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ABSTRACT 

Structural covariance in brain anatomy is thought to reflect inter-regional sharing of developmental 

influences - although this hypothesis has proved hard to causally test. Here, we use neuroimaging 

in humans and mice to study sex-differences in anatomical covariance - asking if regions that have 

developed shared sex differences in volume across species also show shared sex difference in 

volume covariance. This study design illuminates both the biology of sex-differences and 

theoretical models for anatomical covariance – benefitting from tests of inter-species convergence. 

We find that volumetric structural covariance is stronger in adult females compared to adult males 

for both wild-type mice and healthy human subjects: 98% of all comparisons with statistically 

significant covariance sex differences in mice are female-biased, while 76% of all such 

comparisons are female-biased in humans (q < 0.05). In both species, a region’s covariance and 

volumetric sex-biases have weak inverse relationships to each other: volumetrically male-biased 

regions contain more female-biased covariations, while volumetrically female-biased regions have 

more male-biased covariations (mice: r = -0.185, p = 0.002; humans: r = -0.189, p = 0.001). Our 

results identify a conserved tendency for females to show stronger neuroanatomical covariance 

than males, evident across species, which suggests that stronger structural covariance in females 

could be an evolutionarily conserved feature that is partially related to volumetric alterations 

through sex.  
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SIGNIFICANCE STATEMENT 

Structural covariance is a potent readout of coordinated brain development, but hard to probe 

experimentally. Here we use sex differences as a naturally occurring test for developmental 

theories of structural covariance – adopting a cross-species approach for validation and 

translational benefit. Brain MRI reveals two conserved features of anatomical covariance across 

humans and mice: (i) tighter inter-regional coordination of brain development in females as 

evidenced by stronger volume covariance; (ii) a tendency for female-biased covariance to involve 

regions that are smaller in females – suggesting an unknown counterbalancing between these two 

distinct modes of sex-biased brain organization. These findings advance understanding of 

coordinated brain development and sex difference in a cross-species framework – facilitating 

future translational research on both topics. 
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INTRODUCTION 

Structural covariance refers to the phenomenon in which variable biological structures in a 

population scale together across individuals. That is, if an individual has a small structure A, then 

they are likely to have a small structure B and vice versa. The degree of covariation between two 

structures is typically taken as evidence for how strongly they relate at some unmeasured levels of 

biology (Galton, 1888). Structural covariance relationships in adulthood have been shown to partly 

cohere with shared transcriptomics and connectivity between brain regions (Andrews et al., 1997; 

Gong et al., 2012; Lerch et al., 2006; Mechelli et al., 2005; Romero-Garcia et al., 2018; Yee et al., 

2018) – potentially reflecting coordinated anatomical maturation (Alexander-Bloch et al., 2013b; 

Raznahan et al., 2011) via genetics, cellular patterning and experience-dependent plasticity 

(Alexander-Bloch et al., 2013a; Evans, 2013). However, direct causal tests of these hypotheses 

have been hard to achieve as they would require coordinated experimental manipulations of 

multiple brain regions across individuals in a longitudinal study design. 

 

Here, we use the naturally occurring comparison between males and females of both humans and 

mice as a powerful window to test theoretical models for structural covariance in the brain. As an 

alternative to experimental manipulation of multiple brain regions, we set out to study how 

covariance differs under the regional developmental influences of sex. Experimental data have 

identified murine brain regions that show reproducible volumetric sex differences (Qiu et al., 2018) 

through regional action of male-specific hormonal effects that are not operative in females (Forger 

et al., 2004; Gorski et al., 1978; Hines et al., 1992; Roos et al., 1988; Segovia et al., 1984). These 

volumetric sex differences include male-biased volume in the bed nucleus of the stria terminalis 

(BNST), olfactory bulb, medial amygdala, and female-biased volume in the anteroventral 
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periventricular nucleus (AVPV) (Forger et al., 2004; Hines et al., 1992; Roos et al., 1988; Segovia 

et al., 1984). Humans also show highly reproducible sex differences in regional brain anatomy 

(DeCasien et al., 2022; Liu et al., 2020) that partly cohere with those seen in mice (Guma et al., 

2024) and presumably also reflect sex-biased regional brain development. If adult neuroanatomical 

covariances arise through an inter-regional sharing of developmental influences, then regions 

evidencing sex-biased developmental influences (as evidenced by sex differenced in their mean 

adult volume) would be predicted to also show sex-biased volume covariance. Thus, the study of 

sex-differences in neuroanatomical covariance can not only shed light on an understudied potential 

axis of sex-biased brain organization, but also provides a unique naturally occurring test for 

developmental models of anatomical covariance more generally. To date however, there is 

pronounced heterogeneity in results across those few studies that have tested for sex-biased 

structural covariance in humans (Mechelli et al., 2005; Persson et al., 2014; Seitz et al., 2019; Shi 

et al., 2023; Vijayakumar et al., 2021; Wierenga et al., 2018), without comparison to sex-

differences in regional volume. To our knowledge, there are no published studies of sex-biased 

neuroanatomical covariance in mice. 

 

Here, we use cross-species structural magnetic resonance imaging (sMRI) to map and compare 

sex-biased brain volume covariance – asking how any such sex-biases relate to sex-differences in 

regional brain volume. We first consider all inter-regional pairs collectively, and test for a tendency 

towards stronger volume covariance in one sex than the other of each species. These analyses also 

provide the first direct comparison for the strength of inter-regional neuroanatomical covariance 

in humans as compared to mice. We then score all brain regions in each species for the magnitude 

of their sex-biased covariance with other regions, and further resolve sets of inter-regional pairings 
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with prominent sex-biased volume covariance. These novel maps enable us to systematically test 

if inter-regional variation in the strength of sex-biased volume covariance is related to interregional 

variance in the magnitude of sex-biased volume. Taken together our analyses provide the first 

comparative analysis of sex-biased neuroanatomical covariance in humans and mice. Our results 

inform dominant developmental theories for the emergence of structural covariance and expand 

our comparative understanding of sex-biased mammalian brain organization. 

METHODS  

Acquisition and processing of murine neuroimaging data  

Our study includes structural MRI (sMRI) brain scans from 423 mice acquired at the Mouse 

Imaging Centre in Toronto. Scans were performed on the same 7T multichannel scanner with 

either an insert gradient (6 cm inner bore diameter magnet) or an outer gradient (30 cm diameter 

bore diameter magnet) (Agilent Inc., Palo Alto, CA).  Mice were transcardially perfused using a 

standard protocol across all cohorts (Cahill et al., 2012; Lerch et al., 2011; Spring et al., 2007). 

Brains were kept in the skull and fixed to avoid distortions during imaging. All animal procedures 

were approved by the ethics committees of their originating labs and the animal care committee at 

The Centre for Phenogenomics (AUP-0260H) at the University of Toronto.  

As the mouse data for this study was collected over 10+ years, the MRI pulse sequences were 

optimized over that time period to increase the scanning throughput to enable 16 mice to be 

scanned in one session, and/or to improve resolution and increase gray/white matter contrast in 

each scan (Ellegood et al., 2015; Lerch et al., 2011). The following three MRI sequences were 

used in overnight scans throughout the studies included here. (1) 3 brains scanned in parallel per 

session -- T2-weighted fast spin echo (FSE): TR = 325 ms, TE = 10 ms/echo for 6 echoes. The 

center of k-space is acquired on the 4th echo. Field-of-view (FOV) = 14 x 14 x 25 mm3. Matrix 
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size = 432 x 432 x 780. Image resolution = 32 µm isotropic voxels. (2) 16 brains scanned in parallel 

per session (sequence 1) -- T2-weighted 3D FSE: TR = 2000 ms, echo train length = 6, TEeff = 42 

ms. FOV = 25 x 28 x 14 mm3, matrix size = 450 x 504 x 250. Image resolution: 56 µmm isotropic 

voxels. Oversampling in the phase encoding direction by a factor of 2 was applied to move 

ghosting artifacts from k-space discontinuity to FOV edges. FOV was cropped to 14 mm after 

image reconstruction. (3) 16 brains scanned in parallel per session (sequence 2) -- T2-weighted 3D 

FSE: TR = 350 ms, TE = 12 ms/echo for 6 echoes. Cylindrical 3D k-space acquisition. FOV = 20 

x 20 x 25 mm3, matrix size = 504 x 504 x 630. Image resolution: 40 µmm isotropic voxels (Spencer 

Noakes et al., 2017). Of note, these sequences were evenly distributed between male and female 

mice. 

Structural MRIs were registered and warped to an average study mouse template using 

deformation-based morphometry (Avants et al., 2009, 2011; Collins et al., 1994; Eskildsen et al., 

2012; Friedel et al., 2014). Log-transformed Jacobian determinants for each voxel were calculated 

and used to determine voxel volume differences between individual mouse brains with the 

averaged brain (Chung et al., 2001). ROI volumes were calculated as the sum of volume 

differences for each voxel within the ROI. This process used the MAGeT algorithm (Chakravarty 

et al., 2013; Pipitone et al., 2014) and resulted in 336 unique brain regions from previously 

published atlases (Dorr et al., 2008; Qiu et al., 2018; Richards et al., 2011; Steadman et al., 2014; 

Ullmann et al., 2013). 255 of these regions were grey matter and included in the study.  

The imaged mice consist of C57BL6J (n = 152) and C57BL6N (n = 271) wild-type controls from 

separate studies that each compared wild-type controls with mutations of a different autism-related 

risk gene (Ellegood et al., 2015). For the purposes of this study, we only included wild-type cohorts 

which had at least 5 male and 5 female mice surviving a quality assessment procedure to flag and 
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remove outliers. This procedure involved an initial visual quality control was performed to ensure 

accurate registration and segmentation, followed by an outlier detection process. 

Regional volumetric measures for the full set of 432 sMRI scans was then subjected to batch 

control using ComBat (sva library in R) to correct for variability between strain and ASD gene 

cohort of origin (Fortin et al., 2018, 2017; Johnson et al., 2007; Leek et al., 2022). Final animal 

characteristics are detailed in Table 1.  

 Female Male Statistics 

Sample size 211 212  

Age (days) 

Mean 62.0 62.6  

F (1, 421) = 0.49, p = 

0.44 

SD 7.6 8.5 

Range 56 - 90 56 - 90 

Background Strain    

C57BL-6J (12 

cohorts) 

132 139 X2 = 0.29, p = 0.59 

C57BL-6N (6 

cohorts) 

79 73 

 

Acquisition and processing of human neuroimaging data  

This study includes 436 human sMRI brain scans from the Human Connectome Project 1200 

release. Scans were obtained using an MR750 3-T (General Electric) whole-body scanner (MP-

RAGE-T1: TE 2.14 ms, TR 2400 ms, flip angle = 8°, FOV 224 × 224 mm2, scan time = 7:40 min, 

voxel size = 0.7 mm isotropic) with a 32-channel head coil (176 continuous sagittal slices with 256 
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x 256 in-plane matrix and 1 mm slice thickness). Additional recruitment procedures and 

acquisition parameters are detailed in the original publication (Glasser et al., 2013; Van Essen et 

al., 2012). Information on how to obtain HCP data can be found here 

(https://www.humanconnectome.org/study/hcp-young-adult/document/wu-minn-hcp-

consortium-restricted-data-use-terms). 1110 unique subject scans were visually inspected and 

removed if obvious registration and/or segmentation issues were detected. Euler numbers were 

also measured for each scan using the image preprocessing steps described below. Scans with 

FreeSurfer-estimated Euler numbers less than -217 were excluded from further analyses. From the 

remaining 1030 subject scans, we randomly selected one person per family, based on distinct 

mother ID and father ID, to yield 436 unique and unrelated subjects (Rosen et al., 2018). Final 

participant characteristics are detailed in Table 2. 

The PreFreesurfer pipeline was used to preprocess T1-weighted structural MRI data (Glasser et 

al., 2013). Freesurfer 7.1.0’s (Fischl, 2012) recon-all and highres commands were used to 

reconstruct and parcellate the cortex at the original data resolution (Dale et al., 1999; Dale and 

Sereno, 1993; Desikan et al., 2006; Fischl et al., 2004a, 2002, 2001, 1999, 1998; Fischl and Dale, 

2000; Han et al., 2006; Jovicich et al., 2006; Kuperberg et al., 2003; Reuter et al., 2010; Zaretskaya 

et al., 2018). The pipeline can be downloaded here (http://surfer.nmr.mgh.harvard.edu/). Cortical 

volumes were extracted using the mri_anatomical_stats utility. 360 regions from the Glasser 

Human Connectome Project were generated using this procedure (Glasser et al., 2016). 359 

regions from this atlas were used for subsequent analyses. 

Subcortical and hippocampal segmentation was performed by first assigning one of 39 labels from 

the FreeSurfer ‘aseg’ feature to each voxel (Fischl et al., 2004b, 2002). 19 of these labels were 

gray matter structures and were included in subsequent analyses. Additional segmentations of sex-
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biased nuclei in the hippocampal subfield, amygdala sub-nuclei, and brainstem were made using 

FreeSurfer joint segmentation of these subfields (Iglesias et al., 2015b, 2015a; Saygin et al., 2017). 

Segmentations for classically sex-biased BNST and hypothalamic nuclei were made under a 

different atlas that is not available within FreeSurfer (Neudorfer et al., 2020) 

(https://zenodo.org/record/3942115). Hypothalamic atlas labels were registered to the study’s 

average template, and deformation-based morphometry was applied to warp each subject’s image 

to the study’s template (Devenyi GA, 2024) 

(https://github.com/CoBrALab/optimized_antsMultivariateTemplateConstruction). The Jacobian 

determinant from this process was used to calculate the volume change from the template at each 

voxel in the region of interest (ROI). A summation of these changes within the ROI results in its 

volume measurement.  

 

  Females Males Statistics 

Sample size  238 198 F (1, 434) 

=25.99, p = 

5.143e-07 

Age Mean 29.4 27.6 

SD 3.7 3.6 

Range 22 - 36 22 - 35 

Education (in years) 

* 

Mean 15.0 14.8 F (1,433) =1.45, 

p=0.23 SD 1.8 1.7 

Range 11 - 17 11 - 17 

Euler number Mean -53.7 -59.0 F (1,434) = 8.29 

p=0.004 SD 18.4 20.6 

Range -126 to -16 -201 to -20 
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Zygosity* Monozygotic 72 37 X2 = 10.84, p = 

0.004 Dizygotic 66 49 

Not Twin 99 111 

*1 subject did not have education information reported. 2 subjects did not have zygosity 

information reported. Statistics were only performed on subjects with available demographic data.           

**ANOVA and chi-square tests of significant difference between groups (males vs. females). SD 

= standard deviation. 

                      

Comparing regional volume covariance between males and females in each species 

To compare region of interest (ROI) covariance across sex in each species, we split the data for 

each species by sex and regressed age and sex out of ROI volumes for both species using the 

following model:  

ROI_volume ∼ intercept + β1 (age) + Ɛ 

Residuals from this model were used to compute all pairwise inter-regional volume correlations 

within males and females. The distributions of these correlations across all pairwise relationships 

were directly compared between males and females using t-tests and reported 95% confidence 

intervals (CI). We then subtracted the male correlation matrix from the female to derive a measure 

of sex differences in correlation for all region pairs (with positive values indicating a larger 

correlation in males vs. females).  The statistical significance of sex differences in correlation for 

each unique pair of regions was determined by repeating the above process 1000 times with sex 

being permuted across individuals for each iteration. This procedure yielded a vector of 1000 null 

values for each pairwise correlation sex differences and we derived empirical p-values for these 

observed sex differences against these nulls. Empirical p-values were corrected for multiple 
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comparisons across edges using the False Discovery Rate (FDR) (Benjamini and Hochberg, 1995; 

Benjamini and Yekutieli, 2001) correction with q (the expected proportion of falsely rejected nulls) 

being set at 0.05.  

Examining the relationship between sex differences in volume covariance and sex differences 

in regional volume 

Sex differences in regional volume were estimated as follows: ROI and total grey matter tissue 

volumes (TTV) were z-scored across individuals, then input into the following models to estimate 

the effect of sex on the mean volume of each brain region (given by the β1 coefficient in the model 

below):  

Mice: ROI_volume ∼ intercept + β1(Sex: male vs female) + β2(age) + β3(TTV) + β4(Background 

Strain) + Ɛ 

Human: ROI_volume ∼ intercept + β1(Sex: male vs female) + β2(age) + β3(TTV) + β4(Euler 

number) + Ɛ 

Positive beta coefficients in the model indicate male-biased regional volumes. p-values associated 

with the β1 coefficients from each of these models were corrected for multiple comparisons across 

the number of brain regions in each species using FDR with q < 0.05.  

The relationships between covariance and volumetric sex differences were assessed using several 

complimentary approaches. First, we selected three classically sex-biased regions in mice – the 

BNST, medial amygdala, and olfactory bulb – and asked if there are any covariance sex differences 

among these pairings. Statistical significance was calculated using the previously described 

permutation pipeline and Bonferroni corrected for the total number of comparisons made within 

this analysis (q = 0.05). Second, we used the full correlation sex differences matrix in each species 

to estimate the mean sex differences in volume correlation per brain region (averaging the sex 
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differences in its correlation with all other regions) - once using all pairwise correlation sex 

differences, and again using just those pairs deemed statistically significant in covariance sex 

differences through permutation testing. We examined the distribution of these properties across 

the brain of each species and noted those brain regions showing both sex differences in mean 

volume and sex differences in volume covariance. Third, we used network visualization to specify 

sets of brain regions showing prominent sex differences in anatomical covariance. Specifically, 

we identified all region pairs with statistically significant covariance sex differences, converted 

these pairings into a graph with nodes (regions) and edges (covariance sex differences), and 

visualized the largest connected components of these graphs in each species  to determine their 

contents and any included nodes that also show sex-biased volume. To capture a similar number 

of nodes across species for these graphical representations we examined the two largest connected 

components in mice and the single most connected component in humans. Fourth, we tested if 

inter-regional variation in the mean sex difference in volume covariance per brain region was 

correlated with inter-regional variation in the effect size of volumetric sex differences (β1 

coefficients). These correlations were run twice in each species – once using the regional means 

for the absolute sex differences in correlations and once using regional means for signed sex 

differences in correlations. The statistical significance of these correlations between regions’ sex 

differences in covariance and regional sex differences in volume was assessed by comparing 

observed correlations with a distribution of 1000 null correlations from permutations of sex within 

species (performed on the NIH HPC Biowulf cluster -- http://hpc.nih.gov). 

R versions and packages 

All analyses presented in this paper were performed using R version 4.2.3 unless Biowulf handled 

the computation, in which case R version 4.2.1 was used (R Core Team, 2023). Packages used for 
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all analyses can be found in the references section (Allen Institute for Brain Science. Allen Brain 

Explorer., n.d.; Glur, 2020; Kuhn and Wickham, 2020; Landau, 2021; Lander, 2018; Lerch, 2023; 

Lerch et al., 2017; Mowinckel and Vidal-Piñeiro, 2023, 2022, 2019; Pedersen, 2024; Robinson et 

al., 2023; Wickham, 2020; Wickham et al., 2019). Data cleaning and analyses codes can be found 

at github.com/phamlk/cross-species-covariance-sex-differences.  

RESULTS 

Structural covariance is generally stronger in females than males for both mice and humans 

For both species, comparing the distributions of all correlations in each sex showed that mean 

interregional covariance is stronger in females than males, with a small effect size for the mean 

between sex difference (D) in covariance (Figure. 1 A - B, D mice: 0.043, 95% CI: 0.041 - 0.045; 

D humans: 0.016, 95% CI: 0.015 - 0.017). After correction for multiple comparisons across region 

pairs, we identified 44 pairs of regions with statistically significant sex-biased covariance in mice 

(0.14 % of all pairwise relationships in the mouse brain; 43 stronger covariance in females) and 

100 such pairs in humans (0.10 % of all pairwise relationships in the human brain: 71 stronger 

covariance in females). As expected, the distribution of covariance strengths for these pairs 

differed between the sexes for both species - with a larger effect size than was seen when 

considering all pairs (Figure 1 C - F, D mice: 0.293, 95% CI: 0.235 - 0.353; D humans: 0.156, 

95% CI: 0.108 - 0.204). Of note, the average within-sex correlation was consistently higher in 

mice than in humans (all comparisons: 0.275 in male mice, 0.196 in male humans. 0.318 in female 

mice, 0.212 in female humans; significant comparisons: 0.129 in male mice, 0.106 in male 

humans. 0.422 in female mice, 0.261 in female humans). The full within-sex structural covariance 

matrices and lists of pairwise covariance sex differences can be found for each species in Extended 

Figures 1-1, 1-2 and Extended Tables 1-1, 1-2. As part of these analyses, we also tested the 
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hypothesis that sex differences in volume correlation are more pronounced in region pairs showing 

weaker within sex volume correlation (as simulated in Extended Figure 1-3). We confirmed the 

expected inverse relationship between covariance strength and covariance sex differences when 

considering only pairs with statistically significant sex differences in correlations. The results of 

these analyses are provided in Extended Figure 1-4. Taken together these results indicate that 

regional volume covariance is stronger in mice than humans for both sexes, and that within each 

species, females tend to show stronger structural covariance than males. For both species, these 

sex-differences in structural covariance are statistically significant for a small subset (<0.15%) of 

all possible inter-regional pairings in each species, with the largest sex differences occurring 

between those inter-regional pairings that show weaker structural covariance in each sex. 

Cross-brain analysis reveals a weak association between interregional sex differences in 

volume covariance and sex differences in regional volume  

We took several complementary approaches to examining the relationship between regional sex 

differences in brain volume covariance and regional sex differences in brain volume. First, we 

selected 3 classical regions with the largest and best-replicated sex differences in volume in mice 

– BNST, olfactory bulb, medial amygdala – and examined sex differences in covariance between 

these structures. None of the region pairs showed statistically significant sex differences in 

covariance (Figure 2 B-D: medial amygdala – BNST: D = 0.053, p = 1.0; olfactory bulb – BNST: 

D = 0.041, p = 1.0; medial amygdala – olfactory bulb: D = 0.083, p = 1.0).  

Second, we expanded our analyses to characterize the relationship between sex-biased volume and 

sex-biased volume covariance throughout the brain of each species more broadly. To contextualize 

these analyses, we projected all observed sex-differences in volume covariance into anatomical 
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space by computing the mean signed sex-difference in volume covariance for each region and 

visualizing the distribution of this regional value across the brain of each species (Figure 3 A, B 

– left columns).  Re-computing these maps using information for just those region pairs with 

statistically significant sex differences in covariance (see Methods) highlighted several brain 

regions in each species with significant cumulative sex-differences in volume covariance with the 

rest of the brain (Figure 3 A, B -- right columns). In mice, these regions had almost exclusively 

stronger covariance in females and included the infralimbic area, medial parietal association 

cortex, and the pons. Regional covariance sex differences were also more often female-biased in 

humans and included regions such as the auditory complex 4, the primary sensory cortex, and the 

primary motor cortex. However, in humans, we also observed regions with significantly male-

biased sex-differences in regional structural covariance, including the area prostriata and the 

premotor eye field. Qualitatively some of the regions highlighted by these analyses also showed 

sex-differences in mean volume [e.g. mice: mamillary body, mouth primary somatosensory area, 

claustrum (female-biased mean volume); BNST, olfactory bulb, CA3 pyramidal region (male-

biased volume) / humans: primary sensory cortex, cingulate regions (supplementary and cingulate 

eye field, ventral area 24d) (female-biased volume); hypothalamus, amygdala, posterior insular 

region 1 (male-biased volume). The full lists of mean regional covariance sex differences in each 

species can be found in Extended Tables 3-1, 3-2. 

To disentangle individual inter-regional pairs from these regional summaries of Figure 3, and to 

further assess the involvement of volumetrically sex-biased regions in sex-biased covariance 

patterns, we generated graphs containing all inter-regional pairs with statistically significant sex-

biased volume covariance in each species (regions as nodes and sex-biased covariance 

relationships as edges). Figures 4 and 5 represent the largest connected components of these 
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graphs for mice and humans. In mice, the largest components are centered around the right cuneate 

nucleus and the left infralimbic area. All connecting covariance sex-biased edges are female-

biased. Of the 27 regions involved in these components, 7 volumetrically sex-biased regions are 

distantly associated with the central nodes. These regions include the male-biased hypothalamus 

and CA3 pyramidal regions, and the female-biased mamillary body and the cerebellar crus regions. 

The largest connected component in humans contains 35 regions and is mainly centered around 

the right posterior insular area 1, a volumetrically male-biased region, and the right parainsular 

region area 52. Approximately 80% of this component’s edges are female-biased. Only 2 other 

volumetrically sex-biased regions are represented in this component (supplementary and cingulate 

eye field; primary sensory cortex – both are female-biased).  

Finally, we sought to quantitatively test – within both species - if regional variation in the 

magnitude of sex-biased volume covariance was related to regional variation in the magnitude of 

sex-biased mean volume. These analyses were repeated twice within each species - once using 

absolute values and once using signed values for mean regional sex differences in volume 

covariance (absolute inter-regional sex differences in covariance for computing regional means 

and absolute sex differences in volume). The absolute values analysis shows no evidence of an 

association between regional volumetric and mean covariance sex-bias effect size in both humans 

and mice (Fig. 6A, B, mice: r = 0.03, p = 0.68; humans: r = 0.13, p = 0.98). However, the signed 

analyses revealed that both species show a weak yet statistically significant inverse relationship 

between regional covariance and volumetric sex-bias directions (Fig. 6 C, D, mice: r = -0.19, p = 

0.002; humans: r = -0.19; p = 0.001). Specifically, in both species, regions of significantly male-

biased volume more often show female-biased volume covariance and vice versa for regions of 

significantly female-biased volume. 
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Taken together, these analyses help to localize sex-differences in volume covariance within the 

brains of humans and mice, and further specify the spatial relationship between this phenomenon 

and accompanying sex-differences in regional volume. We find several regions of prominently 

sex-biased volume covariance in each species – highlighting the infralimbic area, medial parietal 

cortex, and pons in mice and auditory complex 4, the primary sensory cortex, and primary motor 

cortex in humans. Some of these regions overlap with regional sex-differences in volume – 

highlighting brain areas that show two forms of sex-biased organization (e.g. mamillary body, 

mouth primary somatosensory area, claustrum in mouse, hypothalamus, amygdala, and posterior 

insular region 1 in humans). Although significant sex differences in anatomical covariance are not 

seen amongst major classical foci of sex-biased volume in the mouse brain, there is a subtle yet 

significant inverse association between sex differences in volume and volume covariance across 

both the murine and human brain.   

DISCUSSION 

In this study, we utilize sex as a natural experiment to ask whether developmental programming 

plays a role in structural covariance formation within humans and mice. Our results provide a 

systematic survey of sex-biased neuroanatomical covariance and the conservation of these features 

across species. We consider each of our main analyses and findings below. 

 

First, en route to separately estimating sex-differences in structural covariance within humans and 

mice, we observe that mice show stronger neuroanatomical covariance than humans, regardless of 

sex. We speculate that this novel observation might reflect the combined action of several inter-

species differences.  The greater genetic and environmental variability across humans as compared 

to inbred laboratory mice is likely to translate into weaker coordination of anatomical variation 
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within the human vs. murine brain. Greater neuroanatomical covariation in mice than humans may 

also track with the gross difference in brain size between species – given that larger vertebrates 

tend to show greater phenotypic variability (Hallgrímsson and Maiorana, 2000) and the strength 

of inter-regional covariance is likely to drop off with the greater inter-regional distances within the 

human compared to the murine brain (He et al., 2007; Yee et al., 2018). The species differences 

we observe in the strength of overall neuroanatomical covariance could also track with the 

substantially longer lifespan in humans than mice given evidence of age-related decreases in 

neuroanatomical covariance within humans (DuPre, E., Spreng, R.N., 2017). 

 

Second, we replicate prior reports of female-biased volume covariance in the human brain (Shi et 

al., 2023; Wierenga et al., 2022) and reveal for the first time that this phenomenon is also evident 

in the mouse-brain. This inter-species convergence suggests that female-biased neuroanatomical 

covariance may be an evolutionarily conserved feature, but further study in other species will be 

required to verify this. Many previously proposed candidate mechanisms for sex-biased 

anatomical covariance are unable to parsimoniously account the observation of female-biased 

covariance in both species. Although sex-differences in overall brain-size would predict stronger 

anatomical covariation in females vs. males for humans [given larger brain size in males and 

tendency for anatomical covariance to decreases with increasing organism size (Hallgrímsson and 

Maiorana, 2000)] – this explanation could not account for sex-biased anatomical covariation in 

mice given the lack of sex-differences of overall brain size in this species (Guma et al., 2024). 

Similarly, although greater anatomical variability in male vs. female humans (REF) could explain 

our observation of stronger anatomical covariation in human females vs. males (if male-biased 

anatomical variance in humans reflects greater developmental noise that is uncorrelated between 
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regions), this explanation would not apply in mice – which do not show the prominent sex-bias in 

neuroanatomical variability that is evident in humans (Guma et al., 2024; Wierenga et al., 2022, 

2018). The most parsimonious mechanistic hypothesis for our findings would be that the tendency 

towards female-biased neuroanatomical covariance in both humans and mice reflect a genetic and 

hormonal aspects of sex that is shared between species and capable of shaping inter-regional 

anatomical covariance. For example, females of both species are biallelic for X-linked gametologs, 

whereas males of both species are hemizygous for the X- and Y-member of each gametolog pair. 

Given this, those regionally specific functional divergences of X- vs. Y-gametologs that have 

recently been reported within the brain (DeCasien et al., 2024) represent a male-specific source of 

inter-regional divergence in neurobiological organization that is operative in both species and 

could lead to stronger inter-regional covariance in femalesClick or tap here to enter text..  

 

Third, we profile the regional distribution of sex-biased volume covariance in each species and 

probe how this are related to much more extensively studied sex differences in mean regional 

volume. As an initial targeted test for the idea of coordinated sex-differences in brain volume and 

volume covariance – we focused on 3 regions of canonically sex-biased volume in the mouse brain 

(BNST, medial amygdala, olfactory bulb) and found no evidence of sex-biased covariance 

amongst these regions. Thus, those male-specific processes that are documented to drive the highly 

reproducible male-bias in the mean volume of these regions (Forger et al., 2004; Gorski et al., 

1978; Hines et al., 1992; Roos et al., 1988; Segovia et al., 1984) do not appear to open male-

specific sources of covariation between regions. However, we cannot rule out the possibility that 

these regions show sex-specific sources of volume covariation that counterbalance each other or 

are hidden by dominantly shared sourced of inter-regional volume covariation between the sexes.   
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While no covariance sex differences were identified among classical regions of volumetric sex 

bias, broadening the search for sex-biased volume covariance does identify multiple brain regions 

that show differential volume coupling with the rest of the brain between sexes. Echoing the 

female-bias in volume covariance found in our global analyses, regional hotspots of sex-biased 

covariance were almost exclusively female-biased in mice and mostly female-biased in humans. 

Regions with significant sex-bias in covariance with other regions in mice were the infralimbic 

area, medial parietal association cortex, and the pons (stronger in females); in humans, these 

regions include the auditory complex 4, the primary sensory cortex, the primary motor cortex 

(stronger in females), the area prostriata, and the premotor eye field (stronger in males). Knowing 

regions of sex-biased volume covariance provides a powerful starting point for probing potential 

mechanistic relationships between sex-biased anatomical covariance and sex differences in 

connectivity, function and coordinated developmental influences. Moreover, some of the brain 

regions showing prominent sex-biased covariance are also volumetric sex-biased in our study, 

such as the mamillary body and claustrum in mice and the posterior insular region 1 and 

hypothalamus in humans. These brain regions offer high-priority targets for follow-up mechanistic 

analyses and for probing how sex-biased anatomical organization of the brain might relate to brain 

function.  

 

To dissect out specific pairwise sex differences in covariance that underpin these regional patterns, 

we visualized networks of significant covariance sex differences in mice and humans to flag large 

sets of brain regions that are all interlinked through sex-biased volume covariance. These findings 
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help to motivate and focus those challenging experimental studies that will now be needed to 

determine the drivers for sex-differences in neuroanatomical covariance.  

 

While we define some instances of overlap between sex-biased volume covariance and sex-biased 

volume, we show that these features of the brain are not strongly related across the brain as a 

whole. This dissociation implies that the biological process regulating development of sex-biased 

volume are largely dissociable from those that drive sex-biased volume covariance. However, we 

do observe a weak negative correlation between signed sex differences in brain volume and brain 

volume covariance – mostly driven by a tendency for regions of male-biased volume to show 

female-biased volume covariance. Thus, we speculate that the presence of male-specific influences 

on the size of a sex-biased region introduces male-specific sourced of regional volume variation 

that are poorly coordinated between regions – resulting in weakened interregional correlations 

amongst these regions in males as compared to females.  

 

Our findings should be considered with several caveats and limitations. First – we have focused 

on brain volume as an anatomical phenotype that can be comparably estimated by structural MRI 

across both species, but there are many other anatomical properties of the brain beyond volume 

(e.g., regional myelin content). We cannot assume that our volumetric findings here will generalize 

to other properties of the brain. Second, we estimate covariance cross-sectionally in datasets from 

adulthood in each species. As such, our study cannot speak to potential age-related variations of 

sex-biased anatomical covariance. Third, our study design is purely observational, and we cannot 

dissect the potential mechanistic basis for observed sex differences in covariance. In mice, these 

mechanisms could ultimately be related to sex-biased chromosomal and gonadal influences on 
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brain development. Such influences are also likely to be operative in humans but will almost 

certainly be interwoven with co-occurring gendered influences stemming from the external 

environment. Transgenic models like the Four Core Genotypes could explain how covariance sex 

differences are formed (Arnold and Chen, 2009; Corre et al., 2016).  These experiments would 

expand our understanding of how sex affects brain organization and how developmental 

programming, in general, can drive covariance formation.  

Notwithstanding the limitations above, our study was able to use the natural experiment of sex to 

provide evidence for the involvement of developmental mechanisms in brain structural covariance 

formation. We validate existing human results that show females have stronger covariance and 

identified that the same phenotype is also present in mice. We provide a fine-grained delineation 

of those brain systems that show sex-biased covariance in each species. Our finding that structural 

covariance sex differences only partially involve volumetrically sex-biased structures supports the 

viewpoint that the influences of sex likely have uncoordinated effects across brain regions and 

highlights structural covariance as a novel axis of sex-biased brain organization warranting further 

study. Additionally, the cross-species approach used here allows us to articulate the potential 

impacts of stochasticity and variation on structural covariance, thus emphasizing the importance 

of applying synchronized methodologies across species for gaining new insights into brain biology 

and increasing the translatability of animal findings (Barron et al., 2021). 
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FIGURES 

 

Figure 1. Inter-regional volume correlation distributions across sex in mice and humans. A, B) 
Comparison of all within sex correlation values for mouse (A) and human (B) (D mouse = 0.043, 95% CI: 
0.041 - 0.045. D human = 0.016, 95% CI: 0.015 - 0.017). Each point represents a pairwise correlation 
value. Box plots and density plots are shown for distribution visualizations.  C, D) Comparison of within-
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sex correlation values for region pairings with statistically significant covariance sex differences in mouse 
(C) and human (D) (D mouse = 0.293, 95% CI: 0.235 - 0.353. D human = 0.156, 95% CI: 0.108 - 0.204). 
E, F) Pairwise visualization of comparisons with significant sex differences in mouse (E) and human (F). 
Each point represents a pairwise correlation in either male or female. A connecting line between two points 
are shown to connect a pairwise correlation value in one sex and with its equivalent pairing in the other 
sex.   

 
 
 

 

Figure 2. Within sex correlations between classic sex-biased regions in the mouse. (A) 
Visualization of three volumetrically sex-biased regions: olfactory bulb, BNST, and medial 
amygdala. B, C, D) Sex-specific correlations of the medial amygdala with BNST (B), olfactory 
bulb with BNST (C), and olfactory bulb with medial amygdala (D). Sex-specific means of each 
region were added to their residuals before correlation calculations began. This was done to 
maintain volumetric sex differences in volume distribution for visualization purposes. Correlation 
sex differences for all three pairs were not statistically significant (p = 1.0).  
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Figure 3. Regional mean covariance sex differences in mice and humans. Mean covariance sex 
differences in mouse (A) and human (B) when averaging a region’s covariance sex difference 
across all pairwise comparisons (all comparisons) or only pairwise comparisons with statistically 
significant covariance sex differences (significant comparisons). When including all pairwise 
comparisons, 89% of mouse regions had mean covariance sex differences which were stronger in 
females. For humans, averaging all pairwise covariance sex differences per brain region resulted 
in 68% of human regions with female-biased mean covariance. When including only comparisons 
significant for covariance sex differences, 96% of the included mouse regions and 70% of the 
human regions were female biased. Regions containing statistically significant covariance sex 
differences that are also sex-biased in volume are highlighted by dashed lines in the mouse brain 
and asterisks in the human brain.   
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Figure 4. Statistically significant covariance sex differences in mice, represented as nodes and edges (top 
2 most connected components). The first component (left side) is centered by the right cuneate nucleus and 
involves 14 regions/13 covariance pairs. The second component (right side) is centered on the left 
infralimbic area and involves 13 regions/13 covariance pairs. Both components contain only female-biased 
edges. Of the 16 edges involving volumetrically sex-biased regions in these components, 13 are between a 
volumetrically sex-biased region and a region without any volumetric sex bias; 3 are between two 
volumetrically sex-biased regions.  
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Figure 5. Statistically significant covariance sex differences in humans, represented as nodes and edges 
(most connected component). This component is centered by two regions: right parainsular area 52 with 7 
connecting nodes and right posterior insular area 1 with 8 connecting nodes. Of the 33 edges included in 
this component, 8 are male-biased. Of the 35 regions included in this component, 3 have volumetric sex 
differences (right posterior insular area 1, right posterior insular area 2, right supplementary and 
cingulate eye field). Except for the female-biased covariance relationship between the right posterior 
insular area 1 and the posterior insular area 2, all sex-biased edges involving a volumetrically sex-biased 
region (9 in total) are paired with a volumetrically non-sex-biased region.  
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Figure 6. Relationships between the sex-biased in regional volumetric and regional volume covariance. 
A, B) Relationships between absolute values in mean regional correlation sex bias and volumetric sex 
biases in mouse (A) and human (B). C, D) Relationships between signed values in mean regional 
correlation sex bias and volumetric sex biases in mouse (C) and human (D). Negative values are female 
biased in both axes. Marginal density plots represent the regional mean correlation sex-bias distributions 
of different volumetric sex-bias categories (female-biased, male-biased and not significantly sex-biased). 
For the signed analyses in both species, there is a statistically significant, but weak negative correlation 
between sex-differences in volume and sex-differences in volume covariance (inset statistics). Thus - in both 
species - regions of significantly male-biased volume more often show female-biased volume covariance 
and vice versa for regions of significantly female-biased volume.  However, note also that regions with the 
largest volumetric sex-bias values do not have the largest mean correlation sex-bias – their values are 
concentrated closer to the median regional mean correlation sex bias (red dashed line). Also, regions with 
statistically significant volumetric sex biases but smaller volumetric sex bias values can be found on either 
end of the x-axis. 
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Extended Figures 

 
Figure 7-1. Male and female structural covariance of mouse. Pearson correlation matrices of regional 
brain volumes in mice, separated by sex. Each row and column represent a grey matter structure defined 
by the Allen Mouse Brain Atlas, shown in the right column. Structures are denoted by color bands that 
correspond to their structures’ colors in the atlas. Each element in the matrices represent a Pearson 
correlation between two brain structures. Mouse brain structures mainly have positive correlations to 
each other. Given the same correlation color scale across sex, female mice appear to have more intense 
positive correlations in the brain comparing to males.  
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Figure 1-2. Male and female structural covariance of human. Pearson correlation matrices of regional 
brain volumes in humans, separated by sex. Cortical structures are grouped into 6 lobes, as defined by 
Freesurfer output for Glasser atlas segmentation: occipital (light blue), frontal (dark blue), parietal (light 
green), temporal (dark green), insula (salmon). Subcortical structures are defined as followed using 
Freesurfer output for Aseg atlas segmentation: thalamus proper (red), amygdala (orange), basal ganglia 
– combination of caudate, putamen, pallidum (light purple), pons (dark purple), cerebellum (yellow), 
ventral diencephalon (brown). Additional segmentations of amygdala and hypothalamic nuclei were 
grouped under the amygdala and ventral diencephalon categories, respectively. Structures are denoted by 
color bands that correspond to their structures’ colors in the atlas. Each element in the matrices 
represent a Pearson correlation between two brain structures. Human brain structures mainly have 
positive correlations to each other. Given the same correlation color scale across sex, females appear to 
have more intense positive correlations in the brain comparing to males. The correlation color intensities 
are less than those observed in both male and female mice.  
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Figure 1-8. Simulated data demonstration: Shared versus sex-specific developmental influences on 
structural covariance sex differences. The correlation strength between two structures tend to increase 
as a function of shared developmental influences, such as through shared axonal connectivity or gene 
expressions. As structures share less influences, their correlations also tend to weaken. If sex-specific 
influences only act on certain structures in the brain, then they are more likely to influence the covariance 
between pairs where one structure receives the developmental influences of sex while the other does not. 
In other words, sex-specific developmental influences are more likely to act upon structure pairs with less 
shared influences to each other, or pairs with weaker correlations. For this reason, one could expect 
covariance sex differences to be largest between covariance pairs with weak associations to each other.  
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Figure 1-9. Structural covariance strength versus sex difference in mice and humans. A-D) Pairwise Pearson 
correlations versus absolute correlation sex differences for all comparisons in female mouse (A) and human (B) and 
male mouse (C) and human (D)E, F) Pairwise Pearson correlations versus absolute correlation sex differences in pairs 
with significant covariance sex differences for mouse (E) and human (F). Association strengths between these values are 
calculated using Pearson correlation and p-values generated by the cor.test function in R. The predicted inverse 
relationship between covariance strength and sex differences are more prominent in mice than humans. 
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Extended Tables Captions 

Extended Table 1-1. All pairwise covariance sex difference results in mice. Differences 

significance status is defined in the “signif” and “signif_adj” columns, corresponding to whether 

the difference is significant after permutation testing or after permutation testing and multiple 

comparisons corrections.  

Extended Table 1-2. All pairwise covariance sex difference results in humans. Differences 

significance status is defined in the “signif” and “signif_adj” columns, corresponding to whether 

the difference is significant after permutation testing or after permutation testing and multiple 

comparisons corrections.  

Extended Table 3-1. All regional mean covariance sex differences in mice. Signed values are 

indicated as “meanCov_signed”. Absolute values are indicated as “meanCov_absolute”.  

Extended Table 3-2. All regional mean covariance sex differences in humans. Signed values are 

indicated as “meanCov_signed”. Absolute values are indicated as “meanCov_absolute”.  
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