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 2 

Abstract 25 

Although evidence indicates that viruses are important in the ecology of Microcystis spp., many 26 

questions remain.  For example, how does Microcystis exist at high, bloom-associated cell 27 

concentrations in the presence of viruses that infect it?  The phenomenon of lysogeny and 28 

associated homoimmunity offer possible explanations to this question.  Virtually nothing is 29 

known about lysogeny in Microcystis, but a metatranscriptomic study suggests that widespread, 30 

transient lysogeny is active during blooms.  These observations lead us to posit that lysogeny is 31 

important in modulating Microcystis blooms.  Using a classic mitomycin C-based induction 32 

study, we tested for lysogeny in a Microcystis-dominated community in Lake Erie in 2019.  33 

Treated communities were incubated with 1 mg L
-1

 mitomycin C for 48 h alongside unamended 34 

controls.  We compared direct counts of virus-like-particles (VLPs) and examined community 35 

transcription for active infection by cyanophage.  Mitomycin C treatment did not increase VLP 36 

count.  Mitomycin C effectively eliminated transcription in the cyanobacterial community, while 37 

we detected no evidence of induction.  Metatranscriptomic analysis demonstrated that the 38 

standard protocol of 1 mg L
-1

 was highly-toxic to the cyanobacterial population, which likely 39 

inhibited induction of any prophage present.  Follow-up lab studies indicated that 0.1 mg L
-1

 may 40 

be more appropriate for use in freshwater cyanobacterial studies.  These findings will guide 41 

future efforts to detect lysogeny in Microcystis blooms. 42 

 43 

Importance 44 

Harmful algal blooms dominated by Microcystis spp. occur throughout the world’s freshwater 45 

ecosystems leading to detrimental effects on ecosystem services that are well documented.  After 46 

decades of research, the scientific community continues to struggle to understand the ecology of 47 

Microcystis blooms.  The phenomenon of lysogeny offers an attractive, potential explanation to 48 

several ecological questions surrounding blooms.  However, almost nothing is known about 49 

lysogeny in Microcystis.  We attempted to investigate lysogeny in a Microcystis bloom in Lake 50 

Erie and found that the standard protocols used to study lysogeny in aquatic communities are 51 

inappropriate for use in Microcystis studies, and perhaps freshwater cyanobacterial studies more 52 

broadly.  This work can be used to design better methods to study the viral ecology of 53 

Microcystis blooms. 54 
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 55 

Introduction 56 

Harmful algal blooms (HABs) dominated by Microcystis spp. occur throughout the world’s fresh 57 

waters (1).  The detrimental effects of HABs on ecosystems and the services they provide are 58 

extensively reviewed (2-5).  These detrimental effects have compelled decades of research aimed 59 

at understanding the eco-physiology of Microcystis-dominated blooms (6, 7). 60 

 It is well-accepted that in marine planktonic communities, viruses have significant effects 61 

on host abundance, diversity, and distribution (8-10), on host physiology and metabolism (11, 62 

12), food-web function, and biogeochemical cycles (13, 14).  A somewhat lesser body of 63 

evidence from freshwater studies suggests that viruses have a  similar effect on freshwater 64 

plankton and are important in the ecology of Microcystis blooms (15, 16).  65 

 Isolated cyanophages that infect M. aeruginosa (17-20) exhibit interactions similar to 66 

those seen in marine isolates.  For example, viral acquisition of auxiliary metabolic genes of 67 

host-like origin indicates that viruses facilitate genetic exchange and influence Microcystis 68 

metabolism (21, 22).  Cyanophage abundance and activity have been correlated to Microcystis 69 

cell dynamics in blooms (23-25). Metatranscriptomic investigations have further linked viral 70 

infection to releases of microcystin into the water column (26, 27).  In one case, virus activity is 71 

thought to be associated with the 2014 drinking water crisis in Toledo, Ohio (28).  More 72 

ecologically interesting is that cyanophage infection of Microcystis is at least sometimes 73 

associated with strain succession over the course of a bloom. An early study linked dynamics of 74 

Ma-LMM01-like cyanophages to shifts between toxic and non-toxic strains of Microcystis (29).  75 

Recent metatranscriptomic studies have confirmed this dynamic while providing deeper 76 

community-wide insight (30, 31) . 77 

 Though evidence suggests cyanophages infecting Microcystis are important, questions 78 

remain.  One question is whether viral activity is the driver or follower of frequently observed 79 

replacements of one strain of Microcystis with another.  Other observations lead to fundamental 80 

ecological questions that an examination of Microcystis blooms may address.  In blooms, 81 

Microcystis cells can reach concentrations of ~2 x 10
7
 mL

-1
 (24) and contribute more than 90% 82 

of the in situ total chlorophyll fluorescence (32).  In these circumstances, Microcystis seems to 83 

violate the precepts of the “Paradox of the Plankton” (33) and outcompetes other taxa of 84 

phytoplankton to their near exclusion (34).  More confoundingly, Microcystis does so in the 85 
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presence of cyanophages that presumably infect them (30, 31, 35).  This latter observation, on its 86 

surface, seems to run counter to basic tenets of the “Kill-the-Winner” hypothesis (36).  A basic 87 

question then becomes, how does Microcystis exist at high concentrations in the presence of 88 

viruses that infect it?  89 

 A possible explanation to this question is lysogeny.  Lysogeny is a relationship between a 90 

host and a phage where the genome of the virus integrates into the host chromosome (15, 37).  91 

The viral genome is then known as a prophage, and the combined virus-cell unit as a lysogen.  92 

Prophages can alter gene expression and metabolism of the lysogen through a process termed 93 

lysogenic conversion (38).  Conversion can enhance lysogen fitness through several mechanisms 94 

(39).  Applicable to the question at hand is that prophages can offer resistance to infection by 95 

closely related phages, a phenomenon termed homoimmunity (40).  Thus, lysogen-derived 96 

homoimmunity could be an explanation for how Microcystis co-exists at high cell concentrations 97 

in the presence of cyanophages that can infect it (41).   98 

 Little is known about lysogeny in Microcystis.  Lysogeny in aquatic communities is most 99 

commonly tested through chemical induction using the mutagen mitomycin C (42).  There is a 100 

long history of testing lysogens in marine and freshwater communities using mitomycin C (see 101 

Supplemental Table 1 in Knowles et al. (43) for a summary).  We found only two studies that 102 

attempted induction in Microcystis communities. Sulcius et al. (44) incubated colonies collected 103 

from a bloom in the Curonian Lagoon in Lithuania in mitomycin C and found no evidence of 104 

prophage induction.  In an Australian study, bloom communities containing M. aeruginosa were 105 

treated with mitomycin C, but no evidence of induction was detected (45).  However, the same 106 

study reported induction of ~3% of cells in a lab culture of M. aeruginosa isolated from a 107 

waterbody in Queensland.   108 

 While evidence of widespread lysogeny in Microcystis during blooms is lacking, a 109 

metatranscriptomics study suggested its possibility.  Over a period of 5 months in China’s Taihu, 110 

Stough et al. (41) observed seasonal patterns in expression of cyanophage genes similar to those 111 

of Ma-LMM01 (20).  Lytic-associated gene transcripts dominated early in the bloom (June and 112 

July), indicating active on-going lytic infections.  Dominate expression shifted to lysogenic-113 

associated genes in August through October.  Such dynamic shifts in active infections by Ma-114 

LMM01-like cyanophages leads us to posit that lysogeny plays a role in modulating Microcystis 115 

blooms.  116 
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 5 

 The initial objective of this study was to test for lysogeny in a Microcystis bloom.  We 117 

conducted a microcosm study using natural communities collected in Lake Erie during a 118 

Microcystis-dominated bloom in 2019.  Communities were incubated with 1 mg L
-1

 mitomycin C 119 

for 48 h alongside unamended controls.  To detect lysogen induction, we compared direct counts 120 

of virus-like-particles (VLPs) and examined community transcription for active infection by 121 

cyanophage.  Mitomycin C eliminated transcription in the cyanobacterial community, while we 122 

detected no evidence of prophage induction.  Mitomycin C shifted community transcription 123 

towards Alpha- and Beta-Proteobacteria, and subsequent phage infections shifted with these 124 

community changes.  Inhibition of the target community indicates that use of mitomycin C at 1 125 

mg L
-1

 (the standard protocol) is inappropriate for lysogeny studies in freshwater cyanobacterial 126 

communities, and may skew quantitative assessment of other populations. 127 

 128 

Results 129 

Mitomycin C did not increase VLP abundance in Lake Erie microcosms 130 

In the phosphorus (P)-limited-community experiment, mean VLP concentration was 3.8 x 10
7
 131 

mL
-1

 (SE = 5.3 x 10
6
 mL

-1
) at T0.  After incubation, there was no difference between groups 132 

(ANOVA p = 0.78; Figure 1A).  In the P-replete-community experiment, mean VLP 133 

concentration was 8.2 x 10
7
 mL

-1
 (SE = 1.2 x 10

7
 mL

-1
) at T0.  After incubation, VLP 134 

concentration was lower in the mitomycin C treatment (6.9 x 10
7
 mL

-1
; SE = 2.2 x 10

6
 ml

-1
) than 135 

the control (1.5 x 10
8
 mL

-1
; SE = 2.8 x 10

7
 mL

-1
; Tukey’s p = 0.04; Figure 1B). 136 

 137 

Figure 1.  Direct virus counts by treatment. a) P-limited experiment. b) P-replete experiment. 138 
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 6 

Sequencing Results 140 

An average of ~57 M (range 49-68 M) QC reads per library remained for the P-limited 141 

experiment, while ~49 M (range 21-63 M) remained for the P-replete experiment.  The co-142 

assembly originating from the P-limited experiment contained 913,786 contigs, within which 143 

1,066,812 putative genes were identified by MetaGeneMark.  Of these, 1,061,804 genes were 144 

assigned taxonomy by GhostKOALA.  The co-assembly of the P-replete experiment contained 145 

553,450 contigs, with 678,427 putative genes identified by MetaGeneMark.  Of these, 675,419 146 

genes were assigned taxonomy by GhostKOALA.  These taxonomy-assigned gene lists were 147 

used for downstream analysis of whole community expression for each of the experiments.  For 148 

community expression estimation, an average of ~35 M (61% of QC) and ~32 M (66% of QC) 149 

reads per library mapped to genes of the P-limited and P-replete co-assemblies, respectively. 150 

 The VirSorter2/CheckV workflow identified 133 virus contigs in the P-limited co-151 

assembly and 95 in the P-replete co-assembly.  In estimating viral expression, an average of 152 

~225 thousand (0.39% of QC) and ~172 thousand (0.35% of QC) reads per library mapped to the 153 

virus contig lists from the P-limited and P-replete co-assemblies, respectively.  Detailed read 154 

mapping statistics for both experiments are summarized in Supplemental Table 1. 155 

 156 

Mitomycin C reduced transcriptional representation of Bacteria 157 

Community transcriptional profiles between the two experiments showed similar trends.  158 

Mitomycin C only moderately decreased transcriptional representation of Bacteria.  This was 159 

balanced by increased representation of Plants (primarily green algae) in the P-limited 160 

microcosms, and by increased representation across varied taxa in the P-replete microcosms 161 

(Figure 2).  At T0 in the P-limited experiment, Bacteria represented ~87% of total community 162 

expression (Figure 2A).  In the control, Bacteria made up ~81% of total community expression, 163 

indicating limited bottle effects.  Bacteria representation declined to ~59% in the mitomycin C 164 

treatment (vs. control, Tukey’s p = 0.01).  At T0 in the P-replete experiment, Bacteria represented 165 

~85% of total community expression (Figure 2B).  In the control, Bacteria represented ~77% of 166 

total community expression.  Bacteria representation declined to ~68% in the mitomycin C 167 

treatment (vs. control, Tukey’s p = 0.08).  In the P-limited experiment, chlorophyll a (chl a) 168 

concentration decreased in the mitomycin C treatment vs. control, but not significantly 169 
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 7 

(Supplemental Figure 1A).  In the P-replete experiment, chl a in the mitomycin C treatment 170 

decreased to about half that of the control (p = 0.05) (Supplemental Figure 1B). 171 

 172 

 173 

Figure 2.  Transcription activity by Kingdom and by treatment as a percent of total community 174 

transcription activity.  a) P-limited experiment.  b) P-replete experiment. 175 

 176 

Mitomycin C effectively eliminated transcriptional representation of Cyanobacteria 177 

Mitomycin C dramatically reduced transcriptional representation of Cyanobacteria and strongly 178 

shifted the transcriptional profile of the community toward Proteobacteria and phototrophic 179 

Eukaryotes (Figures 3 and 4).  In the P-limited controls, Cyanobacteria made up ~63% of total 180 

community transcription, with Microcystis alone contributing ~51% (Figure 3A).  In the 181 

mitomycin C treatment, Cyanobacterial transcription declined to less than 2% of the community 182 

total while Microcystis declined to 0.6%.  Microcystis transcription seemed more heavily 183 

suppressed than other Cyanobacteria as it suffered a ~92-fold decline in transcriptional activity 184 

while collectively all other Cyanobacteria declined ~9-fold.   185 

 186 

 187 

Figure 3.  Microcystis. transcription activity by treatment as a percent of total community 188 

transcription activity.  a) P-limited experiment.  b) P-replete experiment. 189 
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 8 

 Within the bacterial community proper, Cyanobacteria comprised ~77% of total Bacteria 190 

transcription in the P-limited control and ~3% in the mitomycin C treatment (Figure 4A).  In 191 

contrast, transcriptional representation of Alpha- and Beta-Proteobacteria increased from ~6% 192 

and 4% of the Bacteria total in the control to ~33% and 43% in the mitomycin C treatment, 193 

respectively (Figure 4A).   194 

 195 

 196 

Figure 4.  Transcription activity by Phylum or Class of Bacteria and by treatment as a percent of 197 

total bacterial transcription.  a) P-limited experiment.  b) P-replete experiment. 198 

 199 

 In the P-replete controls, Cyanobacteria contributed ~51% of total community 200 

transcription, with Microcystis alone contributing ~42% (Figure 3B).  In the mitomycin C 201 

treatment, Cyanobacteria transcription declined to ~6% of the community total while Microcystis 202 

declined to ~3%.  This represents a ~13-fold decline in Microcystis transcriptional activity and 203 

only a ~3-fold reduction among all other Cyanobacteria collectively.   204 

 Within the bacterial community proper, Cyanobacteria comprised ~67% of total Bacteria 205 

transcription in the P-replete control and ~9% in the mitomycin C treatment (Figure 4B).  In 206 

contrast, transcriptional representation of Alpha- and Beta-Proteobacteria increased from ~9% 207 

and 3% of the Bacteria total in the control to ~25% and 35% in the mitomycin C treatment, 208 

respectively (Figure 4B).  The effects of mitomycin C on major genera of Cyanobacteria, those 209 

making >1% of total cyanobacterial transcription in T0, is illustrated in Supplemental Figure 2.  210 

 211 

Viral expression followed host changes induced by mitomycin C 212 

Treatment induced clear patterns in viral expression in both the P-limited (Figure 5) and P-213 

replete (Figure 6) microcosms as illustrated in expression heatmaps.  Unsurprisingly, expression 214 

of major classifications of viruses followed changes in microbial taxa serving as potential hosts.   215 
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 9 

 In the P-limited microcosms, viral expression in T0 bottles was dominated by viruses of 216 

the phylum Uroviricota whose putative hosts were categorized as Cyanobacteria (i.e., 217 

cyanophages) along with a few whose hosts were Alpha- or Beta-Proteobacteria (Figure 5).  In 218 

the control bottles, viral expression was dominated by a group of cyanophages distinctly separate 219 

from those in T0, indicating a moderate bottle effect on viral expression.  The control bottles also 220 

saw a sharp expression increase in a group of 13 viral contigs, eight of which could be identified 221 

as RNA viruses classified in the phyla of Duplornaviricota, Kitrinoviricota, or Negarnaviricota.  222 

There was a wholesale shift in viral expression in the mitomycin C treatment.  Here, viral 223 

expression was dominated by a group of 72 viral contigs, 40 of which could be categorized.  Of 224 

these, 31 were identified as RNA viruses (mostly in the phylum Kitrinoviricota) and nine in the 225 

phylum Uroviricota with putative hosts likely Alpha- or Beta-Proteobacteria.  226 

 In the P-replete microcosms, differences between treatments were driven by virus groups 227 

and patterns distinct from those of the P-limited experiments.  Expression of cyanophages was 228 

generally lower in the P-replete experiments (Figure 6).  Viral expression in the T0 bottles was 229 

dominated by a group of 25 contigs, 14 of which could be categorized as Uroviricota with 230 

putative hosts distributed between Cyanobacteria and Alpha-, Beta-, and Gamma-231 

Proteobacteria.  Dominant viral expression in the control included the same contigs observed as 232 

dominant in T0, but with an additional group of 23 contigs most of which were phages whose 233 

putative hosts were Gamma-Proteobacteria.  Again, there was a strong shift in expression 234 

observed in the mitomycin C treatment.  Expression in mitomycin C bottles was dominated by 235 

40 contigs, 21 of which could be categorized.  Of these, eight were RNA viruses of the phyla of 236 

Duplornaviricota, Kitrinoviricota, or Negarnaviricota, while 13 were Uroviricota whose 237 

putative hosts were likely Alpha- or Beta-Proteobacteria.  Details of viral classification is found 238 

in Supplemental Table 2.  239 

 240 

 241 

 242 
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 10 

 243 

Figure 5.  Standardized viral expression in P-limited microcosms.  Each row represents 244 

expression (TPM) standardized across treatments.  Standardized expression for each biological 245 

replicate is shown for each treatment. 246 
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 11 

 249 

Figure 6.  Standardized viral expression in P-replete microcosms.  Each row represents 250 

expression (TPM) standardized across treatments.  Standardized expression for each biological 251 

replicate is shown for each treatment. 252 

 253 

 254 

 255 

RNA

RNA

G-Proteobacteria

G-Proteobacteria
G-Proteobacteria

RNA
A-Proteobacteria
B-Proteobacteria
G-Proteobacteria

G-Proteobacteria
G-Proteobacteria
G-Proteobacteria

Cyanobacteria
Cyanobacteria
Cyanobacteria

Cyanobacteria

Cyanobacteria

G-Proteobacteria
Cyanobacteria

B-Proteobacteria

A-Proteobacteria

A-Proteobacteria
G-Proteobacteria
A-Proteobacteria

Cyanobacteria
G-Proteobacteria

RNA

RNA

RNA

RNA

RNA

B-Proteobacteria

B-Proteobacteria

RNA
RNA

A-Proteobacteria

B-Proteobacteria
B-Proteobacteria
B-Proteobacteria
B-Proteobacteria

A-Proteobacteria
G-Proteobacteria
A-Proteobacteria
B-Proteobacteria

RNA

B-Proteobacteria
B-Proteobacteria

-1

Z-score

0 1 2

T0 Control Mitomycin C

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

1
0

5

1
0

6

1
0

7

TPM

Cyanophage
Bacteriophage
RNA Virus

Viral Category

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2024. ; https://doi.org/10.1101/2024.11.06.622312doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.06.622312
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

Mitomycin C is lethal to lab cultures of M. aeruginosa 256 

We tested dose-dependent effects of mitomycin C on M. aeruginosa strains NIES-88 and NIES-257 

298H.  For both, the concentration of mitomycin C most commonly used in induction 258 

experiments (1 mg L
-1

) was lethal (Supplemental Figures 3A and 4).  Concentrations of 0.1 mg 259 

L
-1

 inhibited population growth, but was not bactericidal.  Mitomycin C at 0.01 mg L
-1

 weakly 260 

inhibited population growth of NIES-298H compared to control (Supplemental Figure 3A), but 261 

did not inhibit growth of NIES-88 (Supplemental 4).  We tested two additional concentrations of 262 

mitomycin C in NIES-88.  Mitomycin C at 0.5 mg L
-1

 was lethal to the population, while 0.05 263 

mg L
-1

 was moderately inhibitory to growth (Supplemental Figure 3B).  264 

 In the filamentous cyanobacterium Raphidiopsis (Cylindrospermopsis) raciborskii 265 

Cr2010, 1 mg L
-1

 and 0.1 mg L
-1

 mitomycin C had strong inhibitory effects; neither were 266 

bactericidal (Supplemental Figure 5).  A concentration of 0.01 mg L
-1

 had no inhibitory effect.  267 

In the filamentous cyanobacterium Planktothrix agardhii SB1031, 1 mg L
-1

 mitomycin C was 268 

strongly inhibitory but was not bactericidal (Supplemental Figure 6).  Concentrations of 0.1 mg 269 

L
-1

 and 0.01 mg L
-1

 had little inhibitory effect (Supplemental Figure 6).   270 

 271 

Discussion 272 

The effects of mitomycin C 273 

Mitomycin C is an antibiotic that cross-links complementary strands of DNA by covalently 274 

linking guanine nucleosides at CpG sites (46, 47).  This cross-linking inhibits DNA replication 275 

and transcription at the site (48).  A single cross-link per genome within an essential gene can be 276 

lethal in a bacterial cell (46).  Cross-linking initiates DNA repair responses which can trigger 277 

prophage induction.  Sensitivity of bacteria to mitomycin C varies by strain and species and can 278 

depend on specific traits such as GC content (48), presence of efflux pumps (49), and cellular 279 

oxidation status (46).  The effects of mitomycin C range from bacteriostatic to bactericidal in a 280 

dose-dependent way.  The concentration differences leading to bacteriostatic versus bactericidal 281 

effect can vary 2- to 7-fold in some species, while other species show no concentration 282 

difference (48).   283 

 It follows that if sensitivity to mitomycin C is dose-dependent, then induction of 284 

prophage is likely dose-dependent as well (50).  An overdose of mitomycin C can be inhibitory 285 
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and/or bactericidal before production of progeny virions is complete, while an underdose might 286 

fail to induce prophage.  Both conditions can lead to an underestimation of lysogeny (43). 287 

 Within a community, application of a given concentration of mitomycin C will be an 288 

appropriate prophage-inducing dose to some and either an overdose or underdose to others, with 289 

researchers having little to no foreknowledge of the differential and selective effects of 290 

mitomycin C on the various components of the community.  Here, we used metatranscriptomics 291 

to monitor the differential effects across community members.  This method allowed us to detect 292 

and demonstrate that the standard protocol of 1 mg L
-1

 of mitomycin C is a highly-lethal 293 

overdose to freshwater cyanobacteria and strongly selects for Proteobacteria in the community.  294 

This overdose concept weighs heavily in our interpretation of the induction results. 295 

 From our data, we conclude that 1 mg L
-1

 mitomycin C was too bactericidal to the 296 

Microcystis-dominated cyanobacterial community to allow the induction of cyano-prophage 297 

which may have been present and/or the formation of new virions.  It is conceivable that 298 

mitomycin C induced a heavily lysogenized community that led to extensive lysis, or to a 299 

cascade of lytic infections by progeny virions, but the results of direct viral counts seem to 300 

eliminate this as a possibility.   301 

 There are no data in the literature on mitomycin C dose effects on Microcystis.  The 302 

standard and most commonly used concentration in both marine and freshwater induction studies 303 

is 1 mg L
-1

 (42).  In the two previous induction studies conducted in Microcystis blooms, one 304 

used 1 mg L
-1

 (45), while the other used 20 mg L
-1

 (44).  Consistent with our findings, neither 305 

study detected lysogeny in the Microcystis-dominated communities.  Sulcius et al. (44) used the 306 

high concentration of 20 mg L
-1

 following observations of Dillon and Parry (51) in freshwater 307 

Synechococcus spp.   308 

 Dillon and Parry (51) tested 19 non-axenic strains of phycocyanin-rich freshwater 309 

Synechococcus for lysogeny using mitomycin C concentrations ranging from 1 to 100 mg L
-1

.  310 

They incubated cultures with mitomycin C for up to 14 d.  They found that 16 strains were 311 

inducible and that 20 mg L
-1

 yielded the highest number of inductions.  This high concentration 312 

induced a number of strains that were not inducible using 1 or 2 mg L
-1

.  As controls, non-313 

lysogenic strains were incubated with 20 mg L
-1

 mitomycin C with no visible lysis of cells at 14 314 

d.  Their results demonstrated high resistance to mitomycin C in some freshwater strains of 315 

Synechococcus spp. 316 
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 Our results demonstrated the opposite in Microcystis.  Metatranscriptomic analysis 317 

indicated that 1 mg L
-1

 mitomycin C incubated for 48 h effectively shut down transcription in 318 

natural populations of Microcystis.  Follow-up lab studies testing effects of mitomycin C 319 

demonstrated that in cultures of M. aeruginosa, growth can be inhibited by concentrations as low 320 

as 0.01 and 0.05 mg L
-1

.   321 

 Transcriptional activity hinted that Microcystis was more sensitive to mitomycin C than 322 

other genera of commonly encountered freshwater cyanobacteria.  Our lab studies were too 323 

limited to allow us to draw broad conclusions, but the results were consistent with 324 

metatranscriptomic observations from the field.  Both Raphidiopsis and Planktothrix 325 

demonstrated greater resistance to mitomycin C than did M. aeruginosa, as measured by growth 326 

inhibition.  This provides some measure of validation on our metatranscriptomic approach. 327 

 Our study reinforces, using specific freshwater taxa, what is already more generally 328 

known: the effects of mitomycin C are dose-dependent and vary between species (48).  It seems 329 

safe to assume induction of freshwater lysogens is dose-dependent and varies between species as 330 

well.  Furthermore, our observations indicate that the “correct” dosage (43) for induction-based 331 

lysogeny studies in natural Microcystis communities may be as low as 0.05 to 0.1 mg L
-1

. 332 

  333 

Lysogeny in Microcystis blooms 334 

Longitudinal studies of cyanophage gene expression (and thus infection activity) suggest that 335 

lysogeny may be transiently prevalent in Microcystis over the course of a bloom (31, 41).  336 

Lysogeny offers an intriguing potential explanation of how Microcystis-dominated blooms 337 

sometimes seem at odds with ecological principles that appear to apply in other aquatic 338 

communities, e.g., “Paradox of the Plankton” (33) and “Kill-the-Winner” (36).   339 

 Based on a collection of early induction studies in marine systems, lysogenic infection 340 

was thought to predominate under conditions of low host abundance, low primary productivity, 341 

oligotrophic conditions, or in otherwise generally unfavorable conditions, while lytic infections 342 

predominated in near opposite conditions (9, 52).  Under this model, Microcystis blooms would 343 

seem an unlikely environment in which to find a prevalence of lysogenic infections.  A more 344 

recent study suggested that lysogenic infections can also predominate under high host densities 345 

(53), while a meta-analysis of 39 induction studies found no significant relationship between 346 

fraction of chemically inducible cells (FCIC) and host density (43).  Knowles et al. (43) 347 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2024. ; https://doi.org/10.1101/2024.11.06.622312doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.06.622312
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

ultimately concluded that the constrained distribution of FCIC suggests that an as of yet 348 

unexamined variable, possibly environmental, may control dynamic prevalence of lysogenic 349 

infection.  This would seem to reopen the door to lysogeny as an attractive hypothesis to help 350 

explain dynamics of Microcystis blooms.  Existence of transient lysogeny could provide 351 

homoimmunity, which in turn could play a pivotal role in the ecology and dynamics of 352 

freshwater harmful algal blooms.  To our knowledge, direct evidence demonstrating widespread 353 

lysogeny in natural Microcystis populations is lacking.  But as the maxim says, absence of 354 

evidence is not evidence of absence, and the gravity of the topic argues for continued research in 355 

this area.  The challenge, then, is to design and conduct experiments that can quantitatively 356 

detect lysogeny in natural blooms.  Here, using community metatranscriptomics, we demonstrate 357 

that the standard protocol for detecting lysogeny in natural aquatic communities is inappropriate 358 

for Microcystis research.   359 

 360 

Conclusion 361 

 362 

Evidence indicates that viruses are important in the ecology of Microcystis, while cell 363 

concentrations during blooms seemingly contradict tenets of ecological models of viral infection 364 

in phytoplankton.  Lysogeny in Microcystis could help explain this phenomenon.  Consistent 365 

with this idea, metatranscriptomic studies suggest that lysogeny is dynamic during blooms. The 366 

challenge in testing this hypothesis is to quantitatively detect lysogeny in bloom communities.  367 

Application of mitomycin C is a time-honored technique used to detect lysogeny in 368 

phytoplankton.  We used mitomycin C to test for lysogeny in a Microcystis bloom and with 369 

metatranscriptomic analysis demonstrated that the standard protocol of 1 mg L
-1

 was a highly-370 

toxic overdose which likely inhibited induction of any prophage present.  Follow-up lab studies 371 

indicate that 0.1 mg L
-1

 may be more appropriate in Microcystis.  These findings will guide 372 

future efforts to detect lysogeny in blooms, which in turn is needed to understand the role of 373 

lysogeny in the ecology of Microcystis.  The detrimental effects of HABs on freshwater 374 

ecosystems argues for such a gain in understanding.  375 

 376 

 377 

 378 

 379 
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Methods 380 

Lake Erie microcosm experiments  381 

The mitomycin C field experiments reported here were a subset of a larger microcosm study 382 

conducted at Ohio State University’s Stone Laboratory in Put-in-Bay, Ohio in 2019.  Detailed 383 

descriptions of the larger studies were reported in Pound et al. (54) and Martin et al. (55).   384 

 Microcosm experiments were independently conducted twice with natural communities 385 

collected on different days and from different locations in Lake Erie.  Surface water was 386 

collected for the first experiment in 20-L carboys at 41° 44.946 N, 83° 06.448 W in Lake Erie on 387 

21 July 2019.  Water for the second experiment was collected at 41° 49.568 N, 83° 11.678 W on 388 

24 July 2019.  Sampling at both sites occurred during an early-phase Microcystis-dominated 389 

bloom (56).  Physicochemical measurements of surface water conditions were made with a YSI 390 

EXO2 sonde at the time of water collection.   391 

 For each of the mitomycin C experiments, microcosms were established by aliquoting 392 

homogenized lake water containing natural communities into nine 1.2-L polycarbonate bottles, 393 

which were randomly allocated between three treatments with three replicate bottles per 394 

treatment: mitomycin C (1 mg L
-1

), initial conditions (T0), and control. The three T0 bottles were 395 

sampled immediately.  The control and mitomycin C bottles were incubated in situ for 48 h in 396 

Lake Erie in floating corrals off the dock at the Stone Lab (41° 39.467 N, 82° 49.600 W).  The 397 

corrals were covered with shade screen which reduced incident photosynthetically active 398 

radiation by ~40%. 399 

 Bottles were sampled for chl a concentration, RNA sequencing, and direct viral counts.  400 

For chl a samples, 100 mL of water was filtered through 0.2-µm-pore-size polycarbonate filters.  401 

chl a was extracted from the filters in 90% acetone at 4° C for 24 h then quantified on a 10-AU 402 

Fluorometer (Turner Designs) following the method of N. A. Welschmeyer (57).  RNA samples 403 

were collected by filtering ~150 mL of water through 0.2-µm-pore-size Sterivex
TM

 filters then 404 

flash freezing in liquid nitrogen.  Samples were stored at -80° C until extraction.  For virus count 405 

samples, 5 mL of lake water was flash frozen in liquid nitrogen and stored at -80° C until 406 

enumeration. 407 

 Chl a response indicated that the phytoplankton community in the first experiment was P-408 

limited while the community in the second experiment was P-replete (see Fig. 2 in Martin et al. 409 

(55)).  This fortuitously allowed us to compare the effects of mitomycin C between P-limited and 410 
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P-replete communities.  Results from the two experiments are presented separately and are 411 

referred to as P-limited and P-replete. 412 

 413 

Direct viral counts 414 

VLPs were enumerated following the procedures summarized in E. R. Gann et al. (58) and C. P. 415 

Brussaard (59).  Raw lake water was prefiltered using 0.45-µm pore-size polyvinylidene 416 

difluoride syringe filters (Millipore Sigma).  Prefiltered lake water was then fixed with 0.5% 417 

glutaraldehyde at 4° C for 30 min.  Fixed viruses were stained with 1x concentration of SYBR 418 

Green I DNA stain (Lonza Bioscience) and incubated at 80° C for 10 min.  Stained viruses were 419 

enumerated on a FACSCalibur (BD Biosciences) flow cytometer gating on SYBR green 420 

emission (520 nm) and side scatter.  Known concentrations of 1-µm yellow-green FluoSphere 421 

Carboxylate-Modified Microspheres (505/515 nm) (Invitrogen) were added to samples to 422 

provide for absolute quantification of VLPs. 423 

 424 

RNA extraction and sequencing 425 

RNA was extracted from Sterivex filters as described on protocols.io (60).  Briefly, RNA was 426 

extracted with acid phenol and chloroform, precipitated with sodium acetate and 100% ethanol, 427 

and washed with 70% ethanol.  Residual DNA was removed by digestion using a Turbo DNA-428 

free Kit (Ambion) following the protocol on protocols.io (61).  RNA samples were considered 429 

DNA free if no bands were visible on an agarose gel after 30 cycles of PCR amplification using 430 

standard primers 27F/1522R targeting the 16S rRNA gene (62).  Samples showing DNA 431 

contamination were retreated with Turbo DNA until no bands were visible.  RNA was quantified 432 

using the Qubit hsRNA assay. 433 

 cDNA libraries were prepared at Discovery Life Sciences (Huntsville, Alabama) using 434 

the Illumina Stranded Total RNA Prep, Ligation with Ribo-Zero Plus kit.  Libraries were 435 

sequenced at Discovery Life Sciences on the Illumina NovaSeq platform generating ~100-120 436 

million 100-bp PE reads per library.  437 

 438 

Bioinformatic analysis 439 

Residual ribosomal reads were removed in silico using BBDuk (v. 38.90) in the BBTools 440 

package with the Silva database (v. 119) as the ribosomal sequence reference (63, 64).  Reads 441 
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were trimmed for quality using CLC Genomics Workbench (v. 20.0.4) using a quality limit score 442 

of 0.02, ambiguous nucleotides = 0, and minimum length = 50 bp.  All other settings were 443 

default values.  Nonribosomal, trimmed reads from all libraries within an experiment were 444 

combined and assembled together into a single co-assembly using MegaHit (v. 1.2.9) (65), i.e., a 445 

separate co-assembly was produced for the P-limited and P-replete experiments.   446 

 For viral community analysis, viral contigs in the co-assemblies were identified using 447 

VirSorter2 (v. 2.2.3) (66).  Contigs identified as viral by VirSorter2 were further analyzed with 448 

CheckV (v. 0.8.1) for additional verification of viral origin and for viral genome completeness 449 

(67).  Contigs labeled as “no virus genes detected” in CheckV were removed from the putative 450 

viral contig list and all downstream analysis.  Remaining viral contigs were classified 451 

taxonomically using the Contig Annotation Tool (CAT) (68).  DIAMOND (v. 2.0.14) was used 452 

to identify best protein alignment hits to amino acid translations of genes predicted in CAT (via 453 

Prodigal v. 2.6.3) (69, 70).  Categorization of putative hosts of the Uroviricota (the tailed 454 

bacteriophages) was made by a manual decision when the best DIAMOND hit (with a E-value 455 

cutoff of 1 x 10
-99

) of more than one ORF in a contig was to a characterized phage with a known 456 

host.  This approach allowed us to place phage contigs into a conservative classification system 457 

of being either cyanophage or phage likely infecting heterotrophic bacteria.  Contigs with hits 458 

higher than the cutoff or to phages with ambiguous or unknown hosts were left un-categorized.   459 

 Quantification of DNA virus infection activity and presence/activity of RNA viruses in 460 

each treatment was estimated by mapping reads from each library to viral contigs.  Reads were 461 

mapped in CLC Genomics Workbench using settings of 0.85 and 0.85 for length fraction and 462 

similarity fraction, respectively.  Default settings were used for other parameters.  Expression 463 

was calculated as transcripts per million (TPM) (71) with reads mapped as pairs counted as two 464 

and reads mapped as broken pairs counted as one.  Expression of each putative viral contig was 465 

standardized across replicates and treatments.  Heatmaps illustrating standardized viral 466 

expression/presence across treatments were made with Heatmapper (72) clustering contigs using 467 

average linkage with Pearson distance.  By sequencing RNA, we captured infection activity of 468 

DNA viruses and presence and/or infection activity of RNA viruses.  For economy’s sake, we 469 

will refer collectively to presence/activity of either virus type as “viral expression” or “viral 470 

activity”. 471 
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 To estimate community gene expression, putative genes within a co-assembly were first 472 

identified using MetaGeneMark (v. 3.38) (73).  Identified genes were annotated with predicted 473 

function and taxonomy using GhostKOALA (74).  The resulting final gene list used in 474 

downstream analysis included only those genes with predicted taxonomy.  Expression in TPM 475 

for each gene was calculated by mapping reads from each library to the gene list using the same 476 

parameters described for viral expression.   477 

 478 

Laboratory experiments, strains, and culturing 479 

Axenic cultures of Microcystis aeruginosa strains NIES-88 and NIES-298 were grown in 50-mL 480 

glass tubes in CT medium (75) modified by supplying P at an equivalent molar concentration via 481 

Na2HPO4 rather than the original Na2-B-glycerophosphate.  NIES-88 was purchased from the 482 

Microbial Culture Collection of the National Institute for Environmental Studies (Japan).  NIES-483 

298 was provided by Jozef Nissimov (University of Waterloo).  These Microcystis strains were 484 

used because of their relevance in mitomycin C sensitivity tests.  The NIES-88 genome harbors a 485 

contiguous viral segment ~37 kbp long (31), which is assumed to be a remnant of a defective 486 

prophage, while NIES-298 is the host of the cyanophage Ma-LMM01 (20).  Non-axenic cultures 487 

of Planktothrix agardhii SB-1031 and Raphidiopsis (Cylindrospermopsis) raciborskii Cr2010 488 

were grown in 50-mL glass tubes in standard MLA medium (76).  SB1031 was isolated from 489 

Sandusky Bay, Lake Erie and provided by George S. Bullerjahn (Bowling Green State 490 

University).  Cr2010 was isolated from Reeuwijkse Plassen in the Netherlands (77) and was 491 

provided by Corina Brussaard (Royal Netherlands Institute for Sea Research).  All cultures were 492 

grown at 26° C with a photosynthetic fluence rate of ~50 µmol photons m
-2

 s
-1

 provided by cool-493 

white fluorescent bulbs (GE Ecolux 32W) on a 12-h light/dark cycle. Temperature was measured 494 

every 30 min using a Hobo Tidbit TempLogger (OnSet Computer Corporation). 495 

 To test sensitivity to mitomycin C, cultures were grown across a series of mitomycin C 496 

concentrations.  Mitomycin C (Thermo Fisher Scientific) was dissolved in DMSO then added to 497 

cultures to produce final test concentrations of 0.01, 0.1, and 1 mg L
-1

.  A DMSO solvent-only 498 

control and a no solvent/no mitomycin C control were included.  In experiments using M. 499 

aeruginosa NIES-88, we tested the additional mitomycin C concentrations of 0.05 and 0.5 mg L
-

500 

1
.  Chl a fluorescence was used as a proxy for cyanobacterial biomass and was measured on a 501 

TD-700 fluorometer (Turner Designs).  All experiments were conducted in biological triplicate. 502 
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 503 

Data availability 504 

Raw reads are publicly available in the Sequence Read Archive of the National Center for 505 

Biotechnology Information under the BioProject numbers PRJNA737197 and PRJNA823389. 506 

 507 

 508 

  509 
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 777 

 778 

Supplemental Figure 1.  Chlorophyll a response by treatment.  a) P-limited experiment.  b) P-779 

replete experiment. 780 
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 799 

Supplemental Figure 2.  Transcription activity of major genera of Cyanobacteria Phylum by 800 

treatment as a percent of total cyanobacterial transcription.  a) P-limited experiment.  b) P-replete 801 

experiment. 802 
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 817 

Supplemental Figure 3A.  Dose-dependent growth response of Microcystis aeruginosa NIES-88 818 

to mitomycin C. 819 
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 826 

Supplemental Figure 3B.  Dose-dependent growth response of Microcystis aeruginosa NIES-88 827 

to mitomycin C. 828 
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 833 

Supplemental Figure 4.  Dose-dependent growth response of Microcystis aeruginosa NIES-298H 834 

to mitomycin C. 835 
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 840 
 841 

Supplemental Figure 5.  Dose-dependent growth response of Raphidiopsis (Cylindrospermopsis) 842 

raciborskii Cr2010 to mitomycin C. 843 
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 848 

Supplemental Figure 6.  Dose-dependent growth response of Planktothrix agardhii SB1031 to 849 

mitomycin C. 850 
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Supplemental Table 1.  Attached as Excel spreadsheet. 856 
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Supplemental Table 2.  Attached as Excel spreadsheet. 860 
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