the results in Figure S.8.

(a) Traceplot of one degree in the forest

D1,1.

(b) Traceplot of the number of clusters K.

(c) Boxplot of the autocorrelations forDi,i’s. (d) Autocorrelation for the number of clus-

ters K.

Figure S.10: Traceplots and autocorrelation plots show fast mixing of the MCMC algorithm.

To demonstrate the high efficiency of updating T in a block via the random-walk cover-

ing algorithm (Broder, 1989; Aldous, 1990; Mosbah and Saheb, 1999), we plot the sampled

T at three contiguous iterations (after burn-ins) in Figure S.9. The forest shows a rapid
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change from iteration to iteration — indeed, the proportion of edge changes (the number

of edges {(i, j) : (i, j) ∈ T[t], (i, j) ∕∈ T[t+1]} divided by the total number of edges) is around

50% at each iteration.

(a) Sampled T at iter-

ation 1 after burn-ins.

(b) Sampled T at iter-

ation 2 after burn-ins.

(c) Sampled T at iter-

ation 3 after burn-ins.

Iteration

(d) Proportion of edge

changed from T[t] to

T[t+1].

(e) Sampled T at iter-

ation 1 after burn-ins.

(f) Sampled T at iter-

ation 2 after burn-ins.

(g) Sampled T at iter-

ation 3 after burn-ins.

Iteration

(h) Proportion of edge

changed from T[t] to

T[t+1].

Figure S.11: The forest T changes rapidly from one iteration to another: Panels a-c plot

the forests (blue) at three contiguous iterations, and Panel d shows the proportion of edge

changes in each iteration, as measured by the number of edges {(i, j) : (i, j) ∈ T[t], (i, j) ∕∈

T[t+1]} divided by the total number of edges. Panels e-h show the results from another

experiment. In both cases, the forest T has about 50% of edges changed from one iteration

to the next.
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Further, we assess the convergence by randomly initializing (T[0], θ[0]) at 5 different start

points, and run 5 separate Markov chains. Specifically, for the elements σ̃i and γ in θ[0], we

initialize them randomly from Inverse-Gamma(0.5, 0.5), then we draw T[0] ∼ Π(T | θ[0], y).

Figure S.10 shows two randomly initialized T ’s. The traceplots of the parameters show the

convergence of 5 Markov chains, and we calculate the Gelman–Rubin statistics (potential

scale reduction factor, Gelman and Rubin (1992)) and find all of them smaller than 1.1,

which indicates convergence.

(a) Randomly initialized

T in Chain 1.

(b) One sampled T in

Chain 1 after burn-ins.

(c) Randomly initialized

T in Chain 2.

(d) One sampled T in

Chain 2 after burn-ins.

Iteration

(e) Traceplot for the parameter

σ̃1 from 5 chains.

Iteration

(f) Traceplot for the parameter

γ from 5 chains.

Iteration

(g) Histogram of the Gelman–

Rubin statistics for all σ̃i’s and γ.

Figure S.12: The convergence of five randomly initialized Markov chains.
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S 4.5 Additional Details on the Multi-view Clustering

in the Alzheimer’s Disease Study

(a) The average Pr(ci = cj | y) for the ROIs in

the healthy group.

(b) The average Pr(ci = cj | y) for the ROIs in

the diseased group.

(c) Frequency plot of the number of clusters of

ROIs for each subject in the healthy group.

(d) Frequency plot of the number of clusters for

each subject in the diseased group.

Figure S.13: Clustering estimates for the healthy and diseased group.

S 4.6 Comparison with Minimum Spanning Tree-based

Cut

Since our Bayesian forest model uses spanning trees, it is natural to compare with the

clustering algorithm based on cutting the minimum spanning tree (MST). To formalize,

the minimum spanning tree-based cut (MST-Cut) algorithm first finds the MST: T̂ =
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argminT∈Tn

󰁓
(i,j)∈T 󰀂yi − yj󰀂, where Tn denotes all spanning trees that connect n nodes,

with 󰀂yi − yj󰀂 as some distance between the two points. Then, one removes the longest

(K − 1) edges (with length defined as 󰀂yi − yj󰀂) to create K clusters. This algorithm is

shown to be equivalent to the single-linkage clustering algorithm (Hartigan, 1981).

As we could imagine, such MST-Cut algorithms work well when clusters are well sepa-

rated. In that case, those clusters will more likely be connected by the longest few edges.

However, such algorithms will suffer sensitivity issues, when any one or more of the follow-

ing happens: 1) when clusters are close to each other; 2) when a few isolated points are

lying between two clusters; 3) when one or more clusters are from a heavy-tailed distribu-

tion, with a few points away from the bulk of the cluster. As a result, the longest edges in

the MST may not be ideal for partitioning data.

(a) Partitioning the data by

cutting the longest edge in

the minimum spanning tree.

(b) Partitioning the data by

cutting the top 10% longest

edges in the minimum span-

ning tree.

(c) Partitioning the data us-

ing the Bayesian spanning

forest model.

Figure 14: Comparing point estimates from the minimum spanning tree-based cut (MST-

Cut) algorithms and the Bayesian spanning forest model.

To illustrate this problem, we use a simulation with data from a two-component t-

distribution in R2 with 3 degrees of freedom. One component has the mean (0, 0) and
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the other has (4, 4), and both have the scale parameter equal to I2. And we generate

n = 200 data points. As shown in Figure 14(a), due to the heavy tail and closeness of

the two clusters, cutting the longest edge in the MST (using Euclidean distances) yields a

trivial and sub-optimal partition. Further, cutting the top 10% longest edges still does not

produce the desired result (Panel b).

Fundamentally, the reason is that relying on the minimum spanning tree (that is, one

tree) leads to an underestimation of the graph uncertainty. Different from the MST-Cut

algorithms, the Bayesian forest model effectively uses the marginal distribution [(3) in the

main text] incorporating the multiplicity of those likely trees (with edges shown in Panel

c). As the result, it leads to better performance than the MST-Cut algorithm.

S 4.7 Empirical Evidence for the Fast Convergence of

Eigenvectors

Figure S.15: The difference between eigenvectors converges to zero rapidly as n increases.

We now use simulations to illustrate the closeness between theK leading eigenvectors of the

marginal connecting probability matrix M and the ones of the normalized Laplacian N . It

is important to clarify that such closeness does not depend on how the data are generated.
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Therefore, for simplicity, we generate yi from a simple three-component Gaussian mixture

in R2 with means in (0, 0), (2, 2), (4, 4) and all variances equal to I2, then we fit our forest

model, and estimate σi,j’s using posterior mean. Based on the posterior mean of σi,j,

we compute M and N , and then compute distances between their leading eigenvectors

minR:RR′=IK 󰀂Ψ1:K − Φ1:KR󰀂. We conduct such experiments under different sample sizes

n ranging from 10 to 200; for each n, we repeat experiments for 30 times. As our theory

requires a spectral gap ξK − ξK+1 not too close to zero, we choose to compare the top

K = 5 eigenvectors. As shown in the boxplot of Figure S.4, the distance between two sets

of eigenvectors quickly drops to near zero, for n ≥ 50.

S 4.8 Illustration on Forest Process Realizations

In Figure S.16, we plot two realizations of forest process in R2, based on isotropic Gaussian

for f and Cauchy for r, and a ground-up construction of T with

π
[i]
j =

1

i− 1 + α
for j = 1, . . . , (i− 1), π

[i]
i =

α

i− 1 + α
,

at α = 0.5 and for i = 1, . . . , 100. In the first realization, we draw the scale parameters γ

and σi,j from the shrinkage priors used in Section 2.4 of the main text. Since σi,j is very

close to zero, the generated data appear close to three point masses. To illustrate a forest

structure, in the second realization, we use fixed γ = 0.12 and σi,j = 0.012, and we can see

three clusters, where each is connected by a tree.
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(a) Data simulated from forest process us-

ing σi,j and γ from the shrinkage priors in

Section 2.4.

(b) Data simulated from forest process using

σi,j = 0.012 and γ = 0.12.

Figure S.16: Illustration of two forest process realizations.

S 5 Alternative Model for the Scale Parameters

As an alternative to specifying a prior on the scale parameter σ̃i in the leaf density, the

heuristic of setting σ̃i to a low order statistic of {󰀂yi − yj󰀂2}nj=1 is shown to enjoy a good

empirical performance in spectral clustering (Zelnik-Manor and Perona, 2005). In this

section, we extend this heuristic to a formal model-based solution.

To start, we first relate the small distances to the k̃-nearest neighbor density estimator.

Loftsgaarden and Quesenberry (1965) show that for y1, · · · , yn iid from a distribution with

probability density f , with a growing k̃ → ∞, k̃/n → 0 as n increase, if f is continuous at yi,

the k̃-nearest neighbor density estimator fn(yi) = k̃/ [nVk̃(yi)] is consistent for estimating

f(yi), where Vk̃(yi) is the volume of the ball centered at yi and with radius equal to the
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distance to the k̃-th nearest neighbor, denoted by d
(k̃)
i from now on.

Although we no longer consider data as iid, d
(k̃)
i is still informative on how dense the

data points are near yi. Therefore, to bring information from d
(k̃)
i into the spanning forest

model-based clustering, we consider a generative model that simultaneously depends on a

spanning forest (with K component trees) and a k̃-nearest neighbor graph G̃nn. We can

use a likelihood

L(y; G̃nn, T , θ) ∝
󰀝 n󰁜

i=1

(σ̃i)
ασ

Γ(ασ)
[
d
(k̃)
i√
p
]−ασ−1 exp

󰀗
− σ̃i

d
(k̃)
i /

√
p

󰀘󰀞

·
K󰁜

k=1

󰀝
r(yk∗ ; θ)

󰁜

(i,j)∈Tk

(2πσi,j)
−p/2 exp

󰀕
−󰀂yi − yj󰀂22

2σ̃iσ̃j

󰀖󰀞
.

And one can verify that each term on the right-hand side is integrable in yi, even if d
(k̃)
i =

󰀂yi− yj󰀂2 happened (that is, when (i, j) ∈ Tk and j happened to be the k̃-nearest neighbor

of i); therefore, the right-hand side forms a proper likelihood. We choose the inverse-

gamma distribution for each d(k̃)/
√
p, as it leads to an equivalent Gamma(ασ +1, d

(k̃)
i /

√
p)

distribution for σ̃i that produces a shrinkage effect on σ̃i (Brown and Griffin, 2010), and it

enjoys closed-form Gibbs sampling update via the generalized inverse gaussian distribution.

We test the above model using k̃ = ⌈n1/10⌉, and ασ = 1 on all the examples presented in

the article, and the results are quite similar to the ones shown in the main text.

S 6 Code

We provide the implementation in the R source code. The code is available on https:

//github.com/royarkaprava/Bayesian_forest_clustering
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