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Abstract 19 

DNA methylation serves as a powerful biomarker for disease diagnosis and biological age as-20 

sessment. However, current analytical approaches often rely on linear models that cannot capture 21 

the complex, context-dependent nature of methylation regulation. Here we present MethylGPT, a 22 

transformer-based foundation model trained on 226,555 (154,063 after QC and deduplication) 23 
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human methylation profiles spanning diverse tissue types from 5,281 datasets, curated 49,156 24 

CpG sites, and 7.6 billion training tokens. MethylGPT learns biologically meaningful representa-25 

tions of CpG sites, capturing both local genomic context and higher-order chromosomal features 26 

without external supervision. The model demonstrates robust methylation value prediction (Pear-27 

son R=0.929) and maintains stable performance in downstream tasks with up to 70% missing 28 

data. Applied to age prediction across multiple tissue types, MethylGPT achieves superior accu-29 

racy compared to existing methods. Analysis of the model’s attention patterns reveals distinct 30 

methylation signatures between young and old samples, with differential enrichment of devel-31 

opmental and aging-associated pathways. When finetuned to mortality and disease prediction 32 

across 60 major conditions using 18,859 samples from Generation Scotland, MethylGPT 33 

achieves robust predictive performance and enables systematic evaluation of intervention effects 34 

on disease risks, demonstrating potential for clinical applications. Our results demonstrate that 35 

transformer architectures can effectively model DNA methylation patterns while preserving bio-36 

logical interpretability, suggesting broad utility for epigenetic analysis and clinical applications. 37 

Introduction 38 

DNA methylation is an epigenetic modification where methyl groups are added to cytosine resi-39 

dues at CpG dinucleotides. This modification regulates gene expression by recruiting methyl-40 

CpG binding proteins and modifying chromatin accessibility 1. DNA methylation regulates mul-41 

tiple biological processes through distinct mechanisms. During development, dynamic methyla-42 

tion changes guide cellular differentiation by silencing lineage-inappropriate genes and activat-43 

ing cell-type-specific programs 2. Methylation also maintains genomic stability through the re-44 

pression of transposable elements 3. 45 

Beyond its fundamental role in gene regulation, DNA methylation exhibits key characteristics of 46 

an ideal biomarker: stability in the resting state, but with dynamic response to environmental fac-47 

tors, accessibility in various biological specimens, and early alterations preceding clinical mani-48 

festations 4. Genome-wide methylation profiling has revealed distinctive signatures across nu-49 

merous pathological states, enabling molecular diagnostics, particularly in cancer detection and 50 

cardiovascular risk assessment 5. 51 
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Alongside disease prediction, age-associated methylation patterns also enable the development 52 

of highly accurate “epigenetic aging clocks” 6. These clocks have evolved from simple age pre-53 

dictors to sophisticated biomarkers of biological aging, with recent advances such as 54 

DunedinPACE 7, GrimAge 8, causality-enriched clocks 9, and the high-dimensional ageome 10, 55 

demonstrating strong associations with health outcomes and mortality risk. Notably, these meth-56 

ylation-based aging indices often outperform conventional clinical measures in predicting age-57 

related diseases and longevity 11,12, highlighting their potential for monitoring therapeutic inter-58 

ventions targeting the aging process. 59 

However, several analytical challenges impede the clinical implementation of methylation-based 60 

diagnostics. Current computational approaches predominantly rely on linear models and simple 61 

statistical methods, which are fundamentally limited in their ability to capture complex, non-62 

linear relationships in methylation data. These linear models assume independence between CpG 63 

sites, failing to account for the regulatory networks and higher-order interactions that character-64 

ize methylation patterns. Moreover, the same DNA methylation pattern may have different bio-65 

logical implications depending on the cellular and tissue context: a complexity that linear models 66 

are unable to capture 13–15. The limitations of linear models become even more apparent when 67 

dealing with technical artifacts, including batch effects and missing data, which introduce sub-68 

stantial non-linear variability in methylation measurements 16. The field urgently needs a unified 69 

analytical framework capable of modeling complex, non-linear patterns, accounting for context-70 

dependent effects, and performing robust pattern analysis across diverse clinical contexts. 71 

Recent advances in artificial intelligence, particularly transformer architectures and foundation 72 

models 17, have revolutionized the analysis of complex biological sequences. Foundation models 73 

have emerged across multiple omics layers: for proteomics, ESM-2/ESM-3 18,19 and 74 

AlphaFold2/AlphaFold3 20,21 have achieved unprecedented accuracy in structure prediction and 75 

function annotation; for genomics, Enformer 22 and Evo 23 have demonstrated capability in pre-76 

dicting gene regulation and variant effects. In the single-cell domain, models like Geneformer 24, 77 

scGPT 25, and scFoundation 26 have enabled zero-shot cell-type classification and in-silico per-78 

turbation. And more recently, the Precious3GPT has emerged as a multimodal transformer model 79 

integrating multi-omics data for aging research and drug discovery 27 80 
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These foundation models demonstrate remarkable capability in learning comprehensive biologi-81 

cal patterns that generalize across tasks. However, despite the success of foundation models 82 

across various omics layers, DNA methylation analysis lacks such a unified approach, relying 83 

instead on task-specific models that fail to capture the full complexity of methylation patterns. 84 

The achievements of foundation models in related domains suggest that a similar approach could 85 

transform methylation analysis by providing a unified framework that preserves biological con-86 

text while enabling adaptations to diverse specific tasks. 87 

Here, we introduce MethylGPT (Fig. 1a), a transformer-based foundation model for DNA meth-88 

ylation. Trained on methylation profiles from over 150,000 human samples spanning diverse tis-89 

sue types, MethylGPT implements a novel embedding strategy to capture methylation patterns at 90 

physiologically relevant CpG sites. This approach enables unified analysis of DNA methylation 91 

data across multiple experimental contexts and downstream applications, including age predic-92 

tion and disease association detection. 93 

Results 94 

Development and validation of MethylGPT 95 

To enable the pretraining of large-scale model, we collected 226,555 human DNA methylation 96 

profiles from 5,281 datasets through the EWAS Data Hub and Clockbase 28,29. After quality con-97 

trol and deduplication, we used 154,063 samples to pretrain MethylGPT. The model focuses on 98 

49,156 physiologically-relevant CpG sites, selected based on association with EWAS traits 99 

(Methods) 30. These methylation profiles, representing samples from over 20 different tissue 100 

types, were processed to generate 7.6 billion training tokens (CpG sites), enabling comprehen-101 

sive coverage of methylation patterns across the human epigenome. 102 

The core architecture of MethylGPT consists of a methylation embedding layer followed by 12 103 

transformer blocks (Fig. 1a). Our methylation embedding process captures both the CpG site to-104 

kens and their methylation states through an element-wise attention mechanism. This design en-105 

ables the model to learn complex dependencies between distant CpG sites while maintaining lo-106 

cal methylation context. The model was pre-trained using two complementary loss functions: a 107 

masked language modeling (MLM) loss where the model predicts methylation levels for 30% 108 
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randomly masked CpG sites and a reconstruction loss where the Classify token (CLS) embed-109 

ding is used to reconstruct the complete DNA methylation profile. 110 

To evaluate the model’s performance, we first assessed its ability to predict DNA methylation 111 

values at masked CpG sites in the test set. During training, the model achieved rapid conver-112 

gence with minimal overfitting, reaching a best model test mean squared error (MSE) of 0.014 at 113 

epoch 10 (Fig. 1b). The model demonstrated robust prediction accuracy across different methyla-114 

tion levels, achieving an overall mean absolute error (MAE) of 0.074 and a Pearson correlation 115 

coefficient of 0.929 between predicted and actual methylation values (Fig. 1c-f). 116 

MethylGPT learns biologically meaningful CpG representations 117 

To investigate whether MethylGPT captures biologically relevant DNA methylation features, we 118 

analyzed the learned representations of 49K CpG sites in the embedding space (Fig. 2a). Dimen-119 

sionality reduction using UMAP revealed distinct patterns in the contextualized CpG embedding 120 

space (Fig. 2b). CpG sites clustered according to their genomic contexts, with clear separation 121 

based on CpG island relationships (island, shore, shelf, and other regions), suggesting that our 122 

model learned underlying regulatory features of the methylome without explicit supervision. 123 

The embedding space organization reflected known biological properties of DNA methylation 124 

regulation. CpG sites within enhancer regions showed distinct clustering patterns (Fig. 2c), con-125 

sistent with their specialized regulatory roles. Furthermore, the embeddings demonstrated a clear 126 

separation of sex chromosomes from autosomes (Fig. 2d). This organization indicates that 127 

MethylGPT successfully captured both local sequence context and higher-order chromosomal 128 

features that influence methylation patterns. 129 

The transformer architecture enabled our model to learn these complex relationships through its 130 

attention mechanism, which integrates both local CpG site features and broader genomic context 131 

(Fig. 2a) instead of treating CpG sites as independent entities as in previous methods. 132 

MethylGPT learns tissue-specific and sex-specific methylation patterns 133 

To evaluate whether MethylGPT captures biologically meaningful sample-level features, we 134 

analyzed the zero-shot embedding spaces of DNA methylation samples before and after model 135 

processing. The contextualized sample embeddings from MethylGPT showed clear biological 136 

organization, with distinct clustering patterns by tissue type and sex (Fig. 3a). Major tissue types, 137 
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including whole blood, brain, liver, and skin, formed well-defined clusters, suggesting that 138 

MethylGPT successfully learned tissue-specific methylation signatures without explicit supervi-139 

sion. Notably, batch effects were not significant in the observed embeddings (Fig. 3b). 140 

MethylGPT embeddings also revealed strong sex-specific methylation patterns across tissues 141 

(Fig. 3c). Male and female samples showed consistent separation in the embedding space, re-142 

flecting known sex-specific methylation differences. 143 

The superiority of MethylGPT’s learned representations becomes apparent when compared to 144 

the raw methylation data directly generated UMAP embeddings (Fig. 3d-f). While raw methyla-145 

tion profiles showed some degree of tissue-specific clustering, the boundaries between different 146 

tissue types were less distinct, and the overall organization was more diffuse. The raw data 147 

embeddings exhibited less defined tissue-specific clusters (Fig. 3d), stronger batch-specific clus-148 

tering (Fig. 3e), and weaker sex-specific separation (Fig. 3f), highlighting MethylGPT’s ability 149 

to enhance biologically relevant signals through its contextualized embedding approach. 150 

MethylGPT enables accurate age prediction across diverse tissue types 151 

To evaluate MethylGPT’s capability in downstream applications, we first assessed its perfor-152 

mance in predicting chronological age from DNA methylation patterns. We utilized a diverse 153 

dataset of 11,453 samples spanning multiple tissue types 31, with an age distribution ranging 154 

from 0 to 100 years (Fig. 4a). The majority of samples were derived from whole blood (47.2%) 155 

and brain tissue (34.5%), providing broad coverage of physiologically distinct methylation pat-156 

terns. 157 

The pre-trained MethylGPT embeddings showed inherent age-related organization even before 158 

fine-tuning (Fig. 4b), suggesting that the model captured age-associated methylation features 159 

during pre-training. After fine-tuning for age prediction, the sample embeddings demonstrated 160 

stronger age-dependent clustering (Fig. 4c) while maintaining tissue-specific patterns (Fig. 4d). 161 

We compared MethylGPT’s age prediction performance against existing methods, including 162 

ElasticNet 32, MLP (AltumAge) 31, Horvath’s skin and blood clock 33, and other established age 163 

predictors. MethylGPT achieved superior accuracy with a median absolute error (MedAE) of 164 

4.45 years on the validation set, outperforming other methods (Fig. 4e). This improvement was 165 
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consistent across both validation and test sets, demonstrating the model’s robust generalization 166 

capability. 167 

Notably, MethylGPT showed remarkable resilience to missing data, a common challenge in 168 

methylation analysis. We systematically evaluated prediction performance under increasing lev-169 

els of data missingness (10-90%). MethylGPT maintained stable performance with up to 70% 170 

missing data, significantly outperforming both ElasticNet and Multi-Layer Perceptron (MLP) 171 

approaches (Fig. 4f). This robustness suggests that the model’s contextualized embeddings effec-172 

tively capture redundant age-related signals across multiple CpG sites, enabling reliable predic-173 

tions despite incomplete methylation profiles. 174 

To further validate MethylGPT's ability to capture biologically meaningful age-related patterns, 175 

we analyzed DNA methylation profiles during iPSC reprogramming 34. The model's embeddings 176 

revealed a clear rejuvenation trajectory (Fig. 4g), with samples progressively shifting towards a 177 

younger methylation state over the reprogramming time course. Notably, when compared with 178 

conventional epigenetic clocks (Horvath's clock and GrimAge), MethylGPT showed consistent 179 

detection of rejuvenation effects, predicting a significant decrease in epigenetic age during re-180 

programming (Fig. 4h). This agreement with established aging biomarkers, while accounting for 181 

the broader epigenomic context through the transformer architecture, provides independent sup-182 

port for iPSC reprogramming as a rejuvenation method rather than merely a cell identity trans-183 

formation. The predicted age trajectory showed a sharp decline after day 20 of reprogramming, 184 

reaching near-zero predicted ages by day 30, consistent with the restoration of a pluripotent epi-185 

genetic state. 186 

Age-specific attention patterns reveal distinct methylation signatures 187 

To investigate how MethylGPT processes age-related methylation patterns, we analyzed the 188 

model’s multi-head self-attention weights (Fig. 5a). By examining the attention weight matrices, 189 

we observed that the model learned distinct patterns of CpG site interactions between young (age 190 

< 20) and old (age > 60) samples, suggesting that the transformer architecture captures age-191 

specific relationships in methylation data. 192 

We further analyzed the attention weight distributions across three age groups (< 20, 20-60, and 193 

> 60 years) to understand how the model’s attention mechanism adapts to different age ranges 194 
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(Fig. 5b). The attention patterns revealed systematic shifts in how the model weighs relationships 195 

between CpG sites across the lifespan, potentially reflecting underlying biological changes in 196 

methylation regulation during aging. Interestingly, attention weights are concentrated on a few 197 

CpG sites, suggesting that this sparse set of sites may be significantly relevant to age-specific 198 

methylation attention. To identify such statistically influential CpG sites, we extracted sites with 199 

large differential attention scores (>1.5 fold change) that were statistically significant (p-value < 200 

0.05) between young and old samples (Fig. 5c). We analyzed the associated EWAS traits and 201 

age-specific methylation signatures of the identified important CpGs in both young and old sam-202 

ples (Fig. 5d). In young samples, high-attention CpG sites showed the strongest associations with 203 

non-age-associated phenotypes, including sex and autoimmune diseases. Conversely, old sam-204 

ples showed strong attention weights at CpG sites associated with aging, as well as aging-related 205 

traits like BMI and thyroid lesions 35, validating our model’s biological relevance. 206 

To understand the biological significance of age-specific attention patterns, we performed func-207 

tional enrichment analysis on CpG sites with differential attention weights between young and 208 

old samples. Gene Ontology (GO) and Reactome pathway analysis revealed distinct biological 209 

processes associated with high-attention CpG sites in each age group (Fig. 5e). In young sam-210 

ples, highly attended CpG sites were enriched for developmental processes, including cellular 211 

response to growth factor stimulus. In contrast, CpG sites receiving higher attention in older 212 

samples showed enrichment for oxidative stress and amino acid metabolism. These enrichment 213 

patterns validate that MethylGPT’s attention mechanism captures biologically meaningful age-214 

specific methylation signatures. 215 

Disease risk prediction and intervention analysis 216 

To evaluate MethylGPT's utility in clinical applications, we analyzed its ability to predict disease 217 

risks and assess intervention effects in the Generation Scotland cohort (n = 18,859). We fine-218 

tuned the pre-trained model to predict the risk of 60 major diseases across eight categories, in-219 

cluding cardiovascular, respiratory, neurological, and autoimmune conditions, as well as overall 220 

mortality, over a 10-year window (Fig. 6a,b). Our results demonstrate that the model achieved an 221 

overall Area Under the Curve (AUC) of 0.74 on the validation set and 0.72 on the test set (Fig. 222 

6c). 223 
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Using this disease prediction framework, we systematically evaluated the impact of eight differ-224 

ent interventions on predicted disease incidence (Fig. 6d). The model revealed distinct, interven-225 

tion-specific effects across disease categories. Smoking cessation demonstrated the strongest 226 

protective effect against 10-year mortality (β = -0.13) and also reduced cardiovascular disease 227 

risk. Notably, high-intensity training showed strong benefits for respiratory, neurological and 228 

autoimmune diseases. Similarly, the Mediterranean diet provided modest but consistent protec-229 

tive effects across multiple disease categories, though with varying magnitude. 230 

Interestingly, Everolimus treatment showed a significant risk increase for autoimmune diseases. 231 

Although counter-intuitive, this finding is consistent with previous studies showing that pro-232 

longed immunosuppressant treatment is associated with an increased incidence of autoimmune 233 

diseases 36. 234 

Together, these findings demonstrate the potential of MethylGPT for predicting intervention-235 

specific health outcomes and optimizing personalized intervention strategies. 236 

Discussion 237 

DNA methylation patterns have shown potential as a universal biomarker for disease stratifica-238 

tion and monitoring. In oncology, methylation patterns enable the identification of cancer tissue 239 

of origin, achieving 81-93% accuracy in predicting primary sites of metastatic tumors and can-240 

cers of unknown primary origin 37. Methylation-based cardiovascular risk scores demonstrate 241 

superior predictive accuracy compared to conventional clinical factors 38. Furthermore, methyla-242 

tion markers can predict type 2 diabetes onset years before clinical presentation, providing criti-243 

cal windows for preventive intervention 39. 244 

Our results demonstrate that a transformer-based foundation model approach can effectively 245 

model DNA methylation patterns while maintaining biological relevance. The organization of 246 

CpG sites in the embedding space based on genomic context and regulatory features suggests 247 

that MethylGPT captures fundamental aspects of methylation regulation without explicit super-248 

vision. This capability addresses a key limitation of traditional linear models that treat CpG sites 249 

as independent entities. 250 
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The model’s performance in age prediction across diverse tissue types, with improved accuracy 251 

over existing methods, demonstrates its potential utility. Particularly notable is the resilience to 252 

missing data, maintaining stable performance with up to 70% missingness. This robustness likely 253 

stems from the model’s ability to leverage redundant biological signals across multiple CpG 254 

sites. 255 

Analysis of age-specific attention patterns revealed distinct methylation signatures between 256 

young and old samples. The enrichment of development-related processes in younger samples 257 

and aging-associated pathways in older samples, which is consistent with previous studies 40,41, 258 

suggests that the attention mechanism captures biologically meaningful age-dependent changes 259 

in methylation regulation. These findings provide new insights into how methylation patterns 260 

evolve across the lifespan. 261 

Several directions for future research emerge from this work. Integration of additional epigenetic 262 

features beyond CpG methylation could provide a more comprehensive view of regulatory 263 

mechanisms. The development of interpretable attention visualization tools could help bridge the 264 

gap between model predictions and biological mechanisms. Additionally, exploring the model’s 265 

application to single-cell methylation analysis could reveal cell-type-specific regulatory patterns. 266 

In conclusion, MethylGPT demonstrates how transformer architectures can capture context-267 

dependent methylation patterns while maintaining biological interpretability. The model’s robust 268 

performance in handling missing data suggests potential utility in both research and clinical ap-269 

plications. 270 

Methods 271 

Pretraining data collection and preprocessing 272 

For the pretraining dataset for the methylGPT, we compose DNA methylation data from 154,063 273 

human samples through the EWAS Data Hub and Clockbase 28,29. For quality control, we initial-274 

ly collected data from approximately 300,000 patients and filtered out low-quality entries with 275 

high levels of missing data (>40% of total CpG sites). We also applied deduplication to ensure 276 

no repetitions in the training data. The cleaned dataset was randomly sampled and quality-277 

checked, covering individuals across 20 distinct tissue types 42. 278 
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DNA methylation data have varying numbers of CpG entries depending on the array platform 279 

(Illumina 27k, Illumina 450k, and EPIC). To address these differences and ensure biological rel-280 

evance, we focused on 49,156 CpG sites selected based on importance by EWAS traits 30 and 281 

array format compatibility. In detail, these 49,156 CpG sites satisfy either (1) CpG are associated 282 

with more than 5 traits according to EWAS catalog or (2) CpG appears in more than 95% of the 283 

pretraining dataset. All methylation values were normalized using standard protocols. Missing 284 

values were marked for downstream masked prediction tasks. 285 

Data is processed into a matrix of � � ���� , where each element ��,� denotes the magnitude of 286 

methylation of a CpG site � in sample �. � is the number of samples and � is the number of CpG 287 

sites (i.e. 49,156). 288 

Model architecture 289 

MethylGPT consists of three main components: an embedding module, a transformer module, 290 

and task-specific heads. The input data � is tokenized and fed into the modules consecutively. 291 

We depict the input tokenization and the module details as follows. 292 

CpG site tokenization 293 

The processed data contains methylation readings of �  (49,156) CpG sites. For each site 294 

���	� � 
0,1, . . . , ���, we assign an integer identifier �������. The full CpG tokens for an individ-295 

ual sample are ����	 � �������. 296 

Embedding layers 297 

We utilize the embedding layers for the CpG site tokens to map each token to a fixed-length em-298 

bedding vector of dimension D. We employ fully connected layers for the methylation values to 299 

encode the methylation level into vector embeddings and maintain the ordinal relation of the val-300 

ues. 301 

For each CpG site, the embedding module projects both CpG site identifiers and their methyla-302 

tion values into separate embeddings (referred to as CpG embeddings and methylation value 303 

embeddings), which are then merged through an element-wise sum. The final embedding for 304 

sample i is defined as: 305 
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���	 � ���������	� � ���
����	� 

The embedding dimension is set to 64. A special [CLS] token is prepended to each sequence for 306 

learning sample-level representations. 307 

Transformer module 308 

We employ the self-attention transformer 17,43 to encode the complete input embedding. The 309 

transformer module comprises 6 transformer blocks, each containing a multi-head self-attention 310 

layer (4 heads) and a standard MLP layer. Layer normalization and residual skip connections are 311 

applied after each layer. The self-attention mechanism operates on the sequence of M embedding 312 

vectors, making it particularly suitable for capturing interactions between CpG sites. The trans-313 

former processes the sequence according to: 314 

����	 � ���	,  ����	 � �� !"#$����_�&$�'���
���	 � (& � )1, !* 

We utilize the resulting representation ����	 � ��,� for both CpG-level and sample-level tasks. 315 

The self-attention layer leverages FlashAttention for efficient training and inference 44. The 316 

model dimension is set to 64, with also an intermediate dimension of 64 in the feed-forward lay-317 

ers. The transformer module processes a sequence of input embeddings comprising 49,157 sites 318 

with 64 dimensions and outputs “contextualized embeddings” of the same shape. 319 

The input dimension M can reach tens of thousands of CpG sites, consuming huge memory and 320 

creating a significant challenge for efficient model training. We leverage the Flash-Attention 44 321 

implementation as a tool to greatly accelerate the training and inference of the model while min-322 

imizing memory footprint. 323 

The task-specific heads attached to the transformer process contextualized embeddings into di-324 

verse predictions specific to the task. In the pre-training phase, a linear layer projects output 325 

embeddings of each CpG site to predict the methylation value. In the fine-tuning phase, the MLP 326 

or convolutional layers process the complete output embeddings to predict biological age or oc-327 

currence of disease. 328 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.10.30.621013doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.30.621013
http://creativecommons.org/licenses/by-nc/4.0/


 13

Model pretraining 329 

The model was trained on two complementary objectives. First, we randomly masked 30% of 330 

CpG sites (i.e., their value embeddings were excluded from the input embedding process) and 331 

trained the model to reduce the MSE between the predicted and original methylation values at 332 

the masked CpG sites. The Methylation Value Prediction (MVP) objective is defined as: 333 

�+��	 � �,-�����	�, ,��� � 1
|�����| / ��+���	 0 ����	�

�

�������

 

where �+��	 � ��  represents the row of predicted methylation value estimates for sample i. The 334 

MVP objective encourages the model to effectively encode relationships among the CpG sites in 335 

the dataset. 336 

Second, a profile reconstruction task used the [CLS] token output embedding to reconstruct 337 

complete methylation profiles, as also described in a previous study 25. The model feeds the 338 

[CLS] token’s output embedding from the previous step back into the [CLS] token input, while 339 

all other tokens are masked. The objective of the profile reconstruction task is: 340 

�+��	 � �,-�����	�, ,��� � 1
|����| / ��+���	 0 ����	�

�

������

 

Training was performed using the AdamW optimizer with a learning rate of 0.001, The model 341 

was trained for 10 epochs with a batch size of 16 on NVIDIA A100 GPU. The learning rate is set 342 

to decay 10% after each epoch. 343 

Evaluation metrics 344 

Model performance was assessed through multiple metrics. We calculated the MSEand MAE for 345 

methylation value prediction, along with Pearson correlation coefficients between predicted and 346 

actual methylation values. For age prediction tasks, we measured accuracy using MedAE in 347 

years. For disease prediction tasks, model effectiveness was evaluated using the AUC, which 348 

measures the model’s discriminative ability to differentiate between various disease states. 349 
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Age prediction experiments 350 

For the evaluation of age prediction, we utilized a dataset comprising 13,505 samples with 351 

21,368 CpG sites 31. From the accompanying metadata, we identified training (5,461 samples), 352 

validation (1,366 samples), and test (4,626 samples) sets, with a total of 49,156 CpG sites. 353 

We fine-tuned pre-trained MethylGPT using the downstream prediction head ResNet1D. The 354 

ResNet1D consists of six residual blocks, where each residual block includes two 1D convolu-355 

tional layers with a kernel size of 3, each followed by batch normalization and ReLU activation. 356 

Specifically, we input 49,156 CpG sites into the MethylGPT, generating an embedding with di-357 

mensions (49,156, 64). To reduce dimensionality, this embedding was passed through a 3x3 1D 358 

convolutional layer, condensing the feature space to 32 channels. The reduced-dimensionality 359 

output was subsequently fed into six residual blocks, followed by an average pooling layer and a 360 

linear layer for age prediction. Both the pre-trained MethylGPT and the downstream ResNet1D 361 

prediction head were trained using the MSE loss function as the optimization objective. 362 

To assess robustness, we systematically masked increasing proportions (10-90%) of CpG sites in 363 

the test set and evaluated prediction performance. Comparison methods (ElasticNet, MLP, 364 

Horvath’s clock) were trained and evaluated on the same data splits. 365 

Disease prediction and intervention evaluation 366 

We fine-tuned the pre-trained model, maintaining consistency with the downstream prediction 367 

head architecture, ResNet1D, used in age prediction to demonstrate the generalizability of the 368 

pre-trained model across downstream tasks. By utilizing the same downstream network structure 369 

for both age and disease prediction, we aimed to confirm that the model’s effectiveness was not 370 

due to meticulous architecture optimization but rather due to its inherent flexibility. 371 

To evaluate this, we curated datasets from the Generation Scotland cohort (n = 18,859), compris-372 

ing 1,378 samples for training, 295 for validation, and 296 for testing. In fine-tuning, the model 373 

was trained to simultaneously predict the risk of 60 major diseases across eight categories, lead-374 

ing to the development of a comprehensive disease prediction model. For each disease category, 375 

a sample was labeled as ‘1’ if the disease was present and ‘0’ otherwise. This multi-label classi-376 

fication task, where a sample could have one or multiple co-occurring diseases, introduced sub-377 
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stantial complexity to the prediction challenge. Both the pre-trained MethylGPT and the down-378 

stream ResNet1D prediction head were optimized using the cross-entropy loss function. 379 

To further explore the impact of interventions on predictive outcomes, we applied the disease 380 

prediction model to assess data from eight types of interventions across six GEO datasets 381 

(GSE219217 45, GSE268211 46, GSE176325 47, GSE191297 48, GSE201532 49, GSE276988 50), 382 

encompassing a total of 183 samples. The interventions examined in this study included Mediter-383 

ranean fiber (n=36), high-intensity training (n=5), folate supplementation (n=43), anti-TNF ther-384 

apy (n=59), smoking cessation (n=16), glyNAC (n=8), everolimus (n=8), and metformin (n=8). 385 

Each intervention included an intra-group control as part of the trial design. For the phased inter-386 

ventions, only the longest duration of each intervention was retained for analysis. 387 

Attention analysis 388 

Age-specific attention patterns were analyzed by extracting attention scores from all heads in the 389 

final transformer layer. We computed mean attention scores for each CpG site across samples 390 

within defined age groups (<20, 20-60, >60 years). CpG sites with significantly different atten-391 

tion scores between age groups were identified using two-sided t-tests with Benjamini-Hochberg 392 

correction. 393 

For CpG sites showing differential attention patterns between age groups, we performed Gene 394 

Ontology (GO) and Reactome gene set enrichment analysis using MethylGSA 51. 395 

Statistical analysis 396 

All statistical tests were two-sided unless otherwise specified. Error bars in the figures represent 397 

standard deviation across samples. Sample sizes and statistical methods are specified in figure 398 

legends. 399 

Code availability 400 

The MethylGPT code and pre-trained models will be made available on github upon publication. 401 

Data availability 402 

All methylation data used in this study are available through EWAS Data Hub, GEO, and 403 

Clockbase. Processed datasets and analysis scripts will be deposited to github upon publication. 404 
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Figure 1. Overview of MethylGPT architecture and performance. a. Model architecture dia-428 

gram showing data flow from 154,063 human DNAm samples through feature extraction (49,156 429 

CpG sites) to generate 7.6 billion training tokens. Components, including transformer block de-430 

tails and the methyl embedding process, are highlighted. b. Training curve showing MLM loss 431 

over epochs, with train and validation MSE trajectories converging at epoch 10 (Best Model Test 432 

MSE: 0.014). c. Illustration of the imputing process for missing/masked DNA methylation val-433 

ues using MethylGPT. d. Joint density plot showing the correlation between predicted and 434 

ground truth DNA methylation values (Pearson R: 0.929, MAE: 0.074). e. Residual plot showing 435 

prediction errors across different methylation levels. f. Bar plot showing mean absolute error 436 

across different methylation levels (0.0-1.0). 437 

  438 
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 439 

Figure 2. Analysis of contextualized CpG embedding space. a. Schematic illustration of the 440 

CpG embedding process, showing the transformation from raw CpG input to contextualized 441 

embeddings through transformer blocks. b. UMAP visualization of 49K CpG sites colored by 442 

CpG island relationship (Island, Shore, Shelf, Other). c. UMAP plot highlighting enhancer re-443 

gions (Yes/No) in the embedding space. d. UMAP visualization showing the separation of CpG 444 

sites by chromosomal location, with distinct clustering of sex chromosomes and autosomes. 445 
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 447 

Figure 3. Sample-level embedding analysis. a. UMAP visualization of MethylGPT sample 448 

embeddings colored by tissue type, showing distinct clustering of major tissue types including 449 

whole blood, brain, liver, and skin. b. Sample density plot of the embedding space highlighting 450 

minimal batch effects. c. Sex-specific clustering in the embedding space, displaying a clear sepa-451 

ration between male and female samples. d-f. Comparative analysis of raw DNA methylation 452 

sample embeddings, showing less distinct clustering by tissue type (d), more pronounced batch 453 

effects (e), and weaker separation by sex (f). 454 

  455 
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Figure 4. Age prediction performance and robustness analysis. a. Sample composition pie 457 

chart showing tissue distribution within the age finetuning dataset (n=11,453) and age distribu-458 

tion density plot. b. PCA visualization of sample embeddings before fine-tuning, colored by age. 459 

c. Sample embeddings after fine-tuning for age prediction, showing enhanced age-related organ-460 

ization. d. Tissue-specific clustering was maintained after fine-tuning. e. Benchmark comparison 461 

of age prediction performance across different methods on validation and test datasets. Median 462 

Absolute Errors are annotated. f. Robustness analysis showing prediction performance under in-463 

creasing levels of missing data (10-90%) on test dataset for different methods. g. Principal com-464 

ponent analysis of MethylGPT embeddings during iPSC reprogramming, colored by predicted 465 

age, showing progressive trajectory towards younger methylation states. h. Comparison of pre-466 

dicted age trajectories during iPSC reprogramming across different epigenetic clocks (GrimAge, 467 

Horvath's clock) and MethylGPT, demonstrating consistent detection of rejuvenation effects. Er-468 

ror bars represent standard deviation across replicate samples. 469 

  470 
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 471 

Figure 5. Age-specific attention mechanism analysis. a. Schematic comparison of attention 472 

patterns between young and old samples, showing differential CpG site interactions. b. Attention 473 
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score matrices across three age groups (<20, 20-60, >60 years), revealing age-specific patterns. 474 

c. Volcano plot of log p-values versus differential mean attention scores identifies a few influen-475 

tial CpG sites distinguishing the attention pattern of young and old groups. d. Heatmap of top 476 

young-important (left) and old-important (right) CpG sites, annotated with associated genes and 477 

EWAS traits, demonstrating age-specific methylation signatures. e. Functional enrichment analy-478 

sis of top young-important (left) and old-important (right) CpG sites, with bars colored according 479 

to -log p-values. 480 

  481 
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 482 

Figure 6. Disease risk prediction and intervention effects using MethylGPT. a. Schematic 483 

overview of the disease prediction pipeline using Generation Scotland cohort (n = 18,859). The 484 

pretrained MethylGPT model processes methylation profiles through ResNet blocks to predict 485 

age, mortality, and disease risks, which can then be applied to evaluate clinical interventions. b. 486 

Visualization of 60 major diseases organized into disease categories (Liver and Digestive System 487 

Diseases, Respiratory Diseases, Neurological Diseases, Autoimmune Diseases, Cardiovascular 488 

Diseases, Cancers, Kidney Diseases, and Endocrine and Metabolic Diseases). c. Receiver Oper-489 

ating Characteristic (ROC) curves showing the overall performance of MethylGPT disease pre-490 

diction model (seven disease classes and overall mortality) on validation (AUC = 0.736) and test 491 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.10.30.621013doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.30.621013
http://creativecommons.org/licenses/by-nc/4.0/


 27

(AUC = 0.720) sets. d. Heatmap showing predicted effects (β values) of eight different interven-492 

tions on disease risks across major disease categories (total n=183): Mediterranean fiber (n=36), 493 

high-intensity training (n=5), folate supplementation (n=43), anti-TNF therapy (n=59), smoking 494 

cessation (n=16), glyNAC (n=8), everolimus (n=8), and metformin (n=8). Each intervention in-495 

cluded an intra-group control as part of the trial design. For phased interventions, only the long-496 

est duration timepoint was analyzed. Color scale represents effect size, with purple indicating 497 

positive effects (risk reduction) and green indicating negative effects (risk increase). Black box 498 

highlights significant effects. Values represent effect size from the Cohen's d. 499 
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